
Citation: Alves, S.M.; Lacanallo, G.F.;

Gonçalves-Vidigal, M.C.; Vaz Bisneta,

M.; Vidigal Rosenberg, A.G.; Vidigal

Filho, P.S. Genome-Wide Association

for Morphological and Agronomic

Traits in Phaseolus vulgaris L.

Accessions. Plants 2024, 13, 2638.

https://doi.org/10.3390/

plants13182638

Academic Editor: Jiangqi Wen

Received: 17 August 2024

Revised: 4 September 2024

Accepted: 18 September 2024

Published: 21 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Genome-Wide Association for Morphological and Agronomic
Traits in Phaseolus vulgaris L. Accessions
Stephanie Mariel Alves 1, Giselly Figueiredo Lacanallo 2, Maria Celeste Gonçalves-Vidigal 1,* ,
Mariana Vaz Bisneta 1 , Andressa Gonçalves Vidigal Rosenberg 1 and Pedro Soares Vidigal Filho 1

1 Pós-Graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790,
Maringá 87020-900, Brazil; stephaniemarielalves@gmail.com (S.M.A.);
marianavazbisneta@gmail.com (M.V.B.); andressa.vidigal@gmail.com (A.G.V.R.);
vidigalfilhop@gmail.com (P.S.V.F.)

2 Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, 5790,
Maringá 87020-900, Brazil; giselly.fl@gmail.com

* Correspondence: mcgvidigal@uem.br

Abstract: Exploring genetic resources through genomic analyses has emerged as a powerful strategy
to develop common bean (Phaseolus vulgaris L.) cultivars that are both productive and well-adapted
to various environments. This study aimed to identify genomic regions linked to morpho-agronomic
traits in Mesoamerican and Andean common bean accessions and to elucidate the proteins potentially
involved in these traits. We evaluated 109 common bean accessions over three agricultural years,
focusing on traits including the grain yield (YDSD), 100-seed weight (SW), number of seeds per pod
(SDPD), number of pods per plant (PDPL), first pod insertion height (FPIH), plant height (PLHT),
days to flowering (DF), and days to maturity (DPM). Using multilocus methods such as mrMLM,
FASTmrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, we identified 36 significant SNPs
across all chromosomes (Pv01 to Pv11). Validating these SNPs and candidate genes in segregating
populations is crucial for developing more productive common bean cultivars through marker-
assisted selection.

Keywords: common bean; GWAS; single nucleotide polymorphism

1. Introduction

The common bean (Phaseolus vulgaris L.) holds a crucial role in human nutrition, both
in Brazil and globally [1]. This significance stems from its rich nutritional profile, which
includes proteins, micronutrients, and essential minerals [2]. Furthermore, the common
bean is widely cultivated across diverse regions worldwide, showcasing its adaptability to
a variety of climatic conditions and soil types [3,4].

The genetic variability among common bean cultivars in Brazil serves as an invaluable
resource for the development of more productive varieties that are suited to various
environmental conditions [5]. Predominantly, the Brazilian germplasm is composed of
landrace varieties from the Mesoamerican gene pool, which provides greater genetic
diversity compared with the Andean gene pool [6–9]. The domestication of the common
bean fostered genetic diversification, driving physiological and morphological changes.
These adaptations, including variations in growth habit, vegetative cycle, photoperiod
response, seed shape, color, and size, enabled cultivated plants to thrive in different climates,
distinguishing them from their wild progenitors [10–12].

Increasing productivity is a central objective in plant breeding programs. Achieving
this requires a thorough understanding of the genetic factors that influence productivity
and its components. In common bean cultivation, productivity is tied to a variety of
morphological, agronomic, and physiological traits. Among these, plant architecture, as
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well as flowering and maturation periods, play significant roles in the plant’s adaptability
and overall productivity [13–15].

However, enhancing these traits through traditional breeding methods demands
extensive fieldwork, involving evaluations across multiple environments and years. This
process is not only costly, but also time-intensive. In this context, the use of molecular
markers has emerged as a valuable tool. Molecular markers facilitate the identification of
specific genomic regions associated with productivity traits. These regions can be targeted
through marker-assisted selection, thereby streamlining the breeding process and making
it more efficient and cost-effective [13,16].

Next Generation Sequencing technologies has catalyzed advancements in genomic
research, leading to the development of more detailed and dense genetic maps with
numerous markers [17]. This genetic information is increasingly being integrated into
common bean breeding programs, enabling the application of advanced methodologies
such as Genomic Selection (GS), Quantitative Trait Loci (QTL) mapping, and Genome-Wide
Association Studies (GWAS) in breeding for complex traits [13–17].

Genetic mapping can be performed using two primary approaches: linkage mapping,
which relies on genetic linkage, and association mapping, which is based on linkage dise-
quilibrium (LD). The LD-based approach, commonly known as genome-wide association
studies (GWAS), is a powerful tool for identifying genes and QTLs. In GWAS, phenotypic
data for a trait of interest are collected from a large group of individuals, along with their
genetic information. These data are then analyzed to pinpoint regions of the genome
associated with the observed phenotypes. These regions may harbor genes or regulatory el-
ements that are crucial to trait expression, indicating their involvement in the manifestation
of the studied trait [18,19].

Genome-wide association studies (GWAS) have proven to be an efficient method for
the genetic mapping of quantitative traits and are widely used in the analysis of agro-
nomic characteristics [16,20–25]. Furthermore, other studies have focused on identifying
genomic associations related to traits such as grain yield and plant phenology in common
beans [26–29]. Most research on genetic variability has focused on germplasm banks,
which are vital repositories of genetic diversity. The Germplasm Bank of the Núcleo de
Pesquisa Aplicada à Agricultura (Nupagri) at Universidade Estadual de Maringá (UEM)
holds traditional cultivars (accessions) from various regions of the country and abroad,
alongside elite lines developed for research.

