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Abstract: Advances in cell fusion technology have propelled breeding into the realm of somatic
hybridization, enabling the transfer of genetic material independent of sexual reproduction. This has
facilitated genome recombination both within and between species. Despite its use in plant breeding
for over fifty years, somatic hybridization has been limited by cumbersome procedures, such as
protoplast isolation, hybridized-cell selection and cultivation, and regeneration, particularly in woody
perennial species that are difficult to regenerate. This review summarizes the development of somatic
hybridization, explores the challenges and solutions associated with cell fusion technology in woody
perennials, and outlines the process of protoplast regeneration. Recent advancements in genome
editing and plant cell regeneration present new opportunities for applying somatic hybridization
in breeding. We offer a perspective on integrating these emerging technologies to enhance somatic
hybridization in woody perennial plants.
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1. Introduction

Breeding technologies have evolved from selective breeding and hybridization to
contemporary gene-editing approaches [1]. Hybridization, the practice of combining
genetic material from different organisms through sexual reproduction, gained scien-
tific prominence following the rediscovery of Mendel’s laws of inheritance in the early
20th century [2]. Traditional hybridization is mostly used in sexually compatible species
with relatively short vegetative periods. This constraint restricts the gene pool to those
species that can interbreed, thereby limiting genetic diversity and potential improvements.
To overcome these limitations, distant hybridization techniques have been developed.
Distant hybridization involves crosses between species, genera, or even higher taxonomic
ranks, aiming to introduce new genetic material into breeding programs [3,4]. Efforts have
also been made to fix hybrid vigor [5,6]. Despite its potential, distant hybridization faces
challenges such as hybrid lethality, which is mitigated by embryo rescue techniques that
involve in vitro culture to prevent embryo degeneration, though success has been limited
to a few species [7].

In the 1960s, the advent of cell and protoplast fusion techniques marked a significant
advancement in plant breeding. These methods, collectively known as somatic hybridiza-
tion, circumvent the limitations of sexual reproduction by allowing for the fusion of cells
from different species or genera [8,9]. This approach has proven particularly valuable
for woody perennials, which typically have long vegetative periods that make traditional
hybridization time-consuming and inefficient. Somatic hybridization provides a means to
combine genomes and plastids from different species, offering a potential solution to the
limitations of traditional hybridization [10,11].
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One prerequisite for successful cell fusion is reducing the negative charge on the
phosphate groups of cell membranes. Various strategies have been employed for this
purpose, including the use of calcium ions (Ca2+), high pH conditions, sodium nitrate
(NaNO3), polyvinyl alcohol (PVA), and polyethylene glycol (PEG) [12,13]. Techniques such
as electrofusion, chemical fusion, and photofusion have been developed to enhance the
efficiency and stability of fusion bodies. Among these, PEG-mediated electrofusion has
become the most widely used method due to its effectiveness [14,15]. Later, the use of
lower PEG concentrations (40% for chemical fusion and 20% for electro-chemical fusion) in
combination with direct current pulses has further refined the technique, integrating the
advantages of both chemical and electrofusion methods [16].

Somatic hybridization was initially regarded as a highly promising technology due
to its potential to combine not only the nuclear genomes but also the plastids of different
species [8,16,17]. However, although great efforts have been made to create new species via
somatic hybridization, successful combinations are still rare [18]. The primary challenge
lies in the low frequency of hybrid regeneration, which may be attributed to issues such
as plastid–nucleus incompatibility, inefficient regeneration methods, or developmental
lethality [18–20]. Even when hybrids are successfully regenerated, they often exhibit
sterility and fail to produce viable seeds [19]. This limitation has led to a cyclical pattern
of optimism and setbacks for somatic hybridization over the past fifty years [20]. In crops
propagated via seeds, embryo failure poses a significant challenge. However, the fact that
commercially important woody plants are typically propagated asexually (e.g., through
cuttings and micropropagation) offers a potential advantage, as it could circumvent the
issue of hybrid sterility. The lack of efficient cell regeneration systems remains a major
hurdle for woody plants. Recent advances in cell proliferation and organogenesis research
provide new opportunities to optimize regeneration protocols for recalcitrant species,
offering promising prospects for the application of somatic hybridization in woody plants.

This review aims to provide a comprehensive evaluation of the progress made in
the somatic hybridization of woody plants, highlighting both the limitations and advan-
tages of this breeding approach. We will explore the procedures for regenerating somatic
hybrids and discuss how modern breeding technologies can be integrated into somatic
hybridization to broaden its application in woody species.

