Enhancing Antibiotic Efficacy with Natural Compounds: Synergistic Activity of Tannic Acid and Nerol with Commercial Antibiotics against Pathogenic Bacteria
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity of Tannic Acid, Nerol, and Antibiotics
2.2. Checkboard Tests for Synergy Assessments between Tannic Acid, Nerol, and Antibiotics
2.3. Synergy Kinetics Study
3. Discussion
3.1. Antimicrobial Activity of Tannic Acid and Nerol
- ABXs with a MIC below 4 µg/mL for certain bacteria were discarded, mainly due to the difficulty in assessing reductions in such low concentrations;
- Bacteria susceptible to DMSO at concentrations ≥2.5% were discarded, as it was not possible to have stable dilutions of either NE or TA.
3.2. Kinetic Study of the Obtained Synergies
3.3. Tannic Acid and Nerol Synergies with Antibiotics against Gram-Positive Bacteria
3.4. Tannic Acid and Nerol Synergies with Antibiotics against Gram-Negative Bacteria
3.5. Future Perspectives
4. Materials and Methods
4.1. Antimicrobial Compounds
4.2. Microorganisms
4.3. Determination of the Antimicrobial Activity: Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.4. Determination of the Natural Product-ABX Combination Behavior
4.4.1. Checkboard Assays and Fractional Inhibitory Concentration Index
4.4.2. Growth Kinetic Tests
4.4.3. Isobolograms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Keck, J.M.; Viteri, A.; Schultz, J.; Fong, R.; Whitman, C.; Poush, M.; Martin, M. New Agents Are Coming, and So Is the Resistance. Antibiotics 2024, 13, 648. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, D. Ethnomedicine: A Source of Complementary Therapeutics; Research Signpost: Kerala, India, 2019. [Google Scholar]
- Lupia, C.; Castagna, F.; Bava, R.; Naturale, M.D.; Zicarelli, L.; Marrelli, M.; Statti, G.; Tilocca, B.; Roncada, P.; Britti, D.; et al. Use of Essential Oils to Counteract the Phenomena of Antimicrobial Resistance in Livestock Species. Antibiotics 2024, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Bezerra dos Santos, A.T.; da Silva Araujo, T.F.; Nascimento da Silva, L.C.; da Silva, C.B.; Morais de Oliveira, A.F.; Araujo, J.M.; dos Santos Correia, M.T.; de Menezes Lima, V.L. Organic extracts from Indigofera suffruticosa leaves have antimicrobial and synergic actions with erythromycin against Staphylococcus aureus. Front. Microbiol. 2015, 6, 13. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef]
- Ahmad, F.; Alsayegh, A.A.; Ahmad, F.A.; Akhtar, S.; Alavudeen, S.S.; Bantun, F.; Wahab, S.; Ahmed, A.; Ali, M.; Elbendary, E.Y.; et al. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024, 10, e25607. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Chan, B.C.L.; Han, X.Q.; Lui, S.L.; Wong, C.W.; Wang, T.B.Y.; Cheung, D.W.S.; Cheng, S.W.; Ip, M.; Han, S.Q.B.; Yang, X.-S.; et al. Combating against methicillin-resistant Staphylococcus aureus—Two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. J. Pharm. Pharmacol. 2015, 67, 107–116. [Google Scholar] [CrossRef]
- Ferrando, N.; Pino-Otín, M.R.; Ballestero, D.; Lorca, G.; Terrado, E.M.; Langa, E. Enhancing Commercial Antibiotics with Trans-Cinnamaldehyde in Gram-Positive and Gram-Negative Bacteria: An In Vitro Approach. Plants 2024, 13, 192. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.-J.; Yang, H.-F. Synergy against extensively drug-resistant Acinetobacter baumannii in vitro by two old antibiotics: Colistin and chloramphenicol. Int. J. Antimicrob. Agents 2017, 49, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Assane, I.M.; Santos-Filho, N.A.; de Sousa, E.L.; de Arruda Brasil, M.C.O.; Cilli, E.M.; Pilarski, F. Cytotoxicity and antimicrobial activity of synthetic peptides alone or in combination with conventional antimicrobials against fish pathogenic bacteria. J. Appl. Microbiol. 2021, 131, 1762–1774. [Google Scholar] [CrossRef]