Genome association studies of accessions adapted to specific environments represent
an effective approach to investigating quantitative traits. Additionally, multilocus methods
have been relatively underexplored in common bean breeding. Thus, this study aims to
identify genomic regions associated with morphoagronomic traits in Mesoamerican and
Andean common bean accessions from the Nupagri Germplasm Bank.

2. Results
2.1. Phenotypic Data

The average temperatures were suitable for normal plant development during all
experimental periods; the average daily temperature in 2019 was 25.39 ◦C; in 2020, it was
24.32 ◦C; and in 2021, it was 23.73 ◦C. However, the precipitation was insufficient for the
optimal development of common bean plants. In 2019, the accumulated rainfall observed
was only 346.8 mm, 315.4 mm in 2020, and 470.2 mm in 2021. Thus, in all evaluated years
irrigation water management was implemented. In fact, in 2019 and 2021 rainfall was
observed during harvesting leading to losses in bean yield (Figure 1).
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Figure 1. Precipitation (mm) and minimum and maximum temperature (degrees Celsius) in the 
experiments conducted at the Technical Irrigation Center (CTI) in Maringá, PR, Brazil, in 2019, 2020, 
and 2021. 

All traits evaluated in the experiments conducted in 2019, 2020, and 2021 are 
available in the supplementary file (Table S1). Statistically significant differences and 
genotype by environment (GxE) interactions were significant across all traits analyzed 
(Table 1). The average grain yields of the common bean accessions were 990.44 kg ha⁻1 in 
2019, 1736.26 kg ha⁻1 in 2020, and 1093.57 kg ha⁻1 in 2021. Notably, the grain yield was 
highest in 2020, indicating particularly favorable growing conditions during that year, 
likely due to rainfall at the beginning of the vegetative phase (Figure 1). 

Figure 1. Precipitation (mm) and minimum and maximum temperature (degrees Celsius) in the
experiments conducted at the Technical Irrigation Center (CTI) in Maringá, PR, Brazil, in 2019, 2020,
and 2021.

All traits evaluated in the experiments conducted in 2019, 2020, and 2021 are available
in the supplementary file (Table S1). Statistically significant differences and genotype
by environment (GxE) interactions were significant across all traits analyzed (Table 1).
The average grain yields of the common bean accessions were 990.44 kg ha−1 in 2019,
1736.26 kg ha−1 in 2020, and 1093.57 kg ha−1 in 2021. Notably, the grain yield was highest
in 2020, indicating particularly favorable growing conditions during that year, likely due to
rainfall at the beginning of the vegetative phase (Figure 1).
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Table 1. Traits analyzed in common bean accessions belonging to the Nupagri Germplasm Bank
evaluated over three agricultural years, Maringá, PR, Brazil.

Traits Year
Accessions § Gê PEV

Average Interval LRT (x2)

Yield and its Components

Grain yield
(kg ha−1)

2019 990.44 191.63–1798.61 215.24 **

**

10,221.53
2020 1736.26 335.15–3723.92 193.41 ** 47,059.12
2021 1093.57 292.21–2469.66 149.20 ** 30,490.65

100-seed weight (g)
2019 28.00 15.22–49.73 611.54 **

**

0.99
2020 27.92 16.21–54.63 565.88 ** 1.27
2021 28.10 14.15–44.50 421.76 ** 2.32

Number of seeds per pod
2019 3.21 2.12–4.54 135.70 **

**

0.05
2020 3.60 1.91–5.99 154.82 ** 0.09
2021 2.73 2.05–3.52 38.85 ** 0.05

Number of pods per plant
2019 10.04 4.34–15.14 119.59 **

**

1.37
2020 9.67 3.50–17.35 119.90 ** 1.32
2021 10.42 5.45–21.00 60.21 ** 3.81

Architecture

First pod insertion height (cm)
2019 13.34 11.32–18.14 150.65 **

**

0.30
2020 13.53 11.21–21.71 152.08 ** 0.56
2021 13.14 11.19–16.01 51.08 ** 0.44

Plant height (cm)
2019 49.00 37.56–58.63 309.44 **

**

1.17
2020 50.12 36.17–60.80 492.35 ** 0.68
2021 47.88 37.77–58.08 134.13 ** 3.33

Phenology

Number of days for flowering
2019 42.70 30.99–60.99 1208.73 **

**

0.06
2020 42.26 31.73–60.96 925.23 ** 0.22
2021 42.71 30.00–60.00 1281.12 ** 0.0009

Number of days for maturity
2019 81.46 73.65–89.59 360.75 **

**

1.03
2020 81.49 73.57–91.30 292.75 ** 1.32
2021 80.89 73.28–87.69 263.45 ** 2.35

** = significant by the chi-square test with one degree of freedom: at 1% (6.63); LRT (x2) = likelihood-ratio test
(chi-square); § Gê = interaction between genotype treatments and years; PEV = variance in the error of prediction
for genotypic values.

The 100-seed weight of the accessions averaged 28.00 g, 27.92 g, and 28.10 g for the
years 2019, 2020, and 2021, respectively. Although these variations are minor, they can
significantly impact seed quality and commercial value. For the number of seeds per pod
and the number of pods per plant, the averages were 3.21, 3.60, and 2.73, and 10.04, 9.67,
and 10.42, respectively, across the same years (Table 1). These variations suggest that the
plants are adapting to the specific conditions of each environment, presenting opportunities
for productivity improvement.

Both the first pod insertion height and plant height showed variability, indicating
adaptations in plant architecture to varying environmental conditions. Notably, higher av-
erages were observed in 2020, likely due to the more favorable rainfall conditions. Similarly,
the variations in days to flowering and maturity reflected differing responses to the growth
cycle among accessions across the years. Although the averages between years showed
minimal differences, the significant interaction between genotype and years suggested that
certain genotypes may have responded more strongly to specific conditions in a particular
year (Table 1). These findings underscore the importance of considering the growth cycle
when selecting for more adapted varieties. Overall, the results underscore the phenotypic
diversity among the accessions while clearly demonstrating the significant influence of
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environmental conditions on the traits evaluated. These findings emphasize the critical
importance of ongoing research to improve crop performance across diverse environments.