2. The Application of Somatic Hybridization in Woody Plants

Woody species, particularly trees, present a unique challenge for breeding due to
their long vegetative periods. Traditional breeding methods are often time-consuming and
labor-intensive, making somatic hybridization an attractive alternative. This technique
facilitates protoplast fusion under in vitro conditions, allowing for the creation of hybrid
plants that might not be achievable through sexual reproduction alone [8,9]. Somatic
hybridization is particularly valuable for breeding species that are sexually incompatible,
asexually propagated, or sterile. By bypassing the sexual phase, somatic hybridization can
significantly reduce breeding cycles and introduce new genetic variations into the breeding
pool [21]. Unlike traditional hybridization, which typically produces nuclear hybrids
while preserving non-inheritable organelle genes, protoplast fusion allows for the transfer
and recombination of organelles. This capability promotes plastid evolution, potentially
enhancing traits such as product quality, stress resistance, and growth rates [22–24]. Thus,
somatic hybridization has advantages in promoting plastid evolution and creating desirable
plastids. As a result, somatic hybridization has been used to improve various characteristics
in plants, including yield, disease resistance, and environmental adaptability [25–27].

Citrus species are among the most notable examples of the successful application of
somatic hybridization in woody plants. Citrus plants have well-established regeneration
methods, making them suitable candidates for somatic hybridization experiments [28,29].
Since the successful regeneration of the first intergeneric Citrus somatic hybrid in 1985,
nearly 250 cases of citrus somatic hybrids have been cultivated worldwide, with over
40 cases reported from China alone [30,31]. The ‘leaf protoplasts + embryogenic callus
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protoplasts’ model has proven effective in Citrus cell fusion, facilitating the selection and
regeneration of fused bodies. This model has also played a key role in improving Citrus
resilience and fruit quality. Both symmetrical and asymmetrical somatic hybridizations
have been employed to produce stress-resistant cultivars, seedless fruits, and disease-
resistant varieties [26,32,33]. For example, symmetrical somatic hybridization between
Citrus cultivar species and Poncirus trifoliata has been conducted to produce stress-resistant
cultivars or ideal rootstocks [33–36]. Generally, symmetrical somatic hybridization has
been widely used for rootstock breeding, as undesirable traits can be incorporated into
the fused product. However, with asymmetric hybridization, the situation can be very
different. Asymmetrical somatic hybridization has been conducted in Citrus to obtain
male-sterile trees, seedless fruits, and disease-resistant cultivars [37–39]. Many somatic
hybrid Citrus cultivars have been commercialized. Typical cases that have been published
are summarized in Table 1.

Beyond Citrus, efforts to apply somatic hybridization to other woody species have
yielded some success. Early cases included cherry, pear, persimmon, Passiflora species,
and apple [40–44]. More recent progress has been made. Hybrid cells have been achieved
in species such as mango, mulberry, jujube, and rose [22,45–48]. Despite these advances,
the regeneration of fused cells—the final step of somatic hybridization, which determines
the success of somatic hybridization breeding—remains a critical challenge. For instance,
mulberry hybrid cells were successfully obtained in the 1980s but failed to develop into
plants [47]. Woody species’ failure to regenerate could explain why cell fusion technology
has mainly succeeded in herbaceous species, as these have more sophisticated regeneration
systems [49,50]. Recent achievements in protoplast culturing have been reported in species
like grape [51], litchi [52], olive [53], camellia [54], Jasminum [55], pecan [56], apricot [57],
poplar [58], and various gymnosperms [59–61], providing very good preconditions for
the application of somatic hybridization. However, issues such as the instability of fusion
bodies and abnormalities in embryo development continue to pose challenges [62]. Es-
tablishing robust regeneration systems is crucial for advancing somatic hybridization in
woody species.

Table 1. Protocol for woody species with successful protoplast fusion.

