The Variability of Berry Parameters Could Be an Indicator of the Potential Quality of the Vineyard
Abstract
:1. Introduction
2. Results
2.1. Berry Weight and Berry-Soluble Solids Variability Throughout Ripening
2.2. Berry Weight and Berry-Soluble Solids Evolution Throughout Ripening
2.3. Distribution Analysis of Weight of Berry and Berry-Soluble Solids at Harvest
2.4. Physicochemical Parameters of Berries at Harvest
2.5. Principal Component Analysis and Correlation Matrix of Variables Analyzed in Grapes
2.6. Physicochemical Parameters of Wines
3. Discussion
4. Materials and Methods
4.1. Study Sites, Plant Material, and Experimental Design
4.2. Berry Harvest and Winemaking
4.3. Determinations of Physicochemical Parameters of Berries Throughout Ripening
4.4. Determinations of Physicochemical Parameters of Berries at Harvest
4.5. Determinations of Physicochemical Parameters of Wines
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tardaguila, J.; Martinez De Toda, F. Assessment of Tempranillo Grapes Quality in the Vineyard by Vitur Score-Sheet. OENO ONE 2008, 42, 59–65. [Google Scholar] [CrossRef]
- Guerrini, L.; Masella, P.; Angeloni, G.; Calamai, L.; Spinelli, S.; Di Blasi, S.; Parenti, A. Harvest of Sangiovese Grapes: The Influence of Material Other than Grape and Unripe Berries on Wine Quality. Eur. Food Res. Technol. 2018, 244, 1487–1496. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Díaz-Galvéz, I.; Verdugo-Vásquez, N.; Moreno-Simunovic, Y. Leaf-to-Fruit Ratios in Vitis Vinifera L. Cv. “Sauvignon Blanc”, “Carmenère”, “Cabernet Sauvignon”, and “Syrah” Growing in Maule Valley (Chile): Influence on Yield and Fruit Composition. Agriculture 2019, 9, 176. [Google Scholar] [CrossRef]
- Cáceres, A.; Peña-Neira, Á.; Galvez, A.; Obreque-Slier, E.; López-Solís, R.; Canals, J.M. Phenolic Compositions of Grapes and Wines from Cultivar Cabernet Sauvignon Produced in Chile and Their Relationship to Commercial Value. J. Agric. Food Chem. 2012, 60, 8694–8702. [Google Scholar] [CrossRef]
- Antalick, G.; Šuklje, K.; Blackman, J.W.; Schmidtke, L.M.; Deloire, A. Performing Sequential Harvests Based on Berry Sugar Accumulation (Mg/Berry) to Obtain Specific Wine Sensory Profiles. OENO ONE 2021, 55, 131–146. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- De Cortazar-Atauri, G.; Brisson, N.; Ollat, N.; Jacquet, O.; Payan, J.C. Asynchronous Dynamics of Grapevine (“Vitis Vinifera”) Maturation: Experimental Study for a Modelling Approach. OENO ONE 2009, 43, 83–97. [Google Scholar] [CrossRef]
- Shahood, R.; Torregrosa, L.; Savoi, S.; Romieu, C. First Quantitative Assessment of Growth, Sugar Accumulation and Malate Breakdown in a Single Ripening Berry. OENO ONE 2020, 54, 1077–1092. [Google Scholar] [CrossRef]
- Friend, A.P.; Trought, M.C.T.; Creasy, G.L. The Influence of Seed Weight on the Development and Growth of Berries and Live Green Ovaries in Vitis Vinifera L. Cvs. Pinot Noir and Cabernet Sauvignon. Aust. J. Grape Wine Res. 2009, 15, 166–174. [Google Scholar] [CrossRef]
