Species Richness, Abundance, and Vertical Distribution of Epiphytic Bromeliads in Primary Forest and Disturbed Forest
Abstract
:1. Introduction
2. Results
2.1. Abundance, Species Richness, and Vertical Distribution of Bromeliads at Two Study Sites
2.2. Distribution of T. baileyi in Two Forests and on Host Tree Species
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Data Collection
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, I.M.; Tan, H.T.W.; Wee, Y.C.; Ibrahim, A.B.; Chew, P.T.; Corlett, R.T. A study of plant species extinction in Singapore: Lessons for the conservation of tropical biodiversity. Conserv. Biol. 1994, 8, 705–712. [Google Scholar] [CrossRef]
- Wolf, J.H.D. The response of epiphytes to anthropogenic disturbance of pine-oak forest in the highlands of Chiapas, México. Forest Ecol. Manag. 2005, 212, 376–393. [Google Scholar] [CrossRef]
- Pérez-Peña, A.; Krömer, T. ¿Qué pueden aportar los acahuales y las plantaciones de cítricos a la conservación de las epífitas vasculares en Los Tuxtlas, Veracruz? In Avances y Perspectivas en la Investigación de los Bosques Tropicales y sus Alrededores: La Región de Los Tuxtlas; Reynoso, V.H., Coates, R.I., Vázquez-Cruz, M.L., Eds.; Instituto de Biología, Universidad Nacional Autonoma de México: Ciudad de México, Mexico, 2017; pp. 569–580. [Google Scholar]
- Köster, N.; Friedrich, K.; Nieder, J.; Barthlott, W. Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conserv. Biol. 2009, 23, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Hietz-Seifert, U.; Hietz, P.; Guevara, S. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz. Biol. Conserv. 1996, 75, 103–111. [Google Scholar] [CrossRef]
- Larrea, M.L.; Werner, F.A. Response of vascular epiphyte diversity to different land-use intensities in a neotropical montane wet forest. Forest Ecol. Manag. 2010, 260, 1950–1955. [Google Scholar] [CrossRef]
- Krömer, T.; García-Franco, J.G.; Toledo-Aceves, T. Epífitas vasculares como bioindicadoras de la calidad forestal: Impacto antrópico sobre su diversidad y composición. In Bioindicadores: Guardianes de Nuestro Futuro Ambiental; González, C.A., Vallarino, A., Pérez, J.C., Low, A.M., Eds.; Instituto Nacional de Ecología y Cambio Climático (INECC), El Colegio de la Frontera Sur (ECOSUR): Mexico City, Mexico, 2014; pp. 605–623. [Google Scholar]
- Zotz, G.; Weigelt, P.; Kessler, M.; Kreft, H.; Taylor, A. EpiList 1.0: A Global Checklist of Vascular Epiphytes. Ecology 2021, 102, e0332. [Google Scholar] [CrossRef]
- Nadkarni, N.M. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 1984, 16, 249–256. [Google Scholar] [CrossRef]
- Benzing, D.H. Vascular Epiphytes. General Biology and Related Biota; Cambridge University Press: Cambridge, UK, 1990; p. 346. [Google Scholar]
- Hietz, P. Fern adaptations to xeric environments. In Fern Ecology; Mehltreter, K., Walker, L., Sharpe, J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 140–176. [Google Scholar]
- Sutton, S.L.; Whitmore, T.C.; Chadwich, A.C. Tropical Rain Forest: Ecology and Management; Blackwell Scientific Publication: Oxford, UK, 1983; p. 498. [Google Scholar]
- Zotz, G. The systematic distribution of vascular epiphytes-a critical update. Bot. J. Linn. Soc. 2013, 171, 453–481. [Google Scholar] [CrossRef]
- Benzing, D.H. Bromeliaceae. Profile of an Adaptive Radiation; Cambridge University Press: Cambridge, UK, 2000; p. 708. [Google Scholar]
- Rosas-Mejía, M.; Siaz-Torres, S.S.; Arellano-Méndez, L.U.; Torres-Castillo, J.A.; de la Rosa-Manzano, E. Azteca instabilis: First Report of the Ant in the Tropical Dry Forest at Tamaulipas, Mexico. Southwest. Entomol. 2022, 47, 515–518. [Google Scholar] [CrossRef]