Category Latin Name Improvement in Agronomical Characteristics References

Pear/cherry Pyrus communis var. pyraster L. × Prunus avium ×
pseudocerasus

Enhanced traits such as chromosome number,
morphological characteristics, and leaf isozyme profiles [40]

Persimmon Diospyros glandulosa × D. kaki Resolved the hybridization barrier in D. kaki [41]

Mango Mangifera indica L. Hybrids between cultivars [46]

Passiflora Passiflora edulis f. flavicarpa Degener. × P. cincarnata L. [42]

Passiflora edulis f. flavicarpa Degener. ×
P. amethystina Mikan [43]

Citrus

Citrus reshni Hort. Ex Tan × winter Haven
citrumelo

Citrus reshni Hort. Ex Tan × citrange
Citurs sinensis L. Osbeck ×

(C. × paradisi × Poncirus. trifoliata)

Promote high fruit quality and good yields [35]

Citrus australasica F. Muell × Citrus sinensis
Citrus australasica F. Muell × Citrus ‘Ju You’ Perceive tolerance to Huanglongbing (HLB) [33]

Citrus japonica Thunb × Citrus paradisi Macfad Enhancing resistance to Citrus canker [39]

Citrus deliciosa Ten × Poncirus trifoliata (L.) Raf Improving natural chilling and light stress tolerances [63]

Citrus latipes × W. Murcott Improving resistance to greening disease and
reducing seedlessness [64]
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Table 1. Cont.

Category Latin Name Improvement in Agronomical Characteristics References

Citrus reticulata × Citrus paradisi Improving fruit characteristics [65]

Citrus unshiu Marc. × Citru sinensis L. Osb. CMS [66]

Citrus sinensis L. Osbeck × Citrus limon L. Burm Improving fruit oil quality [67]

Citrus sinensi s × [Citrus reticulata × (Citrus paradisi
×

Citrus reticulata)]
Improving citrus scion [68]

Citrus sinensis L. × Poncirus trifoliata L. Addressing the threats posed by abiotic constraints [69]

Citrus unshiu Marc. × [ Citrus reticulata Blanco ×
(Citrus reticulata Blanco ×

Citrus paradisi Macf )]
CMS [70]

Citrus sinensis × Citrusdeliciosa Improving the tolerance to Xanthomonas axonopodis pv.
citri and Xylella fastidiosa [71]

Citrus medica L. × C. limon (L.) Burm. F. Improving acidity [72]

Citrus unshiu × Citrus grandis CMS [37]

Citrus limonia L. Osbeck × Citrus aurantium L. Improving blight and CTV resistance [73]

3. Protoplast Regeneration: A Key Step in Somatic Hybridization

Protoplast regeneration is a critical step in somatic hybridization and often follows
methods developed for herbaceous plants. This process typically involves the use of growth
regulators such as auxins and cytokinins to stimulate genome reprogramming and promote
cell differentiation [74]. However, most regeneration methods were initially developed for
tissue or organ propagation rather than single-cell regeneration. Effective regeneration
from protoplasts requires the development of cellular conditions similar to zygotic em-
bryos, a process known as de novo organogenesis or somatic embryogenesis [75]. Over
recent decades, many culture recipes have been invented to cultivate corresponding plant
species [76,77]. More than 46 woody genotypes have been regenerated from protoplasts
in the last century, representing 32 species, 18 genera, and 12 families [78]. The factors
influencing protoplast regeneration will be discussed below.

The isolation of protoplasts is a crucial factor for successful regeneration [79,80]. This
process involves the degradation of the cell wall using enzymes and maintaining protoplast
turgor with osmotic regulators [81]. Protoplasts can be isolated from leaves, cotyledons,
roots, petioles, hypocotyls, petals, calli, and suspension cultures. Regardless of the tissue
type, the condition of the plant materials is fundamental for subsequent regeneration.
Generally, juvenile tissues are considered more amenable to regeneration [79,82]. Factors
such as plant growth conditions, tissue pretreatment, and enzyme and buffer composition
significantly impact protoplast yield and viability [83]. Tissue pretreatments such as physi-
cal disruption (e.g., slicing), vacuum infiltration of the enzyme solution, or pre-plasmolysis
treatment will significantly improve protoplast yield (revised in [84]). Multiple cell wall-
degrading enzymes (cellulases, beta-glucanases, xylanases, protopectinases, polygalactur-
onases, pectin lyases, and pectinesterases) have been used, and a mixture of Cellulase R-10,
Macerozyme R-10, and Pectolyase Y-23 is currently the most-used enzyme recipe [84,85].
The buffer solution for enzymolysis usually contains osmolytes (KCl, CaCl2, mannitol, sor-
bitol, or salts), pH buffer (MES, ethanesulfonic acid), reducing agent (β-mercaptoethanol),
and enzyme-protecting agents (bovine serum albumin, BSA). Fine-tuning the buffer recipes
is necessary for optimal enzyme activity. Additionally, temperature is a factor impacting
enzyme activity [84,85].