- Gouthu, S.; O’Neil, S.T.; Di, Y.; Ansarolia, M.; Megraw, M.; Deluc, L.G. A Comparative Study of Ripening among Berries of the Grape Cluster Reveals an Altered Transcriptional Programme and Enhanced Ripening Rate in Delayed Berries. J. Exp. Bot. 2014, 65, 5889. [Google Scholar] [CrossRef]
- Gray, J. The Basis of Variation in the Size and Composition of Shiraz Berries. In Proceedings of the ASVO Seminar; Hamilton, R., Ed.; Australian Society of Viticulture and Oenology: Adelaide, Australia, 2006; pp. 30–35. [Google Scholar]
- Calderon-Orellana, A.; Matthews, M.A.; Drayton, W.M.; Shackel, K.A. Uniformity of Ripeness and Size in Cabernet Sauvignon Berries from Vineyards with Contrasting Crop Price. Am. J. Enol. Vitic. 2014, 65, 81–88. [Google Scholar] [CrossRef]
- Pagay, V.; Cheng, L. Variability in Berry Maturation of Concord and Cabernet Franc in a Cool Climate. Am. J. Enol. Vitic. 2010, 61, 61–67. [Google Scholar] [CrossRef]
- Xie, S.; Tang, Y.; Wang, P.; Song, C.; Duan, B.; Zhang, Z.; Meng, J. Influence of Natural Variation in Berry Size on the Volatile Profiles of Vitis Vinifera L. Cv. Merlot and Cabernet Gernischt Grapes. PLoS ONE 2018, 13, e0201374. [Google Scholar] [CrossRef]
- Selvraj, Y.; Pal, D.K.; Singh, R.; Roy, T.K. Biochemistry of Uneven Ripening in Gulabi Grape. J. Food Biochem. 1994, 18, 325–340. [Google Scholar] [CrossRef]
- Heymann, H.; Licalzi, M.; Conversano, M.R.; Bauer, A.; Skogerson, K.; Matthews, M. Effects of Extended Grape Ripening with or Without Must and Wine Alcohol Manipulations on Cabernet Sauvignon Wine Sensory Characteristics. S. Afr. J. Enol. Vitic. 2013, 34, 86–99. [Google Scholar] [CrossRef]
- Canals, R.; Llaudy, M.C.; Valls, J.; Canals, J.M.; Zamora, F. Influence of Ethanol Concentration on the Extraction of Color and Phenolic Compounds from the Skin and Seeds of Tempranillo Grapes at Different Stages of Ripening. J. Agric. Food Chem. 2005, 53, 4019–4025. [Google Scholar] [CrossRef]
- Pineau, B.; Grose, C.; Beresford, M.; Sherman, E.; Raw, V.; Parker, A.K.; Wohlers, M.W.; Trought, M.C.T. Influence of Grapevine Canopy Trimming and Maturity Variability within Fruit Population on the Sensory Properties of Pinot Noir Wine. VITIS J. Grapevine Res. 2017, 56, 1–10. [Google Scholar] [CrossRef]
- Coombe, B.G. Research on Development and Ripening of the Grape Berry. Am. J. Enol. Vitic. 1992, 43, 101–110. [Google Scholar] [CrossRef]
- May, P. From Bud to Berry, with Special Reference to Inflorescence and Bunch Morphology in Vitis Vinifera L. Aust. J. Grape Wine Res. 2000, 6, 82–98. [Google Scholar] [CrossRef]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H. Practical Methods of Measuring Grape Quality. In Managing Wine Quality: Viticulture and Wine Quality; Reynolds, A.G., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 107–133. ISBN 9781845694845. [Google Scholar]
- Bishop, B.L.; Ferree, D.C.; Gallander, J.F.; Steiner, T.E. Sources of Variation in Maturation Soluble Solids of Three White Grape Cultivars. J. Am. Pomol. Soc. 2005, 59, 153–160. [Google Scholar]
- Zhang, X.; Luo, G.; Wang, R.; Wang, J.; Himelrick, D.G. Growth and Developmental Responses of Seeded and Seedless Grape Berries to Shoot Girdling. J. Am. Soc. Hortic. Sci. 2003, 128, 316–323. [Google Scholar] [CrossRef]