- Drioiche, A.; Baammi, S.; Zibouh, K.; Al Kamaly, O.; Alnakhli, A.M.; Remok, F.; Saidi, S.; Amaiach, R.; El Makhoukhi, F.; Elomri, A.; et al. A Study of the Synergistic Effects of Essential Oils from Origanum compactum and Origanum elongatum with Commercial Antibiotics against Highly Prioritized Multidrug-Resistant Bacteria for the World Health Organization. Metabolites 2024, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhang, C.; Cao, Q.; Cai, J.; Chen, H. Synergistic inhibition effects of tea polyphenols as adjuvant of oxytetracycline on Vibrio parahaemolyticus and enhancement of Vibriosis resistance of Exopalaemon carinicauda. Aquac. Res. 2021, 52, 3900–3910. [Google Scholar] [CrossRef]
- Zych, S.; Adaszynska-Skwirzynska, M.; Szewczuk, M.A.; Szczerbinska, D. Interaction between Enrofloxacin and Three Essential Oils (Cinnamon Bark, Clove Bud and Lavender Flower)-A Study on Multidrug-Resistant Escherichia coli Strains Isolated from 1-Day-Old Broiler Chickens. Int. J. Mol. Sci. 2024, 25, 5220. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Ferrando, N.; Ballestero, D.; Langa, E.; Roig, F.J.; Terrado, E.M. Impact of eight widely consumed antibiotics on the growth and physiological profile of natural soil microbial communities. Chemosphere 2022, 305, 135473. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Valenzuela, A.; Gan, C.; Lorca, G.; Ferrando, N.; Langa, E.; Ballestero, D. Ecotoxicity of five veterinary antibiotics on indicator organisms and water and soil communities. Ecotoxicol. Environ. Saf. 2024, 274, 116185. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; American Society for Microbiology: Washington, DC, USA, 2018; pp. 521–547. [Google Scholar]
- Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Daud, N.M.; Putra, N.R.; Jamaludin, R.; Norodin, N.S.M.; Sarkawi, N.S.; Hamzah, M.H.S.; Nasir, H.M.; Zaidel, D.N.A.; Yunus, M.A.C.; Salleh, L.M. Valorisation of plant seed as natural bioactive compounds by various extraction methods: A review. Trends Food Sci. Technol. 2021, 119, 201–214. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; da Cruz, J.N.; da Costa, W.A.; Silva, S.G.; Brito, M.D.P.; de Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; de Carvalho Junior, R.N. Chemical Composition, Antimicrobial Properties of Siparuna guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of its Major Chemical Constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Val, J.; Ballestero, D.; Navarro, E.; Sánchez, E.; Mainar, A.M. Impact of Artemisia absinthium hydrolate extracts with nematicidal activity on non-target soil organisms of different trophic levels. Ecotoxicol. Environ. Saf. 2019, 180, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.I.; Yagi, S.; Tzanova, T.; Schohn, H.; Uba, A.I.; Zengin, G. Chemical profile, antiproliferative and antibacterial activities and docking studies of essential oil and hexane fraction of hydrosol from fresh leaf of Plectranthus amboinicus (Lour.) Spreng. Biochem. Syst. Ecol. 2023, 107, 104595. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Gan, C.; Terrado, E.; Sanz, M.A.; Ballestero, D.; Langa, E. Antibiotic properties of Satureja montana L. hydrolate in bacteria and fungus of clinical interest and its impact in non-target environmental microorganisms. Sci. Rep. 2022, 12, 18460. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, M.; Smolka, A.; Proto, M.R.; Barbanti, L.; Gelmini, F.; Napoli, E.; Bellardi, M.G.; Mattarelli, P.; Beretta, G.; Sanguinetti, M.; et al. Is the Antimicrobial Activity of Hydrolates Lower than that of Essential Oils? Antibiotics 2021, 10, 88. [Google Scholar] [CrossRef]
- Api, A.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.; Cancellieri, M.; Chon, H.; Dagli, M.; Date, M.; Dekant, W.; et al. RIFM fragrance ingredient safety assessment, nerol, CAS Registry Number 106-25-2. Food Chem. Toxicol. 2023, 179, 113859. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef]