The digestion period varies between species and enzyme concentrations. Typically,
periods ranging from 1 to 18 h have been reported in the literature, with 2 and 4 h being
the most common [86]. Both the concentration of enzymes and the duration of digestion
have significant impacts on protoplast regeneration. When all conditions are optimized,
cultivation in the dark has been reported to further improve protoplast regeneration



Plants 2024, 13, 2539 5 of 14

ability [83]. After optimized digestion, protoplasts need to be purified to remove cell wall
debris and undigested materials. This process eliminates negative effects on cell division
and development [61].

The culture medium used for protoplast regeneration is also a key factor. A suitable
culture medium will enhance regeneration frequency. Commercial media, such as WPM,
MS, Gamborg B5, KM, Y3, and Nitsch, are usually initially tested for the species used in
somatic hybridization. Then, the recipes are optimized according to the specific nutrient
requirements of each species [87]. The carbon supplements also vary between species.
Usually, 1–3% sucrose is used [79]. Osmotic pressure, provided by chemicals like mannitol,
sorbitol, and sucrose, is essential for hybrid cell regeneration [49]. Mannitol is the most
common. However, some species prefer myo-inositol or other osmotic agents [88]. During
the cultivation of hybrid cells, the cell wall will re-form. Thus, osmolarity needs to be
gradually decreased. Growth regulators are essential for plant regeneration. To establish a
regeneration system, multiple types of hormones will be screened, including cytokinins
and auxins [84]. Typically, once the types of plant-responsive cytokinins and auxins
are determined, the concentrations of these two hormones need to be finely adjusted to
optimize the efficiency of regeneration. Additionally, gibberellic acid is necessary for the
regeneration of some cultivated calli [89], and the ratio between auxin and abscisic acid is
especially important for the regeneration of gymnosperms [90].

Even under optimized conditions, many woody plants are still recalcitrant to regen-
eration. Thus, multiple supplements have been added to promote regeneration. Reac-
tive oxygen species (ROS), phenolic compounds, and ethylene are considered the major
negative effectors of plant regeneration [91]. Therefore, antioxidants (ascorbic acid, cit-
ric acid, reduced glutathione, and L-cysteine), phenolic absorption materials (such as
polyvinylpyrrolidone and activated charcoal), and ethylene inhibitors (silver nitrate) are
often used to mitigate these effects [92–94].

The initial phase of protoplast regeneration involves culturing a single fused cell into
a multicellular cluster. In somatic hybridization breeding, it is crucial to develop the callus
from a single hybrid cell to achieve a homozygous line, making it essential to prevent
contact between fused cells. To minimize cell aggregation, fused cells are typically cultured
on semi-solid media at a low density rather than in liquid media [84,95,96]. These cells are
then microscopically screened within a few days of cultivation to identify desirable hybrid
candidates. Research into poplars has shown that stress-free conditions along with contact
with a solid surface, promote the successful development of protoplasts into multicellular
structures [80]. Overall, regeneration is a pivotal process in somatic hybridization. Citrus
species have produced the most cultivars through somatic hybrid breeding (Table 1), owing
much of their success to highly efficient regeneration systems [29,97]. Therefore, media
with precisely optimized hormone levels must be meticulously prepared for each stage of
protoplast regeneration.

4. Limitations of Somatic Hybridization in Woody Plants

The process of somatic hybridization in plants encompasses three primary stages:
protoplast isolation, fusion, and the propagation/regeneration of hybrids. Correspond-
ingly, the limitations associated with somatic hybridization breeding can be delineated
into three categories: the genotype-dependent nature of protoplast isolation and hybrid
regeneration, the occurrence of sterile hybrids, and the low survival rates observed in
hybrid progeny [81,98–100]. While protocols for isolating protoplasts from woody plants
mirror those used for herbaceous species, the unique characteristics of woody plant cell
walls and protoplasts render cell wall degradation and protoplast isolation less efficient
and less well established [101,102]. Factors such as tissue type, enzymatic composition,
and solution concentrations play pivotal roles; however, protoplast yield is also highly
contingent on plant genotypes [100,103]. For instance, successful protoplast isolation has
eluded varieties like Rosa indica, R. multiflora, and R. corymbifera cultivars ‘Laxa’ and ‘Elina’,
even after more than four decades since the advent of cell fusion techniques [104].
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Another significant hurdle in the somatic hybridization of woody plants is the gener-
ally low survival and regeneration rates of hybrids. Many woody species lack established
in vitro cultivation methodologies [105], and there exists substantial genetic variability
among tree and shrub species concerning cell differentiation and regeneration [105–107].
Only a select few species, such as those within the Citrus and Vaccinium genera, possess
well developed regeneration protocols [29,108], thereby limiting the applicability of somatic
hybridization. Even in species with mature and stable cell fusion technologies, like Citrus,
success rates remain modest. For example, Xiao et al. generated over 100 embryoids via
electrofusion in Citrus but successfully developed and transplanted only 12 plants [66]. The
polyploid nature of hybrids contributes to low survival rates; in persimmon, both octoploid
and hexaploid lines were produced through cell fusion, yet only some octoploid lines
matured into healthy plants [41]. Sterility is a common issue in symmetric protoplast fusion
in woody plants, where quantitative data are scarce. In herbaceous plants, for example,
one-third of the hybrid progeny resulting from the fusion between Brassica napus cv. Zhong-
shuang4 and its wild relative Sinapis arvensis were sterile [109]. The underlying causes
of sterility in heterozygous hybrids remain inadequately understood. Hybrids derived
from parent plants with unequal ploidy levels are typically sterile [110], and asymmetric
protoplast fusion can result in incompatible plastids within hybrid cells, also leading to
sterility [107]. Currently, effective solutions to address sterility are lacking.

