The Influence of Water Deficit on Dehydrin Content in Callus Culture Cells of Scots Pine
Abstract
:1. Introduction
2. Results
2.1. Growth Characteristics of Callus Cultures
2.2. Physiological and Biochemical Parameters of Callus Cultures under Control and Stress Conditions
2.3. The Impact of Water Deficit on DHN Gene Activity and DHN Protein Accumulation
3. Discussion
4. Materials and Methods
4.1. Plant Material, Callus Culture Initiation, Cultivation, and Stress Conditions
4.2. Callus Cultures’ Growth Characteristics
4.3. Callus Cultures’ Biochemical Characteristics
4.4. RNA Isolation and RT-qPCR
4.5. DHN Detection
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087820. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Aziz, M.; Sabeem, M.; Mullath, S.K.; Brini, F.; Masmoudi, K. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021, 11, 1662. [Google Scholar] [CrossRef]
- Hsiao, A.-S. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int. J. Mol. Sci. 2024, 25, 1178. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, X.; Zhang, L. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. Int. J. Mol. Sci. 2018, 19, 3420. [Google Scholar] [CrossRef] [PubMed]
- Szlachtowska, Z.; Rurek, M. Plant dehydrins and dehydrin-like proteins: Characterization and participation in abiotic stress response. Front. Plant Sci. 2023, 14, 1213188. [Google Scholar] [CrossRef]
- Atkinson, J.; Clarke, M.W.; Warnica, J.M.; Boddington, K.F.; Graether, S.P. Structure of an Intrinsically Disordered Stress Protein Alone and Bound to a Membrane Surface. Biophys. J. 2016, 111, 480–491. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Nisha, N.; Singh, K.; Verma, R.; Gupta, R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. Plant Cell Rep. 2022, 415, 519–533. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Li, Y.; Zhang, L.; Wang, B. Heterologous overexpression of Tawzy1-2 gene encoding an SK3 dehydrin enhances multiple abiotic stress tolerance in Escherichia coli and Nicotiania benthamiana. Planta 2024, 259, 39. [Google Scholar] [CrossRef]
- Vaseva, I.I.; Anders, I.; Feller, U. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. J. Plant Physiol. 2014, 15, 213–224. [Google Scholar] [CrossRef]
- Dong, C.; Yang, M.; Wang, H.; Mi, J. Identification and expression analyses of two lotus (Nelumbo nucifera) dehydrin genes in response to adverse temperatures, ABA and IAA treatments. Biologia 2017, 72, 745–752. [Google Scholar] [CrossRef]
- Bae, E.K.; Lee, H.; Lee, J.S.; Noh, E.W. Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep. 2009, 42, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Baldi, P.; La Porta, N. Toward the Genetic Improvement of Drought Tolerance in Conifers: An Integrated Approach. Forests 2022, 13, 2016. [Google Scholar] [CrossRef]
- Moran, E.; Lauder, J.; Musser, C.; Stathos, A.; Shu, M. The genetics of drought tolerance in conifers. New Phytol. 2017, 216, 1034–1048. [Google Scholar] [CrossRef]
- Perdiguero, P.; Barbero, M.C.; Cervera, M.T.; Soto, A.; Collada, C. Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. Planta 2012, 236, 1863–1874. [Google Scholar] [CrossRef]
- Velasco-Conde, T.; Yakovlev, I.; Majada, J.P.; Aranda, I.; Johnsen, Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes 2012, 8, 957–973. [Google Scholar] [CrossRef]
- Lorenz, W.W.; Alba, R.; Yu, Y.S.; Bordeaux, J.M.; Simoes, M.; Dean, J.F.D. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genom. 2011, 12, 264. [Google Scholar] [CrossRef]
- Korotaeva, N.E.; Oskorbina, M.V.; Kopytova, L.D.; Suvorova, G.G.; Borovskii, G.B.; Voinikov, V.K. Variations in the content of stress proteins in the needles of common pine (Pinus sylvestris L.) within an annual cycle. J. For. Res. 2012, 17, 1789–1797. [Google Scholar] [CrossRef]
- Korotaeva, N.; Romanenko, A.; Suvorova, G.G.; Ivanova, M.V.; Lomovatskaya, L.; Borovskii, G.G.; Voinikov, V.K. Seasonal changes in the content of dehydrins in mesophyll cells of common pine needles. Photosynth. Res. 2015, 124, 159–169. [Google Scholar] [CrossRef]
- Tatarinova, T.D.; Perk, A.A.; Bubyakina, V.V.; Vasilieva, I.V.; Ponomarev, A.G.; Maximov, T. Dehydrin stress proteins in Pinus sylvestris L. needles under conditions of extreme climate of Yakutia. Dokl. Biochem. Biophys. 2017, 473, 98–101. [Google Scholar] [CrossRef]
- Muilu-Mäkelä, R.; Vuosku, J.; Läärä, E.; Saarinen, M.; Heiskanen, J.; Häggman, H.; Sarjala, T. Water availability influences morphology, mycorrhizal associations, PSII efficiency and polyamine metabolism at early growth phase of Scots pine seedlings. Plant Physiol. Biochem. 2015, 88, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, S.; Vuosku, J.; Pyhäjärvi, T. Atlas of tissue-specific and tissue-preferential gene expression in ecologically and economically significant conifer Pinus sylvestris. PeerJ 2021, 9, 11781. [Google Scholar] [CrossRef]
- Joosen, R.V.; Lammers, M.; Balk, P.A.; Brønnum, P.; Konings, M.C.; Perks, M.; Stattin, E.; van Wordragen, M.F.; van der Geest, A.L. Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiol. 2006, 26, 1297–2313. [Google Scholar] [CrossRef]
- Wachowiak, W.; Balk, P.A.; Savolainen, O. Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genet. Genomes 2009, 5, 117–132. [Google Scholar] [CrossRef]
- Kartashov, A.V.; Zlobin, I.E.; Pashkovskiy, P.P.; Pojidaeva, E.S.; Ivanov, Y.V.; Mamaeva, A.S.; Fesenko, I.A.; Kuznetsov, V.V. Quantitative analysis of differential dehydrin regulation in pine and spruce seedlings under water deficit. Plant Physiol. Biochem. 2021, 162, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Pucciariello, C.; Banti, V.; Perata, P. ROS signaling as common element in low oxygen and heat stresses. Plant Physiol. Biochem. 2012, 59, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Mitsuda, N.; Koyama, T.; Hiratsu, K.; Kojima, M.; Arai, T.; Inoue, Y.; Seki, M.; Sakakibara, H.; Sugimoto, K.; et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 2011, 21, 508–514. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 1999, 19, 1720–1730. [Google Scholar] [CrossRef]
- Schween, G.; Schwenkel, H.-G. Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula ssp. Plant Cell Tissue Organ Cult. 2003, 72, 53–61. [Google Scholar] [CrossRef]
- Mostafa, H.H.A.; Wang, H.; Song, J.; Li, X. Effects of genotypes and explants on garlic callus production and endogenous hormones. Sci. Rep. 2020, 10, 4867. [Google Scholar] [CrossRef] [PubMed]
- Khaliluev, M.R.; Bogoutdinova, L.R.; Baranova, G.B.; Baranova, E.N.; Kharchenko, P.N.; Dolgov, S.V. Influence of genotype, explant type, and component of culture medium on in vitro callus induction and shoot organogenesis of tomato (Solanum lycopersicum L.). Biol. Bull. 2014, 41, 512–521. [Google Scholar] [CrossRef]
- Abdullah, M.; Sliwinska, E.; Góralski, G.; Latocha, P.; Tuleja, M.; Widyna, P.; Popielarska-Konieczna, M. Effect of medium composition, genotype and age of explant on the regeneration of hexaploid plants from endosperm culture of tetraploid kiwiberry (Actinidia arguta). Plant Cell Tissue Organ Cult. 2021, 147, 569–582. [Google Scholar] [CrossRef]
- Tuchin, S.V. The molecular characteristics of adaptivity of wheat callus cultures. Annu. Wheat Newsl. 1998, 44, 185. [Google Scholar]
- Sacu, M.; Aktas, L.Y.; Bayraktar, M.; Gurel, A. Growth and antioxidant defence in hypocotyl-derived calli of two cotton cultivars with contrasting salt tolerance. Plant Cell Tissue Organ Cult. 2023, 154, 297–309. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Y.; Ikeuchi, M.; Jiao, Y.; Prasad, K.; Su, Y.H.; Xiao, J.; Xu, L.; Yang, W.; Zhao, Z.; et al. Plant regeneration in the new era: From molecular mechanisms to biotechnology applications. Sci. China Life Sci. 2024, 67, 1338–1367. [Google Scholar] [CrossRef]
- Kruglova, N.N.; Seldimirova, O.A.; Zinatullina, A. In vitro Callus as a Model System for the Study of Plant Stress-Resistance to Abiotic Factors (on the Example of Cereals). Biol. Bull. Rev. 2018, 8, 518–526. [Google Scholar] [CrossRef]
- Sen, A. Oxidative stress studies in plant tissue culture. In Biochemistry, Genetics and Molecular Biology “Antioxidant Enzyme”; ElMissiry, M.A., Ed.; World’s Largest Science, Technology & Medicine Open Access Book Publisher (INTECH): London, UK, 2012; pp. 59–88. [Google Scholar]
- Baniulis, D.; Sirgėdienė, M.; Haimi, P.; Tamošiūnė, I.; Danusevičius, D. Constitutive and Cold Acclimation-Regulated Protein Expression Profiles of Scots Pine Seedlings Reveal Potential for Adaptive Capacity of Geographically Distant Populations. Forests 2020, 11, 89. [Google Scholar] [CrossRef]
- de María, N.; Guevara, M.Á.; Perdiguero, P.; Vélez, M.D.; Cabezas, J.A.; López-Hinojosa, M.; Li, Z.; Díaz, L.M.; Pizarro, A.; Mancha, J.A.; et al. Molecular study of drought response in the Mediterranean conifer Pinus pinaster Ait.: Differential transcriptomic profiling reveals constitutive water deficit-independent drought tolerance mechanisms. Ecol. Evol. 2020, 10, 9788–9807. [Google Scholar] [CrossRef]
- Newton, R.J.; Sen, S.; Puryear, J.D. Free proline changes in Pinus taeda L. callus in response to drought stress. Tree Physiol. 1986, 1, 325–332. [Google Scholar] [CrossRef]
- Murashige, T.; Scoog, F. A revised medium for rapid growth and bioassays with tobacoo tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Amineva, E.Y.; Gureev, A.; Tabatskaya, T.; Mashkina, O.S.; Popov, V.N. Genotypic variability of Pinus sylvestris L. on the drought-resistance attribute. Vavilov J. Genet. Breed. 2019, 23, 15–23. [Google Scholar] [CrossRef]
- Towili, L.E.; Mazur, P. Studies on Reduction of 2,3,5-Triphenyltetrazolium Chloride as a Viability As- say for Plant Tissue Cultures. Can. J. Bot. 1975, 53, 1097–1102. [Google Scholar] [CrossRef]
- Tarasenko, V.I.; Garnik, E.Y.; Shmakov, V.N.; Konstantinov, Y.M. Modified alternative oxidase expression results in different reactive oxygen species contents in Arabidopsis cell culture but not in whole plants. Biol. Plant 2012, 56, 635–640. [Google Scholar] [CrossRef]
- Myouga, F.; Hosoda, C.; Umezawa, T.; Iizumi, H.; Kuromori, T.; Motohashi, R.; Shono, Y.; Nagata, N.; Ikeuchi, M.; Shinozaki, K. A Heterocomplex of Iron Superoxide Dismutases Defends Chloroplast Nucleoids against Oxidative Stress and Is Essential for Chloroplast Development in Arabidopsis. Plant Cell 2008, 20, 3148–3162. [Google Scholar] [CrossRef]
- Ramel, F.; Sulmon, C.; Bogard, M.; Coue, I.; Gouesbet, G. Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 2009, 9, 28. [Google Scholar] [CrossRef]
- Qiu, Z.; Hai, B.; Guo, J.; Li, Y.; Zhang, L. Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol. Biochem. 2016, 101, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Verwoerd, T.C.; Dekker, B.M.; Hoekema, A. A small-scape procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989, 17, 2362. [Google Scholar] [CrossRef]
- Zhu, P.; Ma, Y.; Zhu, L.; Chen, Y.; Li, R.; Ji, K. Selection of Suitable Reference Genes in Pinus massoniana Lamb. Under Different Abiotic Stresses for qPCR Normalization. Forests 2019, 10, 632. [Google Scholar] [CrossRef]
- Gu, Z. Complex Heatmap Visualization. iMeta 2022, 1, e43. [Google Scholar] [CrossRef]
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package Version 0.6.0. 2023. Available online: https://cran.r-project.org/web/packages/ggpubr/index.html (accessed on 1 August 2024).