- Kasthuri, T.; Swetha, T.K.; Bhaskar, J.P.; Pandian, S.K. Rapid-killing efficacy substantiates the antiseptic property of the synergistic combination of carvacrol and nerol against nosocomial pathogens. Arch. Microbiol. 2022, 204, 590. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, K.; Chen, L.; Yan, R.; Qu, S.; Li, Y.-X.; Liu, M.; Zeng, H.; Tian, J. Activities of Nerol, a natural plant active ingredient, against Candida albicans in vitro and in vivo. Appl. Microbiol. Biotechnol. 2020, 104, 5039–5052. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Lu, Z.; Wang, Y.; Zhang, M.; Wang, X.; Tang, X.; Peng, X.; Zeng, H. Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int. J. Biochem. Cell Biol. 2017, 85, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Miron, D.; Battisti, F.; Silva, F.K.; Lana, A.D.; Pippi, B.; Casanova, B.; Gnoatto, S.; Fuentefria, A.; Mayorga, P.; Schapoval, E.E. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev. Bras. Farm. 2014, 24, 660–667. [Google Scholar] [CrossRef]
- Mihai, A.L.; Popa, M.E. In vitro Activity of Natural Antimicrobial Compounds against Aspergillus Strains. Agric. Agric. Sci. Procedia 2015, 6, 585–592. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Zhou, Z.; Xing, K.; Tessema, A.; Zeng, H.; Tian, J. Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control 2015, 55, 54–61. [Google Scholar] [CrossRef]
- Fajdek-Bieda, A.; Pawlińska, J.; Wróblewska, A.; Łuś, A. Evaluation of the Antimicrobial Activity of Geraniol and Selected Geraniol Transformation Products against Gram-Positive Bacteria. Molecules 2024, 29, 950. [Google Scholar] [CrossRef]
- Coêlho, M.L.; Ferreira, J.H.L.; Júnior, J.P.d.S.; Kaatz, G.W.; Barreto, H.M.; Cavalcante, A.A.d.C.M. Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes. Microb. Pathog. 2016, 99, 173–177. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, W.; Lu, J.; Guo, X.; Xu, J.; Xu, W.; Chi, Y.; Takuya, N.; Wu, H.; Zhao, L. Tannic acid-based metal phenolic networks for bio-applications: A review. J. Mater. Chem. B 2021, 9, 4098–4110. [Google Scholar] [CrossRef]
- Jing, W.; Xiaolan, C.; Yu, C.; Feng, Q.; Haifeng, Y. Pharmacological effects and mechanisms of tannic acid. Biomed. Pharmacother. 2022, 154, 113561. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Wekwejt, M.; Mazur, O.; Zasada, L.; Pałubicka, A.; Olewnik-Kruszkowska, E. The Physicochemical and Antibacterial Properties of Chitosan-Based Materials Modified with Phenolic Acids Irradiated by UVC Light. Int. J. Mol. Sci. 2021, 22, 6472. [Google Scholar] [CrossRef]
- Dong, G.; Liu, H.; Yu, X.; Zhang, X.; Lu, H.; Zhou, T.; Cao, J. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat. Prod. Res. 2017, 32, 2225–2228. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Zhang, W.; Thomas, H.G.; Barish, A.; Berry, S.; Kiel, J.S.; Naren, A.P. A Tannic Acid-Based Medical Food, Cesinex®, Exhibits Broad-Spectrum Antidiarrheal Properties: A Mechanistic and Clinical Study. Dig. Dis. Sci. 2011, 57, 99–108. [Google Scholar] [CrossRef]
- Tintino, S.R.; Oliveira-Tintino, C.D.; Campina, F.F.; Silva, R.L.; Costa, M.D.S.; Menezes, I.R.; Calixto-Júnior, J.T.; Siqueira-Junior, J.P.; Coutinho, H.D.; Leal-Balbino, T.C.; et al. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb. Pathog. 2016, 97, 9–13. [Google Scholar] [CrossRef]
- Kırmusaoğlu, S. Sensitizing of β-lactam resistance by tannic acid in methicillin-resistant S. aureus. World J. Microbiol. Biotechnol. 2019, 35, 57. [Google Scholar] [CrossRef] [PubMed]
- Macia, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef]
- Administration, F.A.D. Food additives permitted for direct addiction to food for human consumption. Vitamin D3 2024, 21, 380. [Google Scholar]
- Štumpf, S.; Hostnik, G.; Primožič, M.; Leitgeb, M.; Salminen, J.-P.; Bren, U. The Effect of Growth Medium Strength on Minimum Inhibitory Concentrations of Tannins and Tannin Extracts against E. coli. Molecules 2020, 25, 2947. [Google Scholar] [CrossRef]
- Verma, A.; Srivastava, R.; Sonar, P.; Yadav, R. Traditional; phytochemical, and biological aspects of Rosa alba L.: A systematic review. Future J. Pharm. Sci. 2020, 6, 114. [Google Scholar] [CrossRef]
- Caprarulo, V.; Giromini, C.; Rossi, L. Review: Chestnut and quebracho tannins in pig nutrition: The effects on performance and intestinal health. Animal 2020, 15, 100064. [Google Scholar] [CrossRef]
- Conidi, C.; Donato, L.; Algieri, C.; Cassano, A. Valorization of chestnut processing by-products: A membrane-assisted green strategy for purifying valuable compounds from shells. J. Clean. Prod. 2022, 378, 134564. [Google Scholar] [CrossRef]
- Bubonja-Sonje, M.; Knezevic, S.; Abram, M. Challenges to antimicrobial susceptibility testing of plant-derived polyphenolic compounds. Arh. Za Hig. Rada I Toksikol.-Arch. Ind. Hyg. Toxicol. 2020, 71, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Schmidt, E.; Stoyanova, A.S.; Denkova, Z.; Nikolova, R.; Geissler, M. Purity, antimicrobial activities and olfactoric evaluations of geraniol/nerol and various of their derivatives. J. Essent. Oil Res. 2007, 19, 288–291. [Google Scholar] [CrossRef]
- Chusri, S.; Villanueva, I.; Voravuthikunchai, S.P.; Davies, J. Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J. Antimicrob. Chemother. 2009, 64, 1203–1211. [Google Scholar] [CrossRef]
- Mauriello, E.; Ferrari, G.; Donsì, F. Effect of formulation on properties, stability, carvacrol release and antimicrobial activity of carvacrol emulsions. Colloids Surf. B Biointerfaces 2020, 197, 111424. [Google Scholar] [CrossRef]
- Dabbaghi, A.; Kabiri, K.; Ramazani, A.; Zohuriaan-Mehr, M.J.; Jahandideh, A. Synthesis of bio-based internal and external cross-linkers based on tannic acid for preparation of antibacterial superabsorbents. Polym. Adv. Technol. 2019, 30, 2894–2905. [Google Scholar] [CrossRef]
- Bozi, L.H.; Campos, J.C.; Zambelli, V.O.; Ferreira, N.D.; Ferreira, J.C. Mitochondrially-targeted treatment strategies. Mol. Asp. Med. 2019, 71, 100836. [Google Scholar] [CrossRef] [PubMed]
- Theisen, L.L.; Erdelmeier, C.A.J.; Spoden, G.A.; Boukhallouk, F.; Sausy, A.; Florin, L.; Muller, C.P. Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus. PLoS ONE 2014, 9, e88062. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Negi, P.S. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat. Prod. Res. 2018, 32, 1189–1192. [Google Scholar] [CrossRef]
- Obreque-Slier, E.; López-Solís, R.; Peña-Neira, A. Differential interaction of seed polyphenols from grapes collected at different maturity stages with the protein fraction of saliva. Int. J. Food Sci. Technol. 2012, 47, 1918–1924. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Z.; Liu, Y.; Chen, X.; Wang, S.; Yang, H. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against Staphylococcus aureus. Front. Pharmacol. 2023, 14, 1178177. [Google Scholar] [CrossRef]
- Hui, X.; Yan, G.; Tian, F.-L.; Li, H.; Gao, W.-Y. Antimicrobial mechanism of the major active essential oil compounds and their structure–activity relationship. Med. Chem. Res. 2017, 26, 442–449. [Google Scholar] [CrossRef]
- Nowotarska, S.W.; Nowotarski, K.J.; Friedman, M.; Situ, C. Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers. Molecules 2014, 19, 7497–7515. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Fujii, K.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother. 2001, 48, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Rúa, J.; Fernández-Álvarez, L.; Gutiérrez-Larraínzar, M.; del Valle, P.; de Arriaga, D.; García-Armesto, M.R. Screening of Phenolic Antioxidants for Their Inhibitory Activity Against Foodborne Staphylococcus aureus Strains. Foodborne Pathog. Dis. 2010, 7, 695–705. [Google Scholar] [CrossRef]
- Payne, D.E.; Martin, N.R.; Parzych, K.R.; Rickard, A.H.; Underwood, A.; Boles, B.R. Tannic Acid Inhibits Staphylococcus aureus Surface Colonization in an IsaA-Dependent Manner. Infect. Immun. 2013, 81, 496–504. [Google Scholar] [CrossRef]
- Ferrer, M.; Mendez-Garcia, C.; Rojo, D.; Barbas, C.; Moya, A. Antibiotic use and microbiome function. Biochem. Pharmacol. 2017, 134, 114–126. [Google Scholar] [CrossRef]
- Idrissi, F.E.J.; Ouchbani, T.; Ouchbani, S.; El Hourch, A.; Maltouf, A.F.; Essassi, E.M. Comparative Chemical Composition and Antimicrobial Activity of Essential Oil and Organic Extracts of Senecio leucanthemifolius Poiret. J. Essent. Oil Bear. Plants 2015, 18, 29–35. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef]
- Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal Catechins Damage the Lipid Bilayer. Biochim. Biophys. Acta 1993, 1147, 132–136. [Google Scholar] [CrossRef]
- Smith, A.H.; Mackie, R.I. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl. Environ. Microbiol. 2004, 70, 1104–1115. [Google Scholar] [CrossRef] [PubMed]
- Auer, G.K.; Weibel, D.B. Bacterial Cell Mechanics. Biochemistry 2017, 56, 3710–3724. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-T.; Lu, Z.; Chou, M. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 1998, 36, 1053–1060. [Google Scholar] [CrossRef]
- David, L. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Naik, V.; Mahajan, G. Quorum Sensing: A Non-conventional Target for Antibiotic Discovery. Nat. Prod. Commun. 2013, 8, 1455–1458. [Google Scholar] [CrossRef]
- Calvo, J.; Martinez-Martinez, L. Antimicrobial mechanisms of action. Enfermedades Infecc. Microbiol. Clin. 2009, 27, 44–52. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Randall, L.P.; Cooles, S.W.; Osborn, M.K.; Piddock, L.J.V.; Woodward, M.J. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 2004, 53, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Noel, D.J.; Keevil, C.W.; Wilks, S.A. Synergism versus Additivity: Defining the Interactions between Common Disinfectants. mBio 2021, 12, e0228121. [Google Scholar] [CrossRef]
- Yang, S.-K.; Yusoff, K.; Mai, C.-W.; Lim, W.-M.; Yap, W.-S.; Lim, S.-H.E.; Lai, K.-S. Additivity vs Synergism: Investigation of the Additive Interaction of Cinnamon Bark Oil and Meropenem in Combinatory Therapy. Molecules 2017, 22, 1733. [Google Scholar] [CrossRef]
- Si, H.; Hu, J.; Liu, Z.; Zeng, Z.-L. Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 2008, 53, 190–194. [Google Scholar] [CrossRef]
- van Vuuren, S.; Suliman, S.; Viljoen, A. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009, 48, 440–446. [Google Scholar] [CrossRef]
- Chovanová, R.; Mikulášová, M.; Vaverková, S. In Vitro Antibacterial and Antibiotic Resistance Modifying Effect of Bioactive Plant Extracts on Methicillin-Resistant Staphylococcus epidermidis. Int. J. Microbiol. 2013, 2013, 760969. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Lim, S.H.E.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef]
- Lederer, S.; Dijkstra, T.M.H.; Heskes, T. Additive Dose Response Models: Defining Synergy. Front. Pharmacol. 2019, 10, 1384. [Google Scholar] [CrossRef]
- Sharma, A.; Anurag; Kaur, J.; Kesharwani, A.; Parihar, V.K. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med. Chem. 2024, 20, 576–596. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Encinar, J.A.; Rodríguez-Díaz, J.C.; Micol, V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr. Med. Chem. 2020, 27, 2576–2606. [Google Scholar] [CrossRef]
- Food and Drug Administration. Synthetic Flavoring Substances and Adjuvants; Food and Drug Administration: Rockville, MD, USA, 2024; Volume 21. [Google Scholar]
- European Food Safety Authority. Food Additives. 2024. Available online: https://www.efsa.europa.eu/en/topics/topic/food-additives (accessed on 19 March 2024).