Nevertheless, woody plants possess an inherent ability for asexual propagation both
in natural settings and cultivation environments. Consequently, seed production in somatic
hybrids of woody plants is less critical than in annual species. Thus, the regeneration of
hybrid cells could serve as the culminating step in the somatic hybridization breeding
of woody plants. Despite this, protoplast regeneration remains challenging for most
woody species. Establishing a regeneration system for recalcitrant species using traditional
methodologies is not only exceedingly laborious but also fraught with difficulty, thereby
impeding the broader application of somatic hybridization in woody plants.

5. Current Plant Regeneration Methods and Their Potential for Tree Breeding with
Somatic Hybridization

Currently, multiple novel approaches are under investigation to enhance plant regen-
eration, with some demonstrating genotype-independent effects [111]. Plant regeneration,
which involves extensive genome reprogramming, can be stimulated by various pioneer
genes. Optimized protocols (such as specific culture media and appropriate hormone
concentrations) combined with the introduction of regeneration-promoting genes have
significantly improved protoplast regeneration, even in species that are typically difficult
to regenerate [111]. It has been observed that hormones commonly used in tissue culture,
such as auxin and cytokinin, enhance plant regeneration by modulating the expression
of key genes like WUSCHEL (WUS) and BABY BOOM (BBM) [112]. Expression of these
genes in somatic cells, either individually or in combination, is often sufficient to initiate
whole plant regeneration or shoot formation [113]. Additionally, genes associated with
auxin/cytokinin biosynthesis, injury responses, and cell-fate determination, such as IPTs,
glutamate receptor-like proteins, STMs, and WOXs, have also been successfully employed
to promote plant regeneration [114]. However, the constitutive overexpression of these
genes often disrupts normal plant development and fertility. To address this, three strate-
gies have been developed: the use of inducible promoters to control gene expression, the
Cre/loxP system for cassette removal post-regeneration, and non-integrating methods [115].
Inducible promoters have been particularly successful in inducing regeneration across mul-
tiple woody species [116]. While Agrobacterium-mediated transformation has been the
primary method, protoplast-mediated transformation offers a promising alternative for
similar regenerative outcomes.

Recent research has identified genes with minimal impact on overall plant devel-
opment, such as WOX5, GRF4, and GIF1, which show greater potential in promoting
regeneration. The GRF complexes have been applied in various crops with promising
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results [113,117,118]. In Citrus, two negative regulators of somatic embryogenesis were
identified, and the knockdown of these regulators significantly enhanced somatic embryo-
genesis [119]. As RNA interference (RNAi) can be delivered via viruses without altering
the plant genome [120], these negative regulators hold potential for advancing hybrid cell
regeneration. Ongoing research continues to explore growth-regulating genes in shrub
and tree species, with new genes being identified that help overcome regeneration barriers,
thereby advancing somatic hybridization as a viable breeding method.