2.2. Genome-Wide Association Study (GWAS)

The five ML-GWAS methods identified a total of 36 SNPs (single-nucleotide polymor-
phisms) associated with the eight evaluated morphoagronomic traits—grain yield (YDSD),
100-seed weight (SW), number of seeds per pod (SDPD), number of pods per plant (PDPL),
first pod insertion height (FPIH), plant height (PLHT), number of days to flowering (DF),
and number of days to maturity (DPM)—across all chromosomes: Pv01 through Pv11
(Table 2). The largest number of significant SNPs was found on chromosome Pv04, with a
total of six SNPs. Chromosomes Pv01, Pv06, and Pv07 each harbored five significant SNPs
(Table 2).

2.2.1. SNPs for Yield and Its Components

A total of 15 significant SNPs were identified for yield and its components, including
YDSD, SW, SDPD, and PDPL. Among these, five SNPs associated with YDSD were found
on chromosomes Pv02, Pv04, Pv05, Pv07, and Pv08 across the three years analyzed (Table 2).
Notably, SNP ss715647997 was observed in the combined analysis, as well as in the year
2019 (Figure 2a). This SNP is located at 48,720,860 bp on chromosome Pv02 within the gene
model Phvul.002G328800 that encodes a serine–threonine protein kinase. It explained 13.38
to 18.32% of the phenotypic variation.

For 100-seed weight (SW), SNPs ss715639786, ss715645689, and ss715645602 were de-
tected on chromosomes Pv06, Pv07, and Pv09, respectively, showing significant associations
in the combined analysis and accounting for 4.83% to 57.29% of the phenotypic variation
(Figure 2b). SNP ss715645689 was also identified in 2019 and 2020, while SNP ss715645602
was noted in 2021. These SNPs were mapped to genomic positions 22,116,966 bp, 819,750 bp,
and 33,444,042 bp, respectively, in the reference genome of common Andean beans [11,30],
wherein genes Phvul.006G105000, Phvul.007G011800, and Phvul.009G226000 were anno-
tated, encoding for ankyrin repeat-containing protein, methionyl-tRNA synthetase, and
aspartyl protease family protein, respectively.

The SDPD trait was significantly associated in 2020 with SNP ss715645673 on Pv06,
explaining 4.92% to 8.24% of the phenotypic variation. This SNP is located at position
27,760,992 bp and is within the genomic region containing the gene model Phvul.006G166700,
which encodes an abc transporter c family member 11-related protein.

For the PDPL trait, four significant SNPs were identified on chromosomes Pv01, Pv02,
Pv10, and Pv11 across all three years analyzed (Table 2). In the combined analysis, SNPs
ss715645301 and ss715647997 on chromosomes Pv01 and Pv02, respectively, explained
between 8.61% and 43.10% of the phenotypic variation. In the reference genome, close
to the ss715645301 marker, the model gene Phvul.001G264600 is found, which encodes a
C2H2-type zinc finger protein. Interestingly, the other SNP ss715647997 is the same marker
found to be associated with YDSD, therefore showing a pleiotropic effect.
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Table 2. SNPs associated with yield and its components, plant architecture, and phenology identified using different methods in common bean accessions from the
Nupagri Germplasm Bank, Maringá, PR, Brazil.

§ Traits Year Chr Position (pb) SNP # LOD Score −Log10 P ¥ SNP Effect ¶ R2 (%) Methods

YDSD

2019 2 48,720,860 ss715647997 4.55 5.33 −147.00~−124.64 12.43~17.29 1, 5

2020
4 25,245,150 ss715650918 4.72 5.50 −513.05~−361.05 9.81~16.55 1, 2
7 39,295,293 ss715640487 5.35~6.10 6.16~6.94 −303.83~−235.68 11.69~17.70 1, 2, 4, 5
8 55,278,106 ss715639359 3.99 4.74 148.49~238.74 5.73~12.37 1, 2

2021 5 5,399,253 ss715648672 4.63 5.41 −299.91~−150.73 12.70~12.96 3, 4
C * 2 48,720,860 ss715647997 4.85 5.64 −203.83~−175.25 13.38~18.32 1, 4

SW

2019
7 819,750 ss715645689 3.21~9.19 3.92~10.11 −7.55~−2.99 13.48~21.51 2, 3, 4

10 24,598,176 ss715641543 3.46~4.95 4.18~5.74 −6.90~−3.79 10.13~21.71 3, 4

2020
2 3,118,774 ss715639502 3.41~9.10 4.13~10.01 −6.48~−3.38 2.08~29.97 1, 3, 4
5 40,128,137 ss715646697 5.01~5.90 5.81~6.73 2.75~6.47 11.28~15.64 2, 3
7 819,750 ss715645689 5.75~10.15 6.57~11.09 −7.30~−3.45 17.83~25.23 2, 3, 4, 5

2021 9 33,444,042 ss715645602 6.41~7.89 7.26~8.78 −3.03~−2.03 5.30~11.75 1, 4, 5

C *
6 22,116,966 ss715639786 4.49~30.63 5.26~31.54 −6.21~−3.52 18.43~57.29 4, 5
7 819,750 ss715645689 3.10~3.38 3.80~4.10 −9.49~−2.34 8.15~33.45 2, 3, 4
9 33,444,042 ss715645602 5.17~7.42 5.98~8.29 −2.13~−1.96 4.83~5.74 4, 5

SDPD 2020 6 27,760,992 ss715645673 3.77~4.00 4.51~4.76 −0.35~−0.32 4.92~8.24 1, 5