- Kühn, N.; Serrano, A.; Abello, C.; Arce, A.; Espinoza, C.; Gouthu, S.; Deluc, L.; Arce-Johnson, P. Regulation of Polar Auxin Transport in Grapevine Fruitlets (Vitis vinifera L.) and the Proposed Role of Auxin Homeostasis during Fruit Abscission. BMC Plant Biol. 2016, 16, 234. [Google Scholar] [CrossRef]
- Rolle, L.; Torchio, F.; Giacosa, S.; Río Segade, S. Berry Density and Size as Factors Related to the Physicochemical Characteristics of Muscat Hamburg Table Grapes (Vitis vinifera L.). Food Chem. 2015, 173, 105–113. [Google Scholar] [CrossRef]
- Cuadros-Inostroza, Á.; Verdugo-Alegría, C.; Willmitzer, L.; Moreno-Simunovic, Y.; Vallarino, J.G. Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones. Metabolites 2020, 10, 220. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Esteruelas, M.; Fort, F.; Canals, J.M.; De Freitas, V.; Zamora, F. Influence of the Heterogeneity of Grape Phenolic Maturity on Wine Composition and Quality. Food Chem. 2011, 124, 767–774. [Google Scholar] [CrossRef]
- Parr, W.V.; Green, J.A.; White, K.G.; Sherlock, R.R. The Distinctive Flavour of New Zealand Sauvignon Blanc: Sensory Characterisation by Wine Professionals. Food Qual. Prefer. 2007, 18, 849–861. [Google Scholar] [CrossRef]
- Vondras, A.M.; Gouthu, S.; Schmidt, J.A.; Petersen, A.R.; Deluc, L.G. The Contribution of Flowering Time and Seed Content to Uneven Ripening Initiation among Fruits within Vitis vinifera L. Cv. Pinot Noir Clusters. Planta 2016, 243, 1191–1202. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Portu, J.; Moreno-Simunovic, Y.; Martínez-Gil, A.M. Foliar Nitrogen Application in Cabernet Sauvignon Vines: Effects on Wine Flavonoid and Amino Acid Content. Food Res. Int. 2017, 96, 46–53. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Analysis of Wines and Musts; OIV: Paris, France, 2003. [Google Scholar]
- Glories, Y.; Augustin, M. Maturite Phenolique Du Raisin, Consequences Technologiques: Application Aux Millesimes 1991 et 1992. J. Tech. CIVB Actes Colloq. 1993, 56–61. [Google Scholar]
- Bordeu, E.; Scarpa, J.A. Análisis Químico Del Vino; Ediciones Universidad Católica de Chile: Santiago, Chile, 1998. [Google Scholar]
Quality Potential | Weight of Berry | Soluble Solids (°Brix) | ||||||
---|---|---|---|---|---|---|---|---|
14 DAV | 28 DAV | 42 DAV | One Day before Harvest | 14 DAV | 28 DAV | 42 DAV | One Day before Harvest | |
High | 32.51% | 27.15% | 28.29% | 19.96% | 8.66% | 7.75% | 5.31% | 5.12% |
Middle | 37.32% | 29.39% | 30.21% | 30.66% | 16.00% | 11.62% | 9.04% | 7.18% |
Low | 25.79% | 26.83% | 22.05% | 20.39% | 8.60% | 10.14% | 10.80% | 8.30% |
Quality Potential | Soluble Solids (°brix) | Berry Weight (g) | pH | Total Acidity (g L−1) | Malic Acid (g L−1) | Extractable Anthocyanins (g L−1) | Potential Anthocyanins (g L−1) | Skins Phenols (mg kg−1) | TPI |
---|---|---|---|---|---|---|---|---|---|
Season 2019 | |||||||||
High | 26.78 c | 0.92 a | 3.67 | 4.18 | 1.24 a | 591 b | 860 b | 14.36 b | 50.69 b |
Middle | 24.53 b | 1.13 b | 3.76 | 3.93 | 1.39 a | 524 a | 704 a | 11.85 a | 44.25 ab |
Low | 21.73 a | 1.33 c | 3.8 | 4.62 | 1.65 b | 480 a | 750 ab | 11.10 a | 39.38 a |
Significance | *** | *** | ns | ns | ** | * | * | ** | * |
Season 2020 | |||||||||
High | 24.43 b | 1.01 a | 3.61 b | 3.80 a | 1.13 | 508 b | 709 b | 11.62 | 51.01 b |
Middle | 23.56 b | 1.38 b | 3.55 a | 5.04 b | 1.66 | 433 ab | 628 a | 9.91 | 38.34 a |
Low | 20.59 a | 1.25 c | 3.33 a | 5.25 b | 1.69 | 369 a | 465 a | 8.84 | 37.71 a |
Significance | ** | *** | * | ** | ns | * | ** | ns | ** |
Soluble Solids | Berry Weight | pH | Total Acidity | Malic Acid | EA | PA | Skin Phenols | Total Phenolic Index | |
---|---|---|---|---|---|---|---|---|---|
Soluble solids | 1 | ||||||||
Berry weight | −0.91 * | 1 | |||||||
pH | 0.48 | −0.13 | 1 | ||||||
Total acidity | −0.70 | 0.63 | −0.68 | 1 | |||||
Malic acid | −0.78 | 0.86 * | −0.35 | 0.89 * | 1 | ||||
EA | 0.89 * | −0.72 | 0.74 | −0.82 * | −0.77 | 1 | |||
PA | 0.78 | −0.56 | 0.79 | −0.69 | −0.61 | 0.95 ** | 1 | ||
Skin phenols | 0.88 * | −0.75 | 0.64 | −0.74 | −0.75 | 0.98 ** | 0.93 ** | 1 | |
Total phenolic index | 0.82 * | −0.89 * | 0.35 | −0.86 * | −0.99 ** | 0.82 * | 0.68 | 0.82 * | 1 |
Quality Potential | Plot | Valley | Trellis System | Pruning System | Canopy Management | Crop Management | Average Pruning Weight (kg m−1) | Leaf to Fruit Ratio | Average Yield (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|
High | 1 | Maipo | VSP * | Spur | Bud rubbing, tucking, and wire lifting | One per season | 0.36 | 1.31 | 1343 |
2 | Maipo | VSP | Spur | Bud rubbing, tucking, and wire lifting | One per season | 0.42 | 1.27 | 1608 | |
Middle | 3 | Colchagua | VSP | Spur | Bud rubbing, tucking, and wire lifting | None | 0.79 | 1.21 | 10,500 |
4 | Maipo | VSP | Spur | Bud rubbing, tucking, and wire lifting | One per season | 1.5 | 1.19 | 14,590 | |
Low | 5 | Maipo | Pergola | Cane | Bud rubbing, tucking, and wire lifting | None | 1.49 | 1.13 | 38,580 |
6 | Curicó | Double VSP | Spur | Trimming | None | 1.67 | 1.17 | 35,580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travanic-Fuentes, Z.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. The Variability of Berry Parameters Could Be an Indicator of the Potential Quality of the Vineyard. Plants 2024, 13, 2617. https://doi.org/10.3390/plants13182617
Travanic-Fuentes Z, Gutiérrez-Gamboa G, Moreno-Simunovic Y. The Variability of Berry Parameters Could Be an Indicator of the Potential Quality of the Vineyard. Plants. 2024; 13(18):2617. https://doi.org/10.3390/plants13182617
Chicago/Turabian StyleTravanic-Fuentes, Zlavek, Gastón Gutiérrez-Gamboa, and Yerko Moreno-Simunovic. 2024. "The Variability of Berry Parameters Could Be an Indicator of the Potential Quality of the Vineyard" Plants 13, no. 18: 2617. https://doi.org/10.3390/plants13182617
APA StyleTravanic-Fuentes, Z., Gutiérrez-Gamboa, G., & Moreno-Simunovic, Y. (2024). The Variability of Berry Parameters Could Be an Indicator of the Potential Quality of the Vineyard. Plants, 13(18), 2617. https://doi.org/10.3390/plants13182617