The CRISPR-Cas system, derived from a bacterial immune mechanism, has been
widely adopted in gene editing for plant breeding due to its ability to make precise DNA
cuts guided by designed RNA sequences [121–123]. While it is theoretically feasible to use
CRISPR-Cas9 to knock out genes that inhibit protoplast regeneration, the permanent loss
of these genes could adversely affect normal plant growth. To mitigate this, the CRISPR-
Cas9 system has been adapted into an RNA-guided platform for sequence-specific gene
regulation. In this modified version, Cas9 is rendered catalytically inactive but retains
its ability to bind specific DNA sequences, allowing it to repress or activate nearby gene
expression when coupled with a strong activator [124]. The CRISPR-Combo system, which
integrates CRISPR-Cas9 gene editing with MCP SunTag activator-mediated gene activation,
allows for simultaneous editing and activation of regeneration-promoting genes [125,126].
This technology has been applied in poplar and offers the advantage of flexibility and
multiplexing, enabling the testing of various combinations of endogenous morphogenic
transcription factors (MTFs) [125,127]. When combined with the inducible LexA-VP16-ER
system, CRISPR-Combo can be activated at specific times to enhance regeneration [128].
Consequently, CRISPR technology not only facilitates precise genome editing but also
supports the editing of genes to enhance the stability and developmental potential of
cell fusion bodies [129]. The theoretical framework for single-cell regeneration is now
well established [130,131], and these advancements hold promise for accelerating the
development of regeneration systems in tree and shrub species, thereby expanding the
potential applications of somatic hybridization in these plants.

6. Integrating Precise Gene Editing with Protoplast Fusion: A Promising Breeding Strategy

Gene editing provides a precise approach to plant breeding [132,133], while cell fusion
allows for the recombination of entire chromosomes between cells. The integration of these
two methods holds great potential for advancing breeding strategies, though it requires the
development of robust gene transformation and efficient regeneration systems. However,
gene transformation is highly genotype-dependent, with significant variability in transfor-
mation efficiency, even among plants of the same species [51,134]. For instance, in com-
mercial crops where regeneration systems may be well established for one cultivar, other
cultivars can still prove resistant to Agrobacterium-mediated gene transformation [111].

Somatic hybridization, which involves protoplasts, offers an alternative by facilitating
Agrobacterium-independent transformation through direct plastid transformation. This
method has already yielded DNA-free, edited plants in several woody species via pro-
toplast transformation [51,84,135]. This approach allows for the seamless integration of
transgene-free gene editing with somatic hybridization. Alternatively, cell fusion can act
as an intermediary step. For example, gene-editing cassettes can first be introduced into
varieties amenable to gene transformation, and then the edited cells can be fused with
those from recalcitrant varieties (Figure 1). This strategy is particularly advantageous for
species with long vegetative phases, such as shrubs and trees, where introducing cassettes
through sexual crosses is time-intensive. In addition to gene editing, cassettes containing
regeneration-promoting genes can also be applied using this strategy.
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Figure 1. Strategies for application of current breeding biotechnologies in gene transformation-
recalcitrant plants via somatic hybridization. The plant that is amenable to gene transformation
serves as an intermediate to incorporate gene cassettes. Somatic hybridization combines the two
genomes with the gene cassettes. Gene cassettes play roles such as gene editing and regeneration
promotion in the hybrids.

Recent advancements in CRISPR technology, along with morphogenic transcription
factor (MTF)-assisted transformation methods, show significant potential in overcoming
genotype dependency [113]. By introducing CRISPR-associated regulators or MTFs into
transformation-amenable varieties and subsequently fusing them with recalcitrant ones,
regeneration can be promoted, enhancing the overall efficiency of breeding programs.

Somatic hybridization is recognized as a biosafe breeding method. Integrating modern
techniques, such as gene editing and somatic hybridization, offers a promising approach
for breeding woody plants. However, this integration raises concerns regarding the use
of genetically modified organisms (GMOs) and CRISPR technology in somatic hybrid
plants. Biosafety issues surrounding transgenic plants may present barriers to the adoption
of somatic hybrids that incorporate gene transformation [136]. The CRISPR-Cas system,
however, enables gene editing without the integration of foreign DNA into the plant
genome [137]. Specifically, transgene-free strategies, including the transient expression of
CRISPR vectors or the use of Cas protein-guide RNA complexes, can alleviate concerns
related to GMOs [51,84,135]. Despite these advancements, the issue of off-target effects in
CRISPR-Cas systems necessitates the further refinement of CRISPR technology [138].

In conclusion, somatic hybridization is a well-established breeding method that has
been enhanced by recent technological advancements. While current technologies that
reduce genotype dependency in regeneration and transformation have not yet been fully
integrated into somatic hybridization, they hold significant promise for their application in
modern breeding. Somatic hybridization, with its ability to combine genetic material across
species and genera, remains an irreplaceable breeding method. This review highlights the
development of cell fusion techniques in breeding and underscores their potential when
combined with contemporary breeding technologies.
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