PDPL
2019

1 51,819,821 ss715645301 3.22~15.14 3.93~16.16 0.80~1.77 10.11~43.39 1, 2, 3, 4, 5
2 48,720,860 ss715647997 4.80~8.15 5.59~9.04 −0.97~−0.88 8.83~10.74 1, 4, 5

10 39,797,018 ss715646330 3.18~4.09 3.89~4.85 −1.03~−0.61 2.92~8.13 1, 2

2021
10 39,797,018 ss715646330 3.13~5.64 3.83~6.46 −2.38~−0.95 5.07~15.24 1, 2, 3, 4, 5
11 48,780,038 ss715650748 6.69~6.86 7.54~7.72 −1.59~−1.12 9.46~19.15 1, 4

PDPL C *
1 51,819,821 ss715645301 3,54~14,89 4.27~15.91 0.95~1.92 12.22~43.10 1, 2, 3, 4, 5
2 48,720,860 ss715647997 4.56~6.89 5.34~7.76 −1.04~−0.99 8.61~9.36 1, 4, 5

FPIH

2019

3 4,083,079 ss715647965 4.86~7.70 5.65~8.59 −0.46~−0.30 4.32~12.85 4, 5
4 1,627,690 ss715649971 4.03~9.59 4.78~10.52 0.36~0.63 7.00~21.68 1, 2, 4, 5
6 25,791,849 ss715645752 3.09~6.38 3.79~7.23 −0.83~−0.56 9.98~21.74 1, 2
9 31,832,898 ss715647626 4.23~5.39 4.99~6.21 0.42~0.50 7.12~10.12 2, 4, 5

2020
5 40,141,917 ss715646699 3.53~4.09 4.25~4.85 −0.95~−0.88 7.20~8.47 1, 2
6 25,791,849 ss715645752 4.45~5.82 5.22~6.65 −2.31~−0.94 14.47~19.87 1, 2, 3, 5

2021 4 1,627,690 ss715649971 3.33~4.37 4.05~5.14 0.29~0.73 8.98~23.46 1, 2, 3, 4

C *
4 1,503,482 ss715646910 3.93~4.41 4.67~5.18 −1.05~−0.59 9.25~10.92 3, 4
4 1,627,690 ss715649971 4.02~6.35 4.77~7.20 0.39~0.52 7.02~12.51 1, 2
6 25,791,849 ss715645752 3.04~6.30 3.74~7.15 −0.89~−0.59 6.28~21.51 1, 2, 4
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Table 2. Cont.

§ Traits Year Chr Position (pb) SNP # LOD Score −Log10 P ¥ SNP Effect ¶ R2 (%) Methods

PLHT

2019

1 45,894,030 ss715647368 5.24~15.56 6.05~16.59 −6.00~−2.04 18.04~43.65 1, 2, 3, 4, 5
1 49,657,760 ss715645852 3.90~4.06 4.65~4.82 −1.25~−1.58 7.43~10.31 1, 2, 5
4 1,224,240 ss715646896 6.17 7.00 −1.69~−2.25 14.20~21.93 1, 2
4 1,982,297 ss715647819 4.95 5.75 1.53~2.02 9.91~15.00 1, 2

2020 1 45,894,030 ss715647368 4.49~12.03 5.27~13.01 −6.18~−3.09 29.53~33.98 2, 3, 4, 5

2021
1 45,894,030 ss715647368 4.58~8.20 5.35~9.10 −5.17~−1.94 20.00~30.53 1, 2, 3, 4, 5
2 45,319,921 ss715645964 4.73~5.02 5.51~5.82 −1.82~−1.28 7.57~15.23 1, 2, 4
7 3,648,568 ss715646353 3.25 3.96 −1.26~−0.82 3.45~8.13 1, 2

C *

1 45,894,030 ss715647368 5.29~15.61 6.10~16.64 −6.16~−2.11 18.12~38.65 1, 2, 3, 4, 5
1 49,657,760 ss715645852 3.81~4.01 4.55~4.76 −1.62~−1.26 7.10~10.16 1, 2, 5
4 1,224,240 ss715646896 5.11~6.26 5.91~7.10 −2.33~−1.37 8.59~22.18 1, 2, 4
4 1,982,297 ss715647819 3.74~4.99 4.48~5.78 1.14~2.08 5.04~15.05 1, 2, 4

DF

2019

1 45,894,030 ss715647368 3.83 4.57 −3.75~−2.56 12.80~27.40 1, 2
1 46,027,600 ss715639536 11.42~11.94 12.38~12.91 −3.68~−3.53 24.52~26.65 4, 5
7 3,770,008 ss715646355 3.02~3.98 3.71~4.73 −2.19~−1.13 1.49~5.60 1, 2, 5

10 7,867,881 ss715640116 10.39~12.48 11.35~13.46 −3.35~−3.98 23.79~33.55 1, 2, 5

2020

1 45,894,030 ss715647368 3.51 4.24 −3.90~−2.53 10.82~25.80 1, 2
1 46,027,600 ss715639536 7.80~11.41 8.69~12.37 −3.41~−3.22 17.46~19.89 4, 5
7 3,770,008 ss715646355 4.13 4.88 −2.37~−1.74 3.07~5.72 1, 2

10 7,867,881 ss715640116 11.04 12.00 3.69~4.39 25.10~35.50 1, 2

2021

1 46,027,600 ss715639536 10.57~16.56 11.52~17.60 −3.93~−3.30 23.26~33.10 4, 5
7 3,770,008 ss715646355 3.48~3.69 4.20~4.42 −1.33~−1.28 1.93~2.27 1, 2
7 48,520,131 ss715648580 4.10~5.64 4.85~6.47 2.50~3.32 3.01~5.30 4, 5

10 7,867,881 ss715640116 7.94~9.19 8.83~10.11 2.50~5.17 14.42~56.84 1, 2, 5

C *

1 45,894,030 ss715647368 3.89 4.63 −3.79~−2.57 12.71~27.53 1, 2
1 46,027,600 ss715639536 11.14~12.15 12.11~13.13 −3.59~−3.57 24.72~24.97 4, 5
7 3,770,008 ss715646355 3.02~3.99 3.72~4.75 −2.19~−1.13 1.48~5.33 1, 2, 5

10 7,867,881 ss715640116 10.54~12.65 11.48~13.64 3.57~4.02 23.78~33.67 1, 2, 5

DPM 2019
1 45,746,595 ss715639271 7.39~7.70 8.27~8.58 −2.80~−2.22 21.53~22.62 1, 2
1 46,027,600 ss715639536 3.42~7.59 4.14~8.47 −2.31~−2.24 22.66~24.25 4, 5
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Table 2. Cont.

§ Traits Year Chr Position (pb) SNP # LOD Score −Log10 P ¥ SNP Effect ¶ R2 (%) Methods

DPM

2019

3 3,963,582 ss715647636 3.03~4.84 3.73~5.63 0.83~1.39 2.44~6.83 4, 5
4 4,497,307 ss715649528 4.93~7.78 5.73~8.67 2.52~2.79 29.33~32.58 1, 2
6 25,619,371 ss715648492 5.99~6.07 6.82~6.90 −1.99~−1.64 12.34~16.31 1, 2
6 27,370,471 ss715645677 3.27~5.77 3.98~5.60 1.05~2.15 5.01~5.22 3, 4

2020
1 46,027,600 ss715639536 3.75~7.15 4.49~8.01 −2.46~−1.58 13.04~22.07 1, 2, 5
3 4,083,079 ss715647965 4.33~5.07 5.09~5.87 −2.65~−1.84 15.28~24.25 1, 2

10 39,577,266 ss715646318 4.35~5.16 5.12~5.96 2.12~2.81 20.14~26.89 1, 2

2021
1 45,894,030 ss715647368 4.48~6.05 5.25~6.88 −3.47~−1.74 8.44~10.71 1, 2, 3, 4
4 4,497,307 ss715649528 4.90~16.14 5.69~17.18 2.97~5.95 30.35~51.06 1, 2, 3, 4
6 25,619,371 ss715648492 3.27~3.80 3.99~4.54 −1.83~−1.31 5.50~9.45 1, 2

C *

1 45,746,595 ss715639271 8.22~12.34 9.11~13.33 −3.18~−2.26 22.92~45.08 1, 2
3 3,963,582 ss715647636 3.31~4.33 4.02~5.20 1.18~1.95 4.69~12.81 1, 5
6 25,619,371 ss715648492 3.51~6.28 4.23~7.13 −1.63~−1.12 5.51~11.86 1, 2
6 27,370,471 ss715645677 3.22~3.70 3.92~4.43 0.93~2.19 3.70~5.15 3, 4

§ Traits: YDSD, grain yield (kg ha−1); SW, 100-seed weight (g); SDPD, number of seeds per pod; PDPL, number of pod per plant; FPIH, first pod insertion height (cm); PLHT, plant
height (cm); DF, number of days for flowering; DPM, number of days for maturity; C *, combined analysis of years using the harmonic mean of relative performance of genotypic
values (HMRPVG); Chr, chromosome; # LOD value ≥ 3; ¥ SNP effect, Single-nucleotide polymorphism effect on evaluated traits found through GWAS using multilocus mixed models;
¶ indicates the percentage of phenotypic variation explained by each SNP; methods: 1, mrMLM; 2, FASTmrMLM; 3, FASTmrEMMA; 4, pLARmEB; 5, ISIS EM-BLASSO.
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2.2.2. SNPs for Plant Architecture

Twelve significant SNPs were identified for plant architecture traits, including the first
pod insertion height (FPIH) and plant height (PLHT). Among these, six SNPs associated
with FPIH were detected on chromosomes Pv03, Pv04, Pv05, Pv06, and Pv09 across the three
years analyzed (Table 2), three of them were found in combined analysis. Notably, two SNPs
on chromosome Pv04, ss715646910 and ss715649971, were particularly significant. SNP
ss715646910 is located in the genomic region containing the gene model Phvul.004G014500,
which encodes a protein farnesyltransferase subunit beta (FNTB), and explains 9.25% to
10.92% of the phenotypic variation. SNP ss715649971 is located within the model gene
Phvul.004G016000, which encodes leucine-rich repeat-containing protein, and accounts for
7.02% to 12.51% of the phenotypic variation (Table 2). It is noteworthy that SNP ss715649971
was also observed in the years 2019 and 2021 (Figure 2d). On chromosome Pv06, SNP
ss715645752 was found to be associated with FPIH, explaining 6.28% to 21.51% of the
phenotypic variation. This SNP is located at genomic position 25,791,849 bp, close to the
gene model Phvul.006G144200, which encodes serine-threonine protein kinase (Table 2;
Figure 2d). This SNP was also observed in 2019 and 2020.

For the plant height (PLHT) trait, six significant SNPs were found to be associated
with this trait on chromosomes Pv01, Pv02, Pv04, and Pv07, wherein four were consistently
found in combined analysis. On chromosome Pv01, two notable SNPs were identified:
ss715647368 and ss715645852. SNP ss715647368 explained 18.12% to 38.65% of the phe-
notypic variation and was observed in all three years analyzed. It showed pleiotropy,
affecting plant height (PLHT), days to flowering (DF), and days to maturity (DPM) (Table 2;
Figure 2e). SNP ss715647368 is located at the position 45,894,030 bp close to the gene model
Phvul.001G193200 that encodes a protease s28 pro-x carboxypeptidase-related protein. SNP
ss715645852, also on chromosome Pv01, explained 7.10% to 10.16% of the phenotypic
variation and was also identified in 2019. This SNP is located at position 49,657,760 bp close
to the gene model Phvul.001G236100 that encodes a poly(a) RNA polymerase gld2 protein.