- Gan, C.; Langa, E.; Valenzuela, A.; Ballestero, D.; Pino-Otín, M.R. Synergistic Activity of Thymol with Commercial Antibiotics against Critical and High WHO Priority Pathogenic Bacteria. Plants 2023, 12, 1868. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC; European Union: Maastricht, The Netherlands, 2019. [Google Scholar]
- Teuber, M. Veterinary use and antibiotic resistance. Curr. Opin. Microbiol. 2001, 4, 493–499. [Google Scholar] [CrossRef]
- Myszka, K.; Schmidt, M.T.; Majcher, M.; Juzwa, W.; Olkowicz, M.; Czaczyk, K. Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. Int. Biodeterior. Biodegrad. 2016, 114, 252–259. [Google Scholar] [CrossRef]
- Du, Y.; Huo, Y.; Yang, Q.; Han, Z.; Hou, L.; Cui, B.; Fan, K.; Qiu, Y.; Chen, Z.; Huang, W.; et al. Ultrasmall iron-gallic acid coordination polymer nanodots with antioxidative neuroprotection for PET/MR imaging-guided ischemia stroke therapy. Exploration 2023, 3, 20220041. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Duan, Y.; Li, Y.; Gu, Y.; Zhou, L.; Xiao, Z.; Yu, X.; Cai, Y.; Cheng, E.; Liu, Q.; et al. Cascade loop of ferroptosis induction and immunotherapy based on metal-phenolic networks for combined therapy of colorectal cancer. Exploration 2024. [Google Scholar] [CrossRef]
- Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Czupryn, M.; Antos-Bielska, M.; Szemraj, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid-modified silver nanoparticles for wound healing: The importance of size. Int. J. Nanomed. 2018, 13, 991–1007. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, S.; Moon, H.C.; Seok-Pyo, H.; Kim, J.Y.; Hong, S.-P.; Lee, B.S.; Kang, E.; Lee, J.; Ryu, D.H.; et al. Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: Applications to shoe insoles and fruits. Sci. Rep. 2017, 7, 6980. [Google Scholar] [CrossRef]
- Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Pajak, B.; Slonska, A.; Cymerys, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing. Int. J. Nanomed. 2020, 15, 4969–4990. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2013, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef]
- UNE-EN ISO 20776-1; Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 1: Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. UNE: Madrid, Spain, 2021.
- CLSI M100-S15; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; p. 418.
- Adrar, N.; Oukil, N.; Bedjou, F. Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Ind. Crop. Prod. 2016, 88, 112–119. [Google Scholar] [CrossRef]
- Kuaté, C.R.T.; Ndezo, B.B.; Dzoyem, J.P. Synergistic Antibiofilm Effect of Thymol and Piperine in Combination with Aminoglycosides Antibiotics against Four Salmonella enterica Serovars. Evid.-Based Complement. Altern. Med. 2021, 2021, 1567017. [Google Scholar]
- Antimicrobial, S.E.C. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar]
- Hu, Z.-Q.; Zhao, W.-H.; Asano, N.; Yoda, Y.; Hara, Y.; Shimamura, T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 558–560. [Google Scholar]
- Novy, P.; Rondevaldova, J.; Kourimska, L.; Kokoska, L. Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant Staphylococcus aureus strains in vitro. Phytomedicine 2013, 20, 432–435. [Google Scholar] [CrossRef]
- Garrido-Suárez, B.B.; Garrido, G.; Menéndez, A.B.; Merino, N.; Valdés, O.; Delgado-Hernández, R.; Granados-Soto, V. Synergistic interaction between amitriptyline and paracetamol in persistent and neuropathic pain models: An isobolografic analysis. Neurochem. Int. 2021, 150, 105160. [Google Scholar] [CrossRef]