- 16 Rusch, A.; Chaplin-Kramer, R.; Gardiner, M.M.; Hawro, V.; Holland, J.; Landis, D.; Thies, C.; Tscharntke, T.; Weisser, W.W.; Winqvist, C.; et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 2016, 221, 198–204. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de México, 1st ed.; Comisión Nacional para el Conocimiento y uso de la Biodiversidad: Tlalpan, Mexico, 2006; p. 504. [Google Scholar]
- González-Elizondo, J. Vegetación de la reserva de la biósfera “La Michilia”, Durango, México. Acta Bot. Mex. 1993, 22, 1–104. [Google Scholar] [CrossRef]
- Carter, V.; Gammon, P.T.; Garret, M. Ecotone dynamics and boundary determination in the Great Dismal Swamp. Ecol. Appl. 1994, 4, 189–203. [Google Scholar] [CrossRef]
- Banner, A.; MacKenzie, M. Riparian Areas: Providing Landscape Habitat Diversity, Part 5 of 7; British Columbia Ministry of Forests: Victoria, BC, Canada, 1998; p. 8. [Google Scholar]
- Espejo-Serna, A.; López-Ferrari, A.R.; Mendoza-Ruiz, A.; García-Cruz, J.; Ceja-Romero, J.; Pérez-García, B. Mexican vascular epiphytes: Richness and distribution. Phytotaxa 2021, 503, 1–124. [Google Scholar] [CrossRef]
- Enríquez-Peña, E.G.; Suzán-Azpiri, H. Estructura poblacional de Taxodium mucronatum en condiciones contrastantes de perturbación en el estado de Querétaro, México. Rev. Mex. Biodivers. 2011, 82, 153–167. [Google Scholar] [CrossRef]
- Canizales-Velázquez, P.A.; Alanís-Rodríguez, E.; García-García, S.A.; Holguín-Estrada, V.A.; Collantes-Chávez-Costa, A. Estructura y diversidad arbórea de un bosque de galería urbano en el río Camachito, Noreste de México. Polibotánica 2021, 51, 91–105. [Google Scholar] [CrossRef]
- Vergara-Rodríguez, D.; Mathieu, G.; Samain, M.-S.; Armenta-Montero, S.; Krömer, T. Diversity, distribution and conservation status of Peperomia (Piperaceae) in the state of Veracruz, Mexico. Trop. Conserv. Sci. 2017, 10, 1–28. [Google Scholar] [CrossRef]
- Grella, C.; Renshaw, A.; Wright, I. Invasive weeds in urban riparian zones: The influence of catchment imperviousness and soil chemistry across an urbanization gradient. Urban Ecosyt. 2018, 21, 505–517. [Google Scholar] [CrossRef]
- Estrada-Castillón, E.; Villarreal-Quintanilla, J.A.; Jurado-Ybarra, E.; Cantú-Ayala, C.; García-Aranda, M.A.; Sánchez-Salas, J.; Jiménez-Pérez, J.; Pando-Moreno, M. Classification, structure and diversity of the piedmont scrub adjacent to the Northern Gulf coastal plain in Northeastern Mexico. Bot. Sci. 2012, 90, 37–52. [Google Scholar] [CrossRef]
- Martin, C.E.; Adams, W.W. Crassulacean acid metabolism, CO2-recycling, and tissue desiccation in the Mexican epiphyte Tillandsia schiedeana Steud (Bromeliaceae). Photosynth. Res. 1987, 11, 237–244. [Google Scholar] [CrossRef]
- Loeschen, V.; Martin, C.; Smith, M.; Eder, S. Leaf anatomy and CO2 recycling during Crassulacean acid metabolism in twelve epiphytic species of Tillandsia (Bromeliaceae). Int. J. Plant Sci. 1993, 154, 100–106. [Google Scholar] [CrossRef]
- de la Rosa-Manzano, E.; Mendieta-Leiva, G.; Guerra-Pérez, A.; Aguilar-Dorantes, K.; Arellano-Méndez, L.U.; Torres-Castillo, J.A. Vascular epiphytic diversity in a Neotropical transition zone is driven by environmental and structural heterogeneity. Trop. Conserv. Sci. 2019, 12, 1–16. [Google Scholar] [CrossRef]
- Krömer, T.; Kessler, M.; Gradstein, S.R. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: The importance of the understory. Plant Ecol. 2007, 189, 261–278. [Google Scholar] [CrossRef]
- Nieder, J.; Engwald, S.; Klawun, S.; Barthlott, W. Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni Crane Plot) of southern Venezuela. Biotropica 2000, 32, 385–396. [Google Scholar] [CrossRef]
- Cervantes, S.E.; Graham, E.A.; Andrade, J.L. Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecol. 2005, 179, 107–118. [Google Scholar] [CrossRef]
- Zotz, G. Substrate use of three epiphytic bromeliads. Ecography 1997, 20, 264–270. [Google Scholar] