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Abstract: Plants play a vital role in numerous domains, including medicine, agriculture, and envi-
ronmental balance. Furthermore, they contribute to the production of oxygen and the retention of
carbon dioxide, both of which are necessary for living beings. Numerous researchers have conducted
thorough research in the classification of plant species where certain studies have focused on limited
numbers of classes, while others have employed conventional machine-learning and deep-learning
models to classify them. To address these limitations, this paper introduces a novel dual-stream
neural architecture embedded with a soft-attention mechanism specifically developed for accurately
classifying plant species. The proposed model utilizes residual and inception blocks enhanced with
dilated convolutional layers for acquiring both local and global information. Following the extraction
of features, both streams are combined, and a soft-attention technique is used to improve the distinct
characteristics. The efficacy of the model is shown via extensive experimentation on varied datasets,
including several plant species. Moreover, we have contributed a novel dataset that comprises
48 classes of different plant species. The results demonstrate a higher level of performance when
compared to current models, emphasizing the capability of the dual-stream design in improving ac-
curacy and model generalization. The integration of a dual-stream architecture, dilated convolutions,
and soft attention provides a strong and reliable foundation for the botanical community, supporting
advancement in the field of plant species classification.

Keywords: plant species classification; deep learning; dual-stream architecture; dilated convolution;
soft attention

1. Introduction

Plants play a crucial part in people’s lives for a variety of reasons, including growing
concerns about a deficiency of nutritious food around the globe with an exponentially grow-
ing population and changing climates globally [1]. Modern plant agriculture techniques are
enormous because they have a substantial impact on the national economy and personal
aspects of people’s lives [2]. Plant species are useful for medicine, food, and industrial
applications. They also play a vital role in a country’s economic growth. Environmental-
ists are also interested in the automation of plant identification by developing a system
based on spatiotemporal characteristics extracted from their structure and appearance.
Conventional plant species recognition methods are costly and time-consuming because
they require the manual involvement of human specialists [3]. Some plants are on the
verge of extinction. As a result, it is critical to establish a database for plant protection. The
most basic or traditional procedure is the naked-eye examination of the plant, and this
procedure entails constant expert observation of a variety of farm areas [4,5], which is a
lengthy and costly procedure. The automatic classification of the plant species is key to
achieving plant protection and safety and making the process easy for classifying the plant
species [6]. Plant leaves are generally the most prominent parts for identifying species, as
opposed to flowers, which are only available for a limited time. As a result, the leaves are
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an optimal choice for developing a system for the automation of plant recognition. The
leaves play an important role in understanding plant genetic relationships, structure, and
plant development. Plant identification is a difficult task, including for botanists, due to
the existence of a large number of species in the world [7,8]. Botanists use leaf recognition
technology to classify the species of various plants. Plants have distinct characteristics
that vary in many ways, such as size, texture, color, and shape, and they are different
due to these characteristics [9]. There are several “Computer-Aided Detection” (CAD)
techniques that have been used for plant recognition based on their leaves, where in recent
years, [10,11] achieved significant classification accuracy in plant species recognition.

Machine-learning and deep-learning approaches have become more popular for clas-
sifying plant species, providing potential opportunities for automating plant species
identification [12]. Several researchers have investigated the use of different machine-
learning algorithms and deep-learning architectures for this problem, including both
conventional classifiers and advanced neural networks [13,14]. Although these systems
failed to obtain high levels of accuracy, there is a prevailing tendency to choose simpler
structures since they are easier to execute and deploy to the edge devices. Fundamental
designs often consist of shallow neural networks or traditional machine-learning methods
like Support Vector Machines (SVMs) or Random Forests. Although these approaches may
provide acceptable outcomes in certain circumstances, they often demonstrate constraints
when confronted with complicated datasets or a wide range of plant species. Deep-learning
models, which are renowned for their capacity to acquire intricate hierarchical representa-
tions from unprocessed data, have gained significant popularity in the field of plant species
categorization [12]. Nevertheless, several deep-learning models used in this particular
domain encounter drawbacks such as overfitting, computational complexity, and lack of
interpretability. Despite these difficulties, researchers persist in investigating innovative
methods and structures to surmount these constraints and improve the precision and
resilience of plant species classification.

Plant species recognition and classification accuracy are essential in many fields,
including environmental protection and agriculture. Making use of recent developments
in deep learning, a unique model architecture has been created explicitly for the accurate
visual cue-based recognition of plant species. Our proposed cutting-edge model combines
a two-stream architecture, using RGB image data for both streams as an input to enhance its
discriminative power. Dilated Convolutional Neural Network layers (DiCNN) are utilized
in the first streams to analyze RGB images and extract complex spatial hierarchies and
patterns. In addition, a second stream processes the same data and acquires different types
of patterns and features from the input data. Additionally, a soft-attention mechanism is
employed in the model, which focuses on the most prominent features and ignores the
less prominent features. This attention module enhanced the model’s capability to deal
with complex images and made it more expert in identifying the different plant species. By
using the attention process and encapsulating the dual-stream integration, our proposed
model has the potential to correctly classify the plant species from their visual structures.
This all-encompassing architecture, which combines several dilated convolutional, pooling,
residual, and inception layers, creates a strong foundation for classifying plant species. It
uses a variety of techniques to identify complex features that are necessary for the precise
identification of species. The proposed technique presents the following contribution.