2.2.3. SNPs for Plant Phenology

A total of eleven SNPs significantly associated with plant phenology traits, specifically
days to flowering (DF) and days to maturity (DPM), were identified across chromosomes
Pv01, Pv03, Pv04, Pv06, Pv07, and Pv10 (Table 2). For DF, four SNPs were significant in
the combined analysis (Figure 3a). On chromosome Pv01, two notable SNPs were found:
ss715647368 (previously described with pleiotropy effect) and ss715639536 at position
46,027,600 bp. SNP ss715647368 explained 12.71% to 27.53% of the phenotypic variation,
and SNP ss715639536 accounted for 24.72% to 24.97%. SNP ss715647368 was observed in
2019 and 2020, while ss715639536 was identified in all years analyzed. SNP ss715639536
is positioned near the gene model Phvul.001G194100, encoding peroxiredoxin (alkyl hy-
droperoxide reductase subunit C).

On chromosomes Pv07 and Pv10, SNPs ss715646355 and ss715640116 were identi-
fied, explaining phenotypic variations ranging from 1.48% to 5.72% and 14.42% to 56.84%,
respectively. Both SNPs were detected across all analyzed years, as well as in the com-
bined analysis (Table 2). SNP ss715646355 is located at the beginning of chromosome
3,770,008 bp in the reference genome of Andean common beans (v1.1) close to the model
gene Phvul.007G046900 that encodes 16S rRNA (uracil(1498)-N(3))-methyltransferase/
M(3)U(1498)-specific methyltransferase protein. SNP ss715640116 on Pv10 is positioned at
7,867,881 bp close to Phvul.010G049800 that encodes a phospholipase A1 (DAD1).

For the trait days to maturity (DPM), nine significant SNPs were identified (Figure 3b);
four of them were significant in the combined analysis. The SNP ss715639271 on Pv01 was
significantly associated with DPM in the combined analyses and the year 2019, explaining
21.53% to 45.08% of the phenotypic variation. This SNP is located at the end of the
chromosome at the position 45,746,595 close to the model gene Phvul.001G191600, which
encodes beta-fructofuranosidase (E3.2.1.26, sacA). The SNP ss715647636 on chromosome
Pv03 was observed in the combined analysis and the year 2019, accounting for 2.44% to
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12.81% of the phenotypic variation. This SNP located at 3,963,582 close to Phvul.003G038400
encodes act domain-containing protein 5.
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On chromosome Pv06, two SNPs associated with the days to maturity (DPM) trait
were identified in the combined analysis: ss715648492 and ss715645677. SNP ss715648492,
located at position 25,619,371 bp, is close to the gene model Phvul.006G142100, which en-
codes armadillo/beta-catenin-like repeat-containing protein. This SNP explained between
5.51% and 16.31% of the phenotypic variation and was detected in the overall analysis, 2019,
and 2021 (Figure 3b). SNP ss715645677, located near the gene model Phvul.006G162500,
which encodes PPR repeat (PPR)//PPR repeat family (PPR_2)//Pentatricopeptide repeat
domain (PPR_3), explained phenotypic variation ranging from 3.70% to 5.22%. This SNP
was observed in both the combined analysis and specifically in 2019.

3. Discussion
3.1. Genotype × Environment Interaction

Germplasm banks play a crucial role in conserving and exploring the genetic variability
in different bean accessions. The 109 accessions from the Nupagri Germplasm Bank
encompass a diverse range of grain types, including Carioca, Black, Jalo, Red, Rosinha,
Roxinho, White, and Bolinha. This genetic diversity represents a valuable reservoir of
agronomic traits, which are vital for developing more productive cultivars that are resistant
to diseases and adapted to various environmental conditions.

Genotype × environment (G × E) interaction studies are crucial for understanding
the phenotypic and genotypic variation in common bean accessions of Mesoamerican
and Andean origins. These studies provide insights into how genetic diversity expresses
itself under different environmental conditions and help in identifying genotypes that are
better adapted to specific environments. Observations of G × E interactions revealed that
all evaluated traits exhibited unique behaviors, emphasizing that such interactions can
produce varying phenotypic expressions, even for the same genotypes across different
environments and years. The presence of G × E interactions is commonly observed in
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linkage mapping and association mapping studies, where it influences the interactions
between QTL × environment and/or SNP × environment [15,27,31].

3.2. Common Bean Genomic Regions Associated with Morphological and Agronomic Traits

GWAS has proven to be a valuable tool for exploring genetic diversity, particularly
in common bean cultivation. Studies focusing on accessions adapted to specific environ-
ments have demonstrated the effectiveness of this approach in investigating quantitative
traits, as genomic regions significantly associated with traits across multiple environmental
conditions have been identified. Additionally, markers specific to particular environ-
mental conditions have also been discovered [15,27]. Multi-locus methods, which have
been relatively underutilized in common bean research, are now gaining prominence for
their ability to offer greater statistical power and precision in detecting SNP markers in
GWAS [16,25]. This approach is particularly valuable for complex traits that are strongly
influenced by environmental factors [32,33]. Multi-locus analyses of accessions from the
Nupagri Germplasm Bank have led to significant advances in understanding the genetic
control of the evaluated morpho-agronomic traits.

In this study, significant variations were observed among 109 accessions from the
Nupagri Germplasm Bank. GWAS revealed genomic regions associated with SNPs for
morphoagronomic traits across all chromosomes: Pv01 through Pv11. Similarly, Delfini
et al. [15] identified markers related to productivity and its components across all chro-
mosomes in their study of 178 Mesoamerican common bean accessions using ML-GWAS.
Different genomic regions were found associated with grain yield (YDSD) and seed weight
(SW) across different years. This variability can be attributed to the quantitative nature of
these traits, which makes them highly responsive to environmental conditions. Depending
on climatic and precipitation patterns, specific regions on the bean chromosomes exhibited
varying impacts on these traits. For plant height (PLHT), days to flowering (DF), and
days to maturity (DPM), distinct associations were also observed for each trait across
years. Nevertheless, the Pv01 regions consistently showed a major effect on controlling
these traits throughout the years. In the combined analysis of years; most associations
mirrored those identified in one or more individual years, depending on the trait. This
approach enriches the findings by revealing consistent patterns and strengthening the
overall associations observed.