Number of the Tree | Source of Explant | 15 DAP, mm3 | 30 DAP, mm3 | 45 DAP, mm3 |
---|---|---|---|---|
1 | buds | 60 | 119 | 200 |
branches | 33 | 85 | 179 | |
2 | buds | 55 | 135 | 337 |
branches | 35 | 102 | 148 | |
3 | buds | 132 | 285 | 581 |
branches | 31 | 209 | 832 | |
4 | buds | 93 | 143 | 328 |
branches | 23 | 245 | 324 | |
5 | buds | 25 | 100 | 271 |
branches | 43 | 91 | 290 |
Number of the Tree | Source of Explant | 15–30 DAP | 30–45 DAP | 45–60 DAP |
---|---|---|---|---|
1 | buds | 197 | 167 | 208 |
branches | 261 | 210 | 250 | |
2 | buds | 244 | 250 | 172 |
branches | 293 | 145 | 186 | |
3 | buds | 216 | 204 | 206 |
branches | 674 | 398 | 269 | |
4 | buds | 154 | 230 | 199 |
branches | 1078 | 132 | 255 | |
5 | buds | 400 | 270 | 153 |
branches | 214 | 319 | 185 |
Number of the Tree | Source of Explant | First Detection of Necrotization Areas, Days | Death of the Culture, Days |
---|---|---|---|
1 | buds | 14–35 | 38–84 |
branches | 14–35 | 44–84 | |
2 | buds | 14–35 | 44 |
branches | 23–35 | 44–48 | |
3 | buds | 22–29 | - |
branches | 26–120 | - | |
4 | buds | 22–38 | - |
branches | 50–120 | - | |
5 | buds | 35–38 | - |
branches | 35–120 | - |
Number of the Tree | Source of Explant | Control | 5% PEG | 8% PEG |
---|---|---|---|---|
1 | buds | 153 | 137 | 139 |
branches | 179 | 167 | 142 | |
2 | buds | 145 | 127 | 120 |
branches | 133 | 133 | 132 | |
3 | buds | 173 | 146 | 139 |
branches | 161 | 150 | 137 | |
4 | buds | 156 | 145 | 151 |
branches | 166 | 151 | 145 | |
5 | buds | 173 | 152 | 144 |
branches | 154 | 149 | 135 |
ID | Gene | Forward Primer | Reverse Primer |
---|---|---|---|
GQ339779.1 | ACT-1 | ACGGAGGCACCACTTAACCC | ATCCGTCAGATCACGCCCAG |
JQ969658.1 | DHN1 | TGCCTGAGAGCATTGATGGGA | TTGACCGAACACTCAGGACCC |
EU394116.1 | DHN2 | CAATGCCCAGGTTACGGC | AGCTGTTTGTGCGGTGAAGC |
FJ201358.1 | DHN3 | AAAGCAGTGTTTGCGGTCAGC | TCCATGCTCCTCACCCAAGC |
FJ201392.1 | DHN4 | GGGAAGAAGCCGGGAATGGTA | CTGACCGCCACACTGCTTTC |
AJ512365.1 | DHN6 | GCTGTCACCCTGGTCGTGTA | TCCCGGCAGCTTCTGTTTGA |
AJ512366.1 | DHN7 | ATGGCGGAAGAGCAACAGGA | GCTGACCGCAACACTGCTTT |
AJ512367.1 | DHN8 | ATGGCGGAAGAGCAACAGGA | AGTCCGAGGAGGACCCTGAT |
FJ201521.1 | DHN9 | AAGCACCTGAGCACCAGGAC | GCTTGCTTTCCCTCCTCTTCCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaeva, N.; Shmakov, V.; Bel’kov, V.; Pyatrikas, D.; Moldavskaya, S.; Gorbenko, I. The Influence of Water Deficit on Dehydrin Content in Callus Culture Cells of Scots Pine. Plants 2024, 13, 2752. https://doi.org/10.3390/plants13192752
Korotaeva N, Shmakov V, Bel’kov V, Pyatrikas D, Moldavskaya S, Gorbenko I. The Influence of Water Deficit on Dehydrin Content in Callus Culture Cells of Scots Pine. Plants. 2024; 13(19):2752. https://doi.org/10.3390/plants13192752
Chicago/Turabian StyleKorotaeva, Natalia, Vladimir Shmakov, Vadim Bel’kov, Daria Pyatrikas, Sofia Moldavskaya, and Igor Gorbenko. 2024. "The Influence of Water Deficit on Dehydrin Content in Callus Culture Cells of Scots Pine" Plants 13, no. 19: 2752. https://doi.org/10.3390/plants13192752
APA StyleKorotaeva, N., Shmakov, V., Bel’kov, V., Pyatrikas, D., Moldavskaya, S., & Gorbenko, I. (2024). The Influence of Water Deficit on Dehydrin Content in Callus Culture Cells of Scots Pine. Plants, 13(19), 2752. https://doi.org/10.3390/plants13192752