1. We contribute a novel dataset of indoor plant species, which comprises 48 different
classes. This dataset is a valuable resource for further progressing plant species
recognition with diverse classes, and it allows researchers to further develop more
effective techniques in the field of plant species classification.

2. We developed a dual-stream network that utilizes two parallel streams, such as the
residual block and inception block, embedded with dilated convolutional layers to
extract more prominent features from both streams. In contrast to existing pre-trained
models, that used shallow architecture, our proposed model used two parallel streams
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to enhance the feature-extraction process across different plant species for accurate
classification.

3. Our proposed dual-stream model is further strengthened by using a soft-attention
mechanism. The integration of a soft-attention mechanism enhances the model’s
adaptability to focus on more prominent features by dynamically amplifying and
weighting salient data from both streams while ignoring the irrelevant features.

4. We performed a detailed ablation study and comparative analysis of the proposed
model with other baseline models. The results indicate that the proposed model
outperforms all the other baseline models in terms of accuracy, precision, recall, and
F1 score.

The subsequent sections of the article are structured as follows: Section 2 discusses
the theoretical background, major trends, and substantial drawbacks associated with
existing algorithms. Section 3 provides a detailed overview of each module employed in
the proposed network. Additionally, Section 4 includes the experimental setting, dataset
description, and comparative analysis in terms of quantitative and qualitative against
various competitive benchmarks, followed by a detailed ablation study that represents the
effect of each module used in the proposed method. Finally, we conclude the article and
provide the future direction of the research in Section 5.

2. Literature Review

In recent times, computer vision research has found interest in the study of plant
classification through image processing [15]. The organs of plants, such as their leaves,
roots, fruits, flowers, skins, stems, and seeds, can be used to categorize and identify different
species of plants. Compared to other organs, leaves are essentially in a plane state and
have a stable shape and structure, which is advantageous for two-dimensional image
processing. Leaves are abundant and easily harvested throughout practically all growth
seasons, whereas roots are inaccessible and flowers are only available during flowering
seasons. That is the reason plant species classification systems most typically depend on
leaves. Since leaf-based plant species recognition does not require the expert knowledge
of a botanist, it is preferred over molecular biology techniques [16,17]. Plant species can
be identified by the form, color, texture, and other properties of their leaves. However,
the leaf color trait is rarely utilized to identify plant species as leaf colors change with the
seasons and the environment. In nature, the leaf-form properties are relatively stable. In
morphology, the diversity of leaf forms is a crucial foundation for plant classification and
recognition [18].

Researchers have recently combined neural networks and computation devices to
address many problems in this modern world, specifically in providing assistance to human
beings. They have indicated that image-based assessment systems offer more accurate and
consistent findings than human visual inspections [19] in plant species classification and
plant disease detection [20,21]. Accurate classification of medicinal plants is vital for indi-
viduals involved in the preparation of Ayurvedic medicine, botanists, forest department
offices, farmers, and practitioners. There has been plenty of effort into classifying objects
using various methodologies, where [22] established CNN as a fundamental deep-learning
tool for introducing deep-learning model strategies in classification and detection. Deep-
learning models have been employed in agriculture to a limited level in recent years. One
kind of dynamic model that can be useful for classification applications is CNNs. There
are numerous CNN models for classification, including GoogLeNet [23], AlexNet [24],
ResNet50, ResNet18, ResNet101 [25], DenseNet [26], VGG16, VGG19 [27], SqueezeNet [28],
and various others. Using AlexNet and GoogLeNet, Mohanty et al. [29] were able to classify
14 distinct plant leaves with an accuracy of 99.27% and 99.34%. The authors have used a
variety of input data, including color images, segmented images, and grayscale images.
Another research [30] used a CNN model to classify plant leaf data and obtained 86.2%
accuracy. Some studies focused on developing comprehensive systems for plant classifica-
tion, wherein various machine-learning methods and feature-extraction techniques were
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employed [31]. These studies collectively illustrated the efficacy of integrating advanced
imaging techniques with machine-learning technologies for plant species classification,
which remained a critical aspect of research in plant science and phytotechnology. Likewise,
the researchers in [32] presented CNN-based plant classification (CNN-PC) models for effi-
cient plant species identification. The model generated pre-trained weights based on input
plant image data and handled dependencies. The model’s performance was evaluated us-
ing the Vietnam Plant (VNP-200) dataset, which achieved a classification accuracy of 96.42%
across all 200 classes. Moreover, the authors in [33] proposed a novel feature-extraction
method using semi-supervised learning techniques and masked autoencoder architecture,
MAE SGD, which achieved nearly 94% accuracy in classifying 710 plant species on the
QuangNamForestPlant dataset. In the efforts to classify plant leaves with high accuracy,
Barre et al. [34] used the LeafSnap, Foliage, and Flavia datasets for the classification of
different classes using their suggested model LeafNet, where 60 classes from the Foliage
dataset and 184 classes from LeafSnap were classified with an accuracy of 95.8% and 86.3%,
respectively, while on 32 classes in the Flavia dataset, they obtained 97.9% accuracy. A deep
CNN model in [35] used the “Multilayer Perceptron” (MLP) classifier, which achieved an
accuracy of 97.7% on 44 classes in the MalayaKew dataset, and this accuracy was increased
to 98.1% with the SVM classifier. Additionally, a study [36] conducted a plant classification
task that utilized geometric characteristics in preliminary processing. They presented
the 3SN Siamese network, which gained knowledge for the leaf classification task from
both spatial and structural characteristics. It successfully classified 10 plant species from
the Fla-via dataset with an accuracy of 90%. Gao et al. [37] completed a LifeCLEF Plant
Identification task with an accuracy of 84.2%. Similarly, Zhu et al. [38] used a two-way-
attention CNN model to recognize plant families and further identify plant classes for
the four different datasets. In [39], the accuracy of classifying medicinal plants using the
AlexNet model was 94.87%, while the Ayurleaf CNN model achieved 95.06% accuracy for
20 species of self-collected medicinal plant data.