- Ndip, R.A.; Hanna, J.N.; Mbah, J.A.; Ghogomu, S.M.; Ngemenya, M.N. In Vitro Synergistic Activity of Combinations of Tetrahydroisoquinolines and Treatment Antibiotics against Multidrug-Resistant Salmonella. Adv. Pharmacol. Pharm. Sci. 2023, 2023, 6142810. [Google Scholar] [CrossRef]
Microorganism | Nerol | Tannic Acid | ||||
---|---|---|---|---|---|---|
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
Escherichia coli (ATCC 25922) | 2000 | 2000 | 1 | >2600 | >2600 | - |
Salmonella enterica (ATCC 13311) | 500 | 500 | 1 | >2600 | >2600 | - |
Klebsiella pneumoniae (C6) | 1000 | 1000 | 1 | >1387.50 | >1387.50 | - |
Serratia marcescens (ATCC 13880) | >1000 | >1000 | - | >2600 | >2600 | - |
Proteus mirabilis (ATCC 35659) | - | - | - | - | - | - |
Pseudomona aeruginosa (ATCC 27853) | >1000 | >1000 | - | >2600 | >2600 | - |
Klebsiella aerogenes (ATCC 13048) | 2000 | 2000 | 1 | >5200 | >5200 | - |
Acinetobacter baumannii (ATCC 19606) | 1000 | 1000 | 1 | 187.50 | >187.50 | >1 |
Bacillus subtilis (ATCC 6633) | 500 | >1000 | >1 | >3570 | >3570 | - |
Staphylococcus aureus (ATCC 9144) | 1000 | 1000 | 1 | 325 | >325 | >1 |
Enterococcus faecalis (ATCC 19433) | 1000 | 1000 | 1 | 650 | 650 | 1 |
Streptococcus agalactiae (ATCC 12386) | 1000 | 500 | 2 | 320 | >320 | >1 |
Pasteurella aerogenes (ATCC 27883) | 500 | >500 | >1 | 162.50 | >325 | - |
Candida albicans (ATCC 10231) | 1000 | 1000 | 1 | 1800 | >1800 | >1 |
ABX | NE in Combination | ABX in Combination | FIC | Interpretation | ABX Reduction (%) | NP Reduction (%) | |
---|---|---|---|---|---|---|---|
Escherichia coli (ATCC 25922) | STM | 250 | 4.69 | 0.62 | Additivity | 50.00 | 75.00 |
GTM | 31.25 | 12.50 | 1.02 | Additivity | 0 | 98.44 | |
ERY | 1000 | 150 | 1 | Additivity | 50.00 | 50.00 | |
Salmonella enterica (ATCC 13311) | AMP | 250 | 7.81 | 1 | Additivity | 50.00 | 50.00 |
AMO | 15.62 | 31.25 | 0.53 | Additivity | 50.00 | 96.87 | |
STM | 125 | 1.17 | 0.50 | Synergy | 75.00 | 75.00 | |
ERY | 500 | 1.17 | 1.03 | Additivity | 96.87 | 0 | |
Klebsiella pneumoniae (C6) | AMP | 15.62 | 62.50 | 1.02 | Additivity | 0 | 98.44 |
AMO | 15.62 | 250 | 1.02 | Additivity | 0 | 98.44 | |
STM | 125 | 4.69 | 0.62 | Additivity | 50 | 87.50 | |
ERY | 15.62 | 18.75 | 1.02 | Additivity | 0 | 98.44 | |
Klebsiella aerogenes (ATCC 13048) | GTM | 31.25 | 6.25 | 1.02 | Additivity | 0 | 98.44 |
ERY | 31.25 | 75 | 1.02 | Additivity | 0 | 98.44 | |
CHL | 31.25 | 3.91 | 1.02 | Additivity | 0 | 98.44 | |
STM | 1000 | 0.78 | 2.50 | Additivity | 50 | 50 | |
Acinetobacter baumannii (ATCC 19606) | AMP | 500 | 62.50 | 0.75 | Additivity | 50 | 75 |
AMO | 15.62 | 125 | 1.02 | Additivity | 0 | 98.44 | |
STM | 62.50 | 25 | 0.62 | Additivity | 50 | 87.50 | |
ERY | 125 | 3.12 | 0.75 | Additivity | 50 | 75 | |
CHL | 250 | 31.25 | 0.75 | Additivity | 75 | 50 | |
Bacillus subtilis (ATCC 6633) | STM | 62.50 | 3.12 | 0.56 | Additivity | 50 | 93.75 |
GTM | 125 | 0.78 | 0.37 | Synergy | 87.50 | 87.50 | |
CHL | 500 | 3.91 | 1.50 | Additivity | 0 | 50 | |
Staphylococcus aureus (ATCC 9144) | STM | 500 | 75 | 1.50 | Additivity | 0 | 50 |
GTM | 500 | 50 | 1.50 | Additivity | 0 | 50 | |
CHL | 500 | 7.50 | 1.50 | Additivity | 0 | 50 | |
Enterococcus faecalis (ATCC 19433) | STM | 500 | 1.56 | 0.75 | Additivity | 75 | 50 |
AMP | 500 | 15.62 | 0.75 | Additivity | 75 | 50 | |
ERY | 500 | 6.25 | 1.50 | Additivity | 0 | 50 | |