The GWAS identified significant regions on chromosomes Pv06, Pv07, and Pv09
associated with 100-seed weight (SW). While initial studies mapped 100-seed weight to
chromosome Pv07 [34], further research has shown it to be a polygenic quantitative trait
distributed across all chromosomes [11,27,34–38]. Many of the identified alleles are linked
to domestication processes and ecogeographic factors [11,27,35,36], which aligns with
our findings of SW being a quantitative and complex trait among Mesoamerican and
Andean accessions.

In the functional annotation of the seed weight (SW) trait, a notable protein identified
was an aspartyl protease family protein with similarity to cellulose synthase, which belongs
to the CESA gene superfamily. This superfamily, found in Arabidopsis thaliana and other
seed plants, encodes enzymes essential for cellulose production. The CESA genes are
divided into groups based on their function and structure, such as CESA1, CESA2, and
CESA3, found in dicotyledonous plants [39,40].

For productivity traits such as grain yield (YDSD) and number of pods per plant
(PDPL), a pleiotropic SNP was identified on chromosome Pv02. Similar pleiotropic effects
were observed in studies by Delfini et al. [15] and Nkhata et al. [41], who reported compa-
rable findings on chromosome Pv11. These pleiotropic effects suggest that these markers
may influence multiple traits in common beans. The genomic region containing this SNP is
functionally annotated to a serine/threonine protein kinase, a key player in various cellular
processes, including cell cycle regulation, cell signaling, and stress response [42].

For traits related to plant architecture and phenology, including the first pod insertion
height (FPIH), plant height (PLHT), days to flowering (DF), and days to maturity (DPM),
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SNPs were identified on chromosomes Pv01, Pv02, Pv03, Pv04, Pv06, Pv07, Pv09, and Pv10.
These traits were also mapped to different chromosomes in Mesoamerican and Andean
accessions, which exhibit various growth habits, particularly on chromosomes Pv01, Pv04,
Pv06, Pv08, Pv09, Pv10, and Pv11 [14,27,28,43]. The results of this study further evidence
the importance of chromosomes Pv01 and Pv10 in controlling bean architecture, as previ-
ously described in the literature. Notably, a SNP named ss715647368, located at position
45,894,030 bp on chromosome Pv01, was identified as pleiotropic, indicating a possible
relationship between plant architecture and phenology traits (Table 2, Figures 2 and 3).
Furthermore, SNP ss715647368 was functionally annotated to a PROTEASE S28 PRO-X
carboxypeptidase on chromosome Pv01, which is homologous to the S28 serine carboxypep-
tidase family protein (AT5G65760) in Arabidopsis thaliana. These proteins play crucial roles
in various biological processes, including growth, development, and the stress response.
S28 family carboxypeptidases are particularly vital for regulating protein and peptide
maturation, modulating hormonal activity, and enabling plants to adapt to challenging
conditions, such as nutrient availability fluctuations and environmental stress [44].

4. Materials and Methods
4.1. Plant Material

This study utilized a total of 109 common bean accessions (55 Mesoamerican and
54 Andean) from the Nupagri Germplasm Bank at the Núcleo de Pesquisa Aplicada à
Agricultura, Universidade Estadual de Maringá, Paraná, Brazil. These accessions were
collected from farmers in the Brazilian states of Goiás, Mato Grosso do Sul, Minas Gerais,
Paraná, and Santa Catarina (Figure 4). Descriptions of the evaluated accessions, such as
name, origin, gene pool, and market class, are provided in Table S2.

4.2. Phenotyping Evaluation

The experiment was conducted at the Centro de Treinamento em Irrigação (CTI) of the
Universidade Estadual de Maringá (UEM) in Maringá, Paraná, Brazil (latitude 23◦25′ S and
longitude 51◦57′ W), during the period from July to November in the agricultural years of
2019, 2020, and 2021. A simple 11 × 11 lattice design was used for the evaluations, covering
a total of 109 accessions (Figure 4), along with 12 additional accessions—BRS Pérola, BAT
447, IPR Uirapuru, SEA 5, BRS Esteio, BGF 04, BGF 09, BGF 59, BGF 92, BGF 155, BGF 203,
and BGF 204—used to optimize the experimental design.

The experiment included three replications, with plots consisting of 2 m rows spaced
0.5 m apart. The planting density was 12 plants per linear meter, with a border of 4 common
bean rows. The plants were fertilized and irrigated according to the specific needs of
the crop.

The following morpho-agronomic traits were measured: (a) days to flowering (DF)—
the number of days from emergence until 50% of the plants in the plot showed at least one
flower; (b) days to physiological maturity (DPM)—the number of days from emergence
until 90% of the pods lost their green coloration and began to dry. In the post-harvest
phase, the following traits were evaluated: (c) first pod insertion height (FPIH)—the
average height, in centimeters, from the soil surface to the first pod insertion; (d) final plant
height (PLHT)—the average height, in centimeters, measured from the soil to the tip of
the uppermost leaves; (e) number of pods per plant (PDPL)—the total number of pods
in the plot divided by the number of plants in the plot; (f) seeds per pod (SDPD)—the
average number of seeds in 10 randomly selected pods from each plot; (g) 100-seed weight
(SW)—the weight, in grams, of 100 seeds sampled from each plot; and (h) grain yield
(YDSD)—measured per plot at 13% moisture and expressed in kg ha−1. The crop ontology
for agricultural data for the common bean was used as a reference to unify the name of
traits (https://cropontology.org/term/CO_335:ROOT (accessed on 4 December 2023)).

https://cropontology.org/term/CO_335:ROOT
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Figure 4. Accessions of common beans from the Nupagri Germplasm Bank (photos taken by
UEM/ASC).