Duong-Trung et al. [40] used the MobileNet model to achieve 98.5% classification
accuracy. Liu et al. [41] developed a 10-layer CNN model for plant leaf classification and
obtained an accuracy of 87.92% across 32 classes. With the LeafSnap dataset, the researchers
in [11] implemented a ResNet model that achieved a classification accuracy of 93.09%.
The authors in [7] completed plant leaf classification on images taken by [42] with the
help of an Apple iPad device where the Deep Neural Network (DNN) model achieved
an accuracy of 91.17%, while the CNN model has 95.58% accuracy. Using photos taken
with mobile devices, Yang et al. [8] performed leaf classification of various plants with
complicated backgrounds. The classification accuracy for the Inception ResNetV2 model,
VGG16, and VGG 19 model was 89.6%, 91.5%, and 92.4%, respectively. Additionally, a
study [43] that employed the AlexNet model to identify berry plants was able to achieve
97.80% accuracy for the three classes of data that the researchers collected themselves. The
authors of [44] presented a novel method for classifying plants that combined key point
identification with SIFT, morphological transformations, and leaf edge features. With a
95.62% accuracy rate on the PlantVillage dataset, the method outperformed conventional
techniques that classified plant species based only on leaf shape and texture. Moreover, the
importance of deep learning is demonstrated by a study [45] that used transfer learning
with VGG-19 for plant recognition in Swedish leaves and achieved an amazing accuracy
of 99.70% in identifying 15 different tree classes. Furthermore, using leaflet features to
classify plant species, the paper [46] presented the Conv2D Xception architecture with
the Adadelta Gradient Descent (CXAGD) deep-learning model. Compared to other CNN
models, it achieved high accuracy (97.85%), precision (97.42%), recall (97.75%), and F-
score (97.76%). Using the CXAGD, the model was trained on a dataset of 4500 vegetable
leaflets. Using Canny edge detection and VGG16 on the Flavia dataset with 15 classes,
the authors of [47] used leaf vein patterns to identify plant species with 95% accuracy.
The approach highlighted how crucial it is to identify unique qualitative traits from leaf
pictures to accurately classify plants. A concise description of various benchmarks over
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distinct datasets, along with their techniques, is shown in Table 1. In addition, the general
limitations associated with the existing techniques are provided in the following points:

• The existing techniques often struggle with generalization to diverse environmental
conditions and class imbalances, necessitating more robust algorithms.

• Various existing algorithms of both machine learning and deep learning require sig-
nificant computational resources for training and deployment, posing challenges for
resource-constrained environments.

• The publicly available datasets contain diversity and class imbalance problems, which
hinder the model training and generalization, highlighting the need for improved
dataset curation and augmentation approaches.

Table 1. Representation of the summary of previous techniques used for plant classification.

Ref Datasets Classes Models Accuracy

[7] Custom dataset
30 DNN 91.17%

30 CNN 95.58%

[8] Custom dataset

15 VGG16 91.50%

15 VGG19 92.40%

15 Inception-ResNetV2 89.60%

[11] LeafSnap 180 ResNet 93.09%

[29] PlantVillage
38 AlexNet 99.27%

38 GoogLeNet 99.34%

[30] Six different datasets 22 CNN 86.20%

[32] Vietnam Plant (VNP-200) 200 CNN-PC 96.42%

[33] QuangNamForestPlant 710 Masked Autoencoder 94%

[34] LeafSnap

184 LeafNet 86.30%

60 LeafNet 95.80%

32 LeafNet 97.90%

[35] Malayakew
44 Deep CNN (D1) MLP 97.70%

44 Deep CNN (D1) SVM
(linear) 98.10%

[37] LifeCLEF 2015 30 3SN 84.20%

[39] AyurLeaf
40 AlexNet 94.87%

40 Ayurleaf CNN 95.06%

[40] Custom dataset 20 MobileNet 98.50%

[41] Flavia 32 Ten-layer CNN model 87.92%

[43] Custom dataset 3 AlexNet 97.80%

3. Proposed Methodology

This section explains the proposed methodology of our technique, where we have
explained the details of our proposed dual-stream architecture embedded with a soft-
attention mechanism. We performed an ablation study that involved various methods to
improve our model accuracy in terms of plant species classification. Firstly, we have used
a hybrid model with different residual and inception blocks for classification. Secondly,
we used these blocks, followed by an attention mechanism, which improves the model
performance. An attention mechanism is a fundamental neural network approach for
classification tasks that allows neural networks to selectively highlight pertinent features
or portions of the input data. Thirdly, we have used the residual block and inspection
block in the dual stream, where the residual block is in a separate stream and the inception
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block is used in a separate stream for the extraction of pertinent features from both streams.
Lastly, we proposed our more accurate and efficient model, where we use a dual-stream
network of residual block and inception block and then concatenate them and pass them
to the soft-attention mechanism. Adding soft-attention mechanisms enhances the neural
network’s ability to recognize and utilize important information, which results in increased
classification accuracy and resilience over a variety of datasets and classes.