Streptococcus agalactiae (ATCC 12386) | AMO | 500 | 7.81 | 1.02 | Additivity | 50 | 50 |
STM | 250 | 31.25 | 0.50 | Synergy | 75 | 75 | |
GTM | 250 | 6.25 | 0.50 | Synergy | 75 | 75 | |
Pasteurella aerogenes (ATCC 27883) | STM | 500 | 3.12 | 0.62 | Additivity | 87.50 | 50 |
TC | 250 | 1.56 | 0.75 | Additivity | 50 | 75 | |
GTM | 250 | 3.91 | 0.75 | Additivity | 50 | 75 |
Microorganism | ABX | TA in Combination | ABX in Combination | FIC | Interpretation | ABX Reduction (%) | NP Reduction (%) |
---|---|---|---|---|---|---|---|
Staphylococcus aureus (ATCC 9144) | STM | 40.62 | 25 | 0.75 | Additivity | 50 | 87.50 |
CHL | 40.62 | 3.75 | 0.62 | Additivity | 50 | 87.50 | |
Acinetobacter baumannii (ATCC 19606) | STM | 46.87 | 37.50 | 0.75 | Additivity | 50 | 75 |
CHL | 46.87 | 3.91 | 0.31 | Synergy | 93.75 | 75 | |
AMP | 46.87 | 7.81 | 0.31 | Synergy | 93.75 | 75 | |
ERY | 23.44 | 1.95 | 0.50 | Synergy | 75 | 87.50 | |
PEN | 23.44 | 250 | 1 | Additivity | 50 | 75 | |
Streptococcus agalactiae (ATCC 12386) | STM | 81.25 | 31.25 | 0.50 | Synergy | 75 | 75 |
CHL | 40.62 | 3.12 | 0.37 | Synergy | 75 | 87.50 | |
GTM | 31.25 | 25 | 1.03 | Additivity | 0 | 93.75 | |
Pasteurella aerogenes (ATCC 27883) | STM | 40.62 | 3.12 | 0.62 | Additivity | 87.50 | 50 |
CHL | 40.62 | 1 | 0.37 | Synergy | 87.50 | 75 | |
GTM | 40.62 | 12 | 1.25 | Additivity | 0 | 75 |
Antibiotic/Natural Product | Abbreviation | Chemical Family | CAS-Number | Supplier | Purity | Molecular Weight (g/mol) | Range of Concentrations Tested (µg/mL) |
---|---|---|---|---|---|---|---|
Gentamycin | GTM | Aminoglycosides | 1403-66-3 | ACO-FARMA | ≥97.0% | 447.60 | 250—0.19 |
Streptomycin | STM | 57-92-1 | ≥97.0% | 581.6 | 400—0.79 | ||
Chloramphenicol | CHL | Amphenicols | 56-75-7 | 97.50% | 323.1 | 250—0.23 | |
Amoxicillin | AMO | Β-Lactams | 26787-78-0 | SIGMA-ALDRICH | 96–102% | 365.4 | 500—1.95 |
Ampicillin | AMP | 69-53-4 | ≥90.00% | 394.4 | 500—7.81 | ||
Penicillin G | PEN | 69-57-8 | 96-102% | 356.4 | 1000—7.81 | ||
Erythromycin | ERY | Macrolides | 114-07-8 | ACO-FARMA | 95.90% | 733.9 | 600—1.17 |
Tetracycline | TC | Tetracyclines | 64-75-5 | 99.20% | 444.4 | 100—1.56 | |
Tannic Acid | TA | Polyphenols | 1401-55-4 | 99.00% | 1701.2 | 2600—10.16 | |
Nerol | NE | Monoterpenes | 106-25-2 | 99.00% | 154.2 | 2000—15.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorca, G.; Ballestero, D.; Langa, E.; Pino-Otín, M.R. Enhancing Antibiotic Efficacy with Natural Compounds: Synergistic Activity of Tannic Acid and Nerol with Commercial Antibiotics against Pathogenic Bacteria. Plants 2024, 13, 2717. https://doi.org/10.3390/plants13192717
Lorca G, Ballestero D, Langa E, Pino-Otín MR. Enhancing Antibiotic Efficacy with Natural Compounds: Synergistic Activity of Tannic Acid and Nerol with Commercial Antibiotics against Pathogenic Bacteria. Plants. 2024; 13(19):2717. https://doi.org/10.3390/plants13192717
Chicago/Turabian StyleLorca, Guillermo, Diego Ballestero, Elisa Langa, and María Rosa Pino-Otín. 2024. "Enhancing Antibiotic Efficacy with Natural Compounds: Synergistic Activity of Tannic Acid and Nerol with Commercial Antibiotics against Pathogenic Bacteria" Plants 13, no. 19: 2717. https://doi.org/10.3390/plants13192717
APA StyleLorca, G., Ballestero, D., Langa, E., & Pino-Otín, M. R. (2024). Enhancing Antibiotic Efficacy with Natural Compounds: Synergistic Activity of Tannic Acid and Nerol with Commercial Antibiotics against Pathogenic Bacteria. Plants, 13(19), 2717. https://doi.org/10.3390/plants13192717