4.3. Phenotypic Data Analysis

The phenotypic data from each experiment were analyzed using SELEGEN REML/BLUP
software (https://www.conectagem.com/softwares (accesses on 7 February 2022)) [45].
Genotypic values were predicted through the best linear unbiased predictor (BLUP) ap-
proach, with variance components for random factors estimated via the restricted maximum
likelihood (REML) method, following model 52:

y = Xr + Zg + Wb + Ti + e

where y = data vector, r = vector of repetition effects (assumed as fixed) added to the general
average, g = vector of genotypic effects (assumed as random), b = vector of block effects
(assumed as random), i = vector of genotype × environment interaction effects (random),
and e = vector of errors or residues (random). The uppercase letters represent the incidence
matrices for the aforementioned effects.

https://www.conectagem.com/softwares
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The significance of the model effects was assessed using the Likelihood Ratio Test
(LRT), which provided the basis for deviance analysis (ANADEV). Model fit was evaluated
by comparing analyses with and without the effects of genotype and genotype × environ-
ment interaction. The deviance of the model excluding the specific effect was subtracted
from the deviance of the full model, and the resulting value was compared against the
chi-square (χ²) distribution with 1 degree of freedom at the 1% and 5% probability levels.

Mathematically, this process is represented as follows:

LRT = −2ln
(

ML of reduced model
MLV of complete model

)
where ln denotes the natural logarithm, while ML stands for maximum likelihood estima-
tion. The analyses evaluated the effect of each line on the phenotype, considering fixed
effects and random effects to obtain the best linear unbiased estimators (BLUEs) and best
linear unbiased predictors (BLUPs), respectively.

4.4. Genotyping of the Common Bean Accessions Using BARCBean6K_3 BeadChip

Genomic DNA was extracted from trifoliolate leaves of each accession using the
DNeasy Plant Mini Kit (Qiagen, CA, USA) according to the manufacturer’s instructions.
The DNA concentration was measured with a Qubit fluorometer, following the manufac-
turer’s guidelines. The DNA samples were genotyped using 5398 SNP markers on the
BARCBean6K_3 Illumina BeadChip, adhering to the Infinium HD Assay Ultra Protocol
(Illumina Inc., San Diego, CA, USA). The BeadChip was imaged with the Illumina BeadAr-
ray Reader to assess fluorescence intensity [46]. Automatic allele calling for each locus
was conducted using Genome Studio Genotyping Module v1.8.4 software (Illumina, San
Diego, CA, USA), with all allele calls subsequently verified visually. Data were filtered by
excluding SNPs with more than 25% missing calls and minor allele frequencies less than
0.05, resulting in 4633 high-quality SNPs for further analysis.

4.5. Genome-Wide Association Study

The GWAS was conducted using adjusted genotypic values for the evaluated traits.
These values were derived from REML/BLUP analyses for the years 2019, 2020, and
2021, as well as from the harmonic mean of relative performance of genotypic values
(HMRPVG) for the combined analysis of these agricultural years. The population structure
with K = 2 for the GWAS was determined using a Bayesian clustering approach with
Structure v2.3.4 [47]. The analysis was configured with a burn-in period of 10,000 and
50,000 Markov Chain Monte Carlo (MCMC) iterations, exploring cluster numbers (K)
from 2 to 11 across 20 independent runs. Analysis was performed using R software
(version 4.0.3) [48] and the multilocus mixed models tool mrMLM.GUI (version 4.0.2) [49],
employing five methods: mrMLM [50], FASTmrMLM [51], FASTmrEMMA [52], ISIS EM-
BLASSO [53], and pLARmEB [21] for SNP identification. A significance threshold of
LOD ≥ 3 was applied across all methods. To reduce false positive associations and enhance
statistical power, both population structure and kinship matrix were incorporated into the
models. The kinship matrix was calculated using mrMLM.GUI v4.0.2. Model adequacy
was evaluated through Q-Q plots, which displayed the observed quantile distribution of
–log10 (p) on the y-axis versus the expected quantile distribution of –log10 (p) on the x-axis.

4.6. Candidate Gene Identification

Candidate genes within the genomic regions associated with the traits of interest were
identified by aligning these regions with the G19833 reference genome v1.0 [11] through the
National Center for Biotechnology Information database available at https://www.ncbi.
nlm.nih.gov (accessed on 4 April 2023). Functional annotations of each model gene were
confirmed using the Phytozome database available at https://phytozome-next.jgi.doe.gov
(accessed on 5 April 2023) [30] to predict their potential roles in morphoagronomic traits.

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://phytozome-next.jgi.doe.gov
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This process involved linking the genes to specific biological functions and pathways,
thereby aiding in the understanding of their contribution to the traits under investigation.

5. Conclusions

This study successfully identified 36 SNPs associated with morphoagronomic traits
across all chromosomes (Pv01 to Pv11) in common bean accessions of both Mesoamerican
and Andean origins. These SNPs offer valuable insights for improving the productivity
and quality of common bean cultivars. Moreover, candidate genes were identified for
the most significant SNPs, providing a strong foundation for future research. Ultimately,
these findings have the potential to contribute to the development of more productive and
resilient common bean varieties, thereby advancing breeding programs and enhancing
overall crop performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13182638/s1, Table S1. Phenotypic data from common
beans accessions from Nupagri-UEM germplasm bank evaluated during the years of 2019, 2020, and
2021. Table S2 Accessions from Nupagri-UEM germoplasm bank, gene pool, origin, and market class
evaluated in the present study.
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