3.1. Proposed Dual-Stream Approach

Our proposed approach presents a novel dual-stream architecture that utilizes the
two parallel blocks enhanced with dilated convolutional layers, which is skilled in captur-
ing the most prominent features from the input data. By using the shortcut connections,
residual blocks facilitate feature learning and gradient flow efficiently, and these connec-
tions also help in vanishing gradient problems, which is common in deep-learning models.
The second stream, which comprises an inception block, is utilized to capture multiscale
features and the most complex features from the data through receptive parallel convo-
lutional routes by using receptive fields. Two input tensors, which represent the residual
and inception block routes, respectively, are used at the beginning of the algorithm. Each
stream’s ensuing dilated convolutional and pooling layers are customized for the particular
block type. For example, the first stream includes inception block with several parallel di-
lated convolutions for feature diversification, whereas the second stream includes residual
block with unique shortcut connections and dilated convolutional processes. Incorporat-
ing dilated (or atrous) convolutional layers into the residual block and inception block
improves the receptive field and collects contextual information. A typical residual block
comprises a shortcut connection, also known as a skip connection, and two convolutional
layers. Dilated convolutions can substitute or enhance the conventional convolutional
layers in the residual block. The inclusion of dilated convolutions inside the residual block
allows the network to effectively capture a broader context or global information while
keeping the number of parameters relatively the same. By augmenting the dilation rate
inside the designated residual block, the model concentrates on gathering information over
a wider spectrum. Hence, it enhances its effectiveness for tasks necessitating extensive
interdependencies. Let’s suppose X represents the input, F(X) identifies the shortcut con-
nection, Conv(X, W, dilation rate) shows the dilated convolution layers, and Y represents
the output. Therefore, Equation (1) can be written as:

Y = F(X) + Conv(X, W, dilation rate), (1)

On the other hand, the inception block is composed of many concurrent branches,
each applying a distinct processing method to the input. Typically, these branches con-
sist of convolutional layers that have variable kernel sizes. Incorporating dilated con-
volutions into one of the branches of the inception block allows for a broader context
to be considered during the process of feature extraction. Let’s suppose X is the input,
Concat(Conv1×1(X), Conv3×3(X), Convdilated(X, dilation rate), . . .) represents the different
convolutional branches and dilated convolutional layers within the inception block, and Y
is the output. So, mathematically, it can be expressed in Equation (2) as:

Y = Concat(Conv1×1(X), Conv3×3(X), Convdilated(X, dilation rate), . . .) (2)

The network’s capability to collect characteristics at several scales enables it to ef-
fectively identify patterns of different dimensions. Dilated convolutional layers have an
impact on both residual and inception blocks by allowing the network to gather contextual
information from a wider region without adding much computational burden. It is of
utmost importance for tasks that need the comprehension of both local and global features,
such as image recognition. The use of dilated convolutions in these blocks varies depending
on the architecture and the task’s unique demands.
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Following the separate processing in both streams, a concatenation layer is used to
combine the results to incorporate the unique features that each pathway has acquired.
A technique for adaptively emphasizing significant characteristics from the concatenated
representations is then presented. The soft-attention mechanism is used to enhance the
model architecture, which comprises a pooling layer, dense layer, and reshaping, and the
features are further refined by multiplication between attention weights and concatenated
features, which improves the concentration of the proposed model on more prominent
features [48,49]. The architecture mainly focuses on the separation and fusion of feature-
extraction algorithms through the use of inception and residual blocks in parallel streams.
Combining these disparate representations allows for a more thorough exploration of fea-
ture space, which is further improved by a soft-attention mechanism to allow for adaptive
feature refining. To accommodate complex and varied feature representations for plant
species classification tasks, the suggested architecture aims to maximize the special abilities
of both residual and inception blocks. The principal objective is to increase classification
performance in terms of accuracy and resilience. Figure 1 shows the general architecture of
the proposed framework.

 

Figure 1. A high-level generic diagram of the proposed study, comprising three distinct phases:
Phase (1) contains different augmentation techniques to mitigate the data-scarcity problem. Phase (2)
showcases a dual-stream network, employing two different networks, such as residual block and
inception block, followed by a soft-attention module for effective feature learning. Finally, Phase (3)
signifies the testing phase, where the proposed network is evaluated on testing data.

3.2. Soft-Attention Mechanism

Soft-attention mechanisms are crucial for improving the capabilities of neural networks
as they allow the networks to selectively concentrate on particular areas of the input image.
Within the realm of image classification, these methods are very important for identifying
pertinent characteristics and patterns within an image. Our suggested architecture utilizes
the soft-attention mechanism, which is applied strategically after combining the charac-
teristics from the dual-stream residual block and the inception block. The soft-attention
mechanism operates by allocating attention weights to distinct regions or channels of
the input feature maps. Although our dual-stream architecture has the ability to extract



Plants 2024, 13, 2655 8 of 18

features from the images using parallel blocks, it is not effective in each situation like in low
lighting, which can affect the model’s capability of correctly classifying the plant species in
indoor scenarios. Therefore, we utilized a soft-attention module, which effectively extracts
the most pertinent features from the input images. The attention mechanism we utilized in
this task consists of the PReLU activation function, max pooling layer, soft-attention unit,
concatenation, and dropout layer in the last. The activation function assesses the input
from the preceding layer and transmits its weights instantly to the soft-attention unit and
pooling layer. The feature tensor (b) is used as the input in the soft-attention unit of the
deep-learning model.

fsam = ab
(
∑K

k=1 so f tmax (Wk.b)
)

, (3)

where the input of the 3D convolutional layer is b ∈ Rh×w×d, the weights are represented
by Wk ∈ Rh×w×d×N , and the 3D weights are denoted by N. The convolution result is
normalized via the SoftMax function to produce K attention maps where K = 16. The
attention maps are merged to create a single attention map that functions as a weighting
factor α, as seen in Figure 2. Later, the variable α is multiplied by t to precisely transform
the values for essential features, and a is utilized for further scaling since particular images
need different a values, with a considered as a training parameter. A residual branch is
created by combining the precisely scaled features fsam from Equation (3) with the original
features b. While training our model, the value of y is set to 0.01, which allows the network
to progressively adjust its attention needs and transmit the weights to maximize pooling
layer 1. The pooling layer 2 acquired the core features directly from the PReLU activation
function. Pooling layer 1 and pooling layer 2 feature maps are combined and then inputted
into the PReLU activation functions, followed by a dropout layer. The soft-attention block
assists the network in prioritizing the plant that is far from the camera or under low light
conditions. The dual-stream architecture, with the included soft-attention technique, is
well-suited for the classification of indoor plant species.

Figure 2. The soft-attention function of converting feature map to attention maps and postprocessing procedure.

4. Experimental Results

This section offers a concise overview of the experimental setup, followed by a detailed
explanation of the datasets utilized for the experimental analysis. Additionally, we provide
an in-depth exploration of both quantitative and qualitative analysis in terms of comparing
the performance of the proposed network with other state-of-the-art (SOTA) techniques.
For the experimental results, we implemented the proposed network on intel corei9 CPU
with Nvidia GeForce 3070 GPU (Nvidia Corporation, Santa Clara, CA, USA) embedded
with 8 GB memory. Additionally, we used a well-known framework named Keras as the
front end and TensorFlow was utilized as the back end. Further, we reimplemented various
competitive techniques on both datasets and trained them for 100 epochs with a batch size
of 32, as well as SGD optimizer with 0.0001 learning rate and weight decay while using
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a 0.3 dropout. We also used early-stopping mechanisms on the basis of validation loss
and to prevent the model from overfitting. All these optimal values for regularization
techniques and hyperparameter tuning are selected after performing different experiments
with different ranges of values. We performed many experiments by changing the values
of dropout rate, weight decay, learning rate, and early-stopping mechanism to select the
optimal values at which the model provides its best performance and accuracy. For the
model evaluation, we used accuracy, precision, recall, and F1 score, which are very common
evaluation metrics in image classification tasks. The purpose of this experimental study is
to obtain a deeper understanding and comparison of proposed model with other baseline
models. The ablation study examines how different elements collectively influence the
performance, reliability, and interpretability of the model in plant species classification.

4.1. Dataset Description and Pre-Processing

This section provides a comprehensive description of the two datasets utilized in our
experimental analysis to determine the efficacy of the proposed network against various
competitive techniques. Initially, we conducted extensive experiments over Flower-299
dataset, which contains 299 different species. A detailed description of those species is
available in [50]. This dataset composes 115,944 different images, with an average width of
271 pixels and height of 242 pixels. The images are distributed into different classes, where
the average number of samples per label is 387 images, as detailed in Table 2. This variation
in the number of images per class reflects the diversity of different classes within the dataset.
Such diversity is essential for robust training of deep-learning models, allowing the model
to generalize well across all classes. The Flower-299 dataset is considered to be widely
used in the plant domain. However, the dataset contains several limitations that need to be
addressed. One notable limitation is the potential class imbalance, where certain flower
species may have significantly fewer images compared to others. This imbalance can lead
to biased model training and reduced performance, especially for underrepresented classes.
Additionally, the dataset may lack diversity in terms of environmental conditions, such
as variations in lighting, background, and image quality. Such uniformity may hinder the
model’s ability to generalize well to real-world scenarios where environmental conditions
can vary widely.

Table 2. Represents the summary of both datasets.

Dataset Total Images Training Testing No. of Classes

Flower299 115,944 92,755 23,188 299
Proposed Dataset 9364 7492 1872 48

To address these limitations and ensure robust model training and performance, we
developed our custom dataset, which comprises 48 distinct categories of plant species.
The first version of the data was acquired from a plant firm using a “Canon 450D + EFS
18–55mm” camera (Canon Oita Factory, Oita, Japan), while the details about the dataset
samples are mentioned in Table 2. Figure 3 shows the samples taken from our proposed
plant dataset. The plants were cultivated inside, and the images were captured using two
45W flexible LED lamps. The images were captured from a distance of roughly 120 cm,
using angles of 0 degrees, 45 degrees, and 60 degrees. To standardize the picture formats,
we converted all the acquired photographs to .jpg format during the pre-processing step.
We modified the dimensions of all the images to 3 where the dimension refers to the
measurements of the length and width of an image. The measurement is often conducted in
pixels, and we ensure that each image has a consistent depth of 24 bits. Following this step,
we apply some more pre-processing steps involving different augmentation techniques
to increase the number of samples because the deep-learning model needs to be trained
on a huge variety of samples so that it classifies each plant species accurately. We used
the Albumentations library to create 10 separate augmentation pipelines. Each pipeline is
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designed to add various variations and perturbations into input images hence enhancing
the dataset for training deep-learning models. The augmentation techniques used in
these pipelines encompass several transformations designed to improve the resilience and
flexibility of the model. Operations such as random rotations, flips, variations in brightness
contrast, and the use of Contrast-Limited Adaptive Histogram Equalization (CLAHE)
enhance the capacity to adapt to different lighting situations. In addition, this dataset
includes blur effects, gamma changes, and simulated weather conditions such as rain, fog,
sun flare, and shadows to enhance its diversity and robustness.

 

Figure 3. Shows the different types of plant species samples from our proposed dataset.

4.2. Evaluation Metrics

The study utilized several evaluation indicators to determine the robustness of the
proposed network and various SOTA techniques. These indicators include Precision,
Precision, F1-Score, and Accuracy, as the detailed descriptions are mentioned in the fol-
lowing references [51]. These evaluation metrics are calculated through True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN). The mathematical
formulation of evaluation metrics is mentioned in the following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

Precision =
TP

TP + FN
(6)
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F1-Score = 2 × (Precision × Recall) / (Precision + Recall) (7)

4.3. Performance Evaluation Based on the Proposed Network

This section provides a brief comparison of the proposed network against various com-
petitive techniques in terms of quantitative and qualitative analysis over two challenging
datasets, as discussed in the subsequent subsection.

4.3.1. Quantitative Comparison of the Proposed Network with Other Techniques

This subsection presents a detailed comparison of the proposed network and various
competitive techniques over two benchmarks using distinct evaluation indicators such as
accuracy, precision, recall, and F1 score, as tabulated in Table 3. In the experimental analysis,
the proposed dual stream with soft-attention network attained superior performance over
custom dataset, representing 90.89%, 91.11%, 90.84%, and 90.85% for accuracy, precision, re-
call, and F1 score respectively. In addition, DenseNet121 is considered a second-best model
for our custom dataset, which obtained 89.81% accuracy, 91.1% precision, 90.47% recall, and
90.53% F1 score respectively. The internal architecture of our dual-stream network utilizes
a blend of residual and inception blocks, including an attention mechanism to emphasize
significant characteristics. This strategy enables the model to effectively capture complex
patterns, especially when dealing with challenging input data, leading to enhanced accu-
racy in classification. Unlike several competitive techniques that struggle with precision
and recall, our proposed network demonstrates a balanced performance between accuracy
and the capacity to accurately identify pertinent instances of plant species.

Table 3. Comparative analysis of our proposed model against various competitive networks over
custom dataset and Flower299.

No. Model
Custom Dataset Flower299 Dataset

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

1 DenseNet121 89.81 91.1 90.47 90.53 84.69 84.41 84.15 84.16
2 DensNet169 85.25 85.73 84.72 84.76 87.43 87.3 86.94 86.95
3 EffecientNetB0 78.13 78.9 77.03 78.10 78.67 78.1 78.88 78.65
4 InceptionResNet 76.06 78.84 74.95 75.04 83.55 84.45 83.1 83.67
5 InceptionV3 84.5 85.28 83.77 83.77 84.52 84.36 84.03 84.05
6 ResNet50 88.35 88.9 88.13 88.23 84.76 84.53 84.26 84.26
7 MobileNetV2 85.84 86.57 85.22 85.37 85.15 84.89 84.65 84.64
8 VGG16 88.9 90.61 90.1 90.19 84.34 84.16 83.84 83.87
9 VGG19 88.3 88.99 88.29 88.30 84.48 84.29 83.97 84.01

10 Inc-Res 85.84 86.57 85.22 85.37 82.48 82.78 82.2 82.75
11 Inc-Res SAM 85.3 85.8 84.7 84.81 83.15 83.6 83.02 83.45
12 Dual Str. Inc-Res 87.09 87.39 87.29 87.18 84.65 85.2 83.9 84.78
13 Proposed Model 90.89 91.11 90.84 90.85 88.87 88.98 88.67 88.92

To further examine the effectiveness and scalability of the proposed network, we
provided a detailed assessment of the network with benchmark Flower299 dataset using
different evaluation indicators for instance accuracy, precision, recall, and F1 score. As
given in Table 3, the proposed network demonstrates outstanding performance for accuracy,
precision, recall, and F1 score, showcasing 88.87%, 88.98%, 88.64% and 88.92%, respectively.
Further, the DensNet169 achieved promising performance for accuracy, precision, recall,
and F1 score, which is 87.43%, 87.3%, 86.94%, and 86.95%, respectively. In addition,
the DenseNet169 is considered the second-best network among others over Flower299
dataset. In short, the detailed experimental analysis of the proposed network over custom
dataset, and a publicly available dataset, justified the robustness of the proposed network
while handling the intricacies of the plant classification problem, positions it as a possible
paradigm for other image classification domains.
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4.3.2. Qualitative Analysis in Terms of Visualized Result

We conducted an investigation into the qualitative analysis of a suggested model that
combines inception and residual blocks, followed by a soft-attention mechanism. This
model shows substantial improvements in plant species categorization. The model effi-
ciently extracts complete features from plant images by using the capabilities of inception
blocks for collecting multi-scale characteristics and residual blocks for fast deep network
training. Incorporating dilated convolutional layers significantly improves the model’s
capacity to collect contextual information across different scales. The soft-attention mech-
anism is essential for directing attention toward the most relevant regions of the image,
hence enhancing the model’s capacity to differentiate between similar plant species. The
use of this attention mechanism enables the model to dynamically emphasize important
characteristics, resulting in enhanced precision and resilience in categorization. The quali-
tative findings are visualized in Figure 4, demonstrating that the suggested architecture
achieves superior classification accuracy and improved generalization across various plant
species. This highlights its usefulness and promise for practical applications in plant
biology and agriculture.

 

Figure 4. Demonstrates the classification performance of our proposed model on testing sam-
ples, where (a–c) shows samples from our custom dataset, while (d–f) shows samples from the
Flower299 dataset.
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4.3.3. Discussion

This section demonstrates the experimental findings and discussion of our proposed
dual-stream architecture enhanced by a soft-attention mechanism for plant species clas-
sification. With the addition of a soft-attention mechanism, our model improves the
precision and comprehensibility of species classification. The experiments are performed
on two different datasets, which have a wide range of plant species. We have conducted
thorough experimentation using evaluation metrics like accuracy, precision, recall, and
F1-score to assess the model performance. Furthermore, the discussion analyzes the advan-
tages and possible drawbacks of the model, which provides a comprehensive assessment of
the model’s performance for future improvement in the field of plant species classification.

The incorporation of residual and inception blocks provides an optimal combination of
feature-extraction capabilities. Residual block, by using skip connections and the capacity to
learn residual mappings, enhances the seamless transmission of information throughout the
network, addressing the issue of vanishing gradients and allowing the model to effectively
capture complex characteristics. The inception block enhances the receptive field by using
filters of different sizes simultaneously, enabling the model to efficiently collect information
at several scales. Furthermore, the integration of a soft-attention mechanism after the fusion
of features from residual and inception blocks provides an additional level of flexibility to
the model. The soft-attention mechanism selectively provides weights to certain regions
of the feature maps, prioritizing areas that are essential for precise classification. The
model’s flexibility improves its capacity to focus on key facts while excluding unnecessary
or duplicate information. Figure 4 demonstrates the classification performance of our
proposed model on testing samples.

The effectiveness of the proposed model is credited to the integration of these archi-
tectural components, which are skilled at capturing complex and unique features from
the input data. The model accomplishes a high Accuracy, Precision, Recall, and F1-score
by merging the advantages of residual and inception blocks, as well as including a soft-
attention mechanism. This guarantees accurate and effective classification and comprehen-
sive coverage of all plant species attributes. The model’s ability to extract complex features
and allocate attention in a nuanced manner allows it to identify subtle patterns in images,
resulting in improved performance compared to other benchmark models.

4.4. Ablation Study

We performed a detailed ablation study to select the most optimal model for plant
species classification. Initially, we use the simple CNN model by utilizing the residual
and inception blocks for classification. The CNN architecture is well-suited for plant
species classification tasks. The process begins with a convolutional layer that has 64 filters
and a 7 × 7 kernel size by providing the input structure of 224 × 224 × 3. The features
are then downsampled using batch normalization and max pooling. Next, the network
is made up of inception and residual blocks, which are both renowned for their ability
to capture hierarchical characteristics. Shortcut connections are included to reduce the
occurrence of vanishing gradient issues and promote a smoother gradient flow during
training. To extract various features, the inception block uses max pooling and parallel
convolutional procedures with varied kernel sizes. Average pooling is used after each block
to flatten the representation of features for dense layers and minimize spatial dimensions.
Densely connected nodes make up the fully connected layers, which lower dimensionality
while retaining higher-level abstractions. To reduce overfitting, dropout regularization
is used. Softmax activation is used in the last layer to provide probabilities for classes,
where it varies from dataset to dataset, making it appropriate for multi-class plant species
classification problems. To accomplish efficient feature extraction and classification, this
kind of model architecture combines conventional convolutional layers with novel residual
and inception blocks to obtain and train hierarchical representations from images.

Second architecture designed for plant species classification is implemented where net-
work begins with an input layer that has dimensions of 224 × 224 × 3, which represent the
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width, height, and three RGB channels of the image. Next, it employs dilated convolutional
layers with a 7 × 7 kernel and a stride of 2, followed by batch normalization and max-pool
operations to effectively extract low-level features and minimize the data spatially. Residual
block is incorporated into the model where each consists of two 3 × 3 convolutional layers
that are equipped with skip connections and batch normalization. Then, inception block
with their parallel dilated convolutional branches (1 × 1, 3 × 3, and 5 × 5 convolutions)
and max-pooling functions allow for the extraction of features at different scales, which
improves the network’s comprehension of complex images. The inception block is followed
by an attention mechanism. To compute attention weights, this approach first uses dense
layers, then global average pooling. To improve the network’s attention on critical image
regions for classification, these weights are rearranged and multiplied elementwise with the
feature maps. The goal is to amplify informative regions and decrease less relevant parts.
The approach progresses from condensing feature maps by average pooling to flattening
and completely correlated layers, which accomplish high-level feature abstraction. In the
end, dropout regularization and Softmax layers are used for multi-class categorization over
several classes, which completes the network’s architecture.

The third architecture consists of two separate paths that handle the input data
through different phases of pooling and specific convolutional operations to enable dif-
ferent feature-extraction techniques. The initial step is to define the input tensors that
represent the two parallel streams, residual block, and inception block. Each stream travels
through a series of pooling and dilated convolutional layers that are specific to the block
type it is assigned. The first stream, in particular, integrates residual block, which are
distinguished by their capacity to maintain gradient flow and enable feature learning via
shortcut connections. Parallelly, the second stream utilizes the inception block to obtain
complicated features by using various receptive fields via parallel convolutional routes. The
concatenate layer concatenates the features from both streams, whereas the concatenated
feature representations from both streams enable the combination of complementary and
varied features. This layer is followed by dense layers and output layers for the classifi-
cation of plant species. The advantage of this architecture is that it utilizes the inception
and residual block for enhancing the feature representation from two different streams
where the gradient degradation is tackled by the residual block and feature hierarchies are
captured through various receptive fields that is performed by the inception block. This
approach attempts to learn more complimentary feature representation by combining the
features from both parallel streams. This approach has the potential to improve the learning
strategies in various computer vision applications and classification tasks by collecting a
variety of features from different streams.

4.5. Drawbacks Associated with the Proposed Network

While the proposed network exhibited an optimal performance using two challenging
datasets, as evident in the detailed experimental results, the model is associated with
various drawbacks, as structured in the following points:

• The proposed network comprises complex architecture, employing multiple streams
followed by an attention mechanism. This complexity enhances its ability to cap-
ture complex patterns within input data, leading to improved overall performance.
However, it can be challenging to manage and optimize such complex architecture,
particularly during training.

• Another limitation associated with the proposed model is high computational com-
plexity, which can be challenging when deploying the model over edge devices for
real-time decision-making. This limitation needs to be carefully considered when
planning for deployment in resource-constrained environments.

• The complexity of the network may lead to the risk of overfitting, particularly when
training the network on limited or unbalanced datasets. Mitigating this risk may re-
quire additional regularization techniques or a larger and more diverse training dataset.
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5. Conclusions and Future Directions

Our proposed dual-stream framework, followed by a soft-attention mechanism,
demonstrates a strong and innovative system for classifying plant species where we utilized
the residual block in the first stream and the inception block in the second stream. The uti-
lization of dilated convolutional layers in both streams improves the model’s receptive field,
making it capable of gathering features from a broader region in the images. The complex
feature-extraction capacity is essential for identifying complex patterns and characteristics
seen in plant species images. The combination of residual and inception blocks exploits the
advantages of both architectures, enhancing the variety of features and producing detailed
representations. Moreover, the residual block facilitates the mode of handling the vanishing
gradient problem, while the inception block enhances the receptive field for extracting
more prominent features from the data. The use of dilated convolutions also enhances the
model’s capacity to extract characteristics at various sizes without substantially increasing
computational complexity. Our proposed architecture has a soft-attention mechanism after
the concatenation of feature maps from both streams, which is a distinctive characteristic of
this architecture. The use of this soft attention enables the model to flexibly concentrate
on more appropriate regions, hence enhancing its capability to extract more features. The
attention process is essential for identifying small differences among different plant species,
which contributes to the high accuracy in classification. Our suggested architecture has
shown exceptional performance in plant species classification tasks via rigorous testing and
assessment. Our model outperforms other baseline models in plant species classification for
botanical applications because of the meticulous incorporation of many elements like the
utilization of dilated convolutions in residual and inception blocks and the soft-attention
mechanism. Our proposed model for plant science demonstrates the effectiveness of mix-
ing distinct architectural aspects to enhance accuracy and generalization in recognizing
plant species.

When considering the future trajectory of our suggested design, various intrigu-
ing paths might be explored and improved upon. Initially, conducting more research
on enhancing hyperparameters and refining the model architecture might result in even
more remarkable improvements in performance. Investigating the interpretability and
explainability features of the model’s predictions might improve the model’s usefulness
in real-world situations. Moreover, the expansion of the dual-stream design to include
multi-modal inputs, such as extra spectral or temporal data, shows potential for thorough
plant species classification. By integrating a variety of data sources, a comprehensive
understanding of plant ecosystems may be achieved, allowing the model to accurately
capture subtle patterns and changes. Gaining insight into the primary factors that influ-
ence a certain categorization choice may enhance the confidence and acceptance of the
model in agricultural and ecological research. As technology progresses, the suggested
framework in edge computing settings, such as agricultural drones or field-based sensors,
has the potential to revolutionize real-time plant species identification. Creating lighter
versions of the model and incorporating it onto edge devices might provide on-site, in-field
applications with minimum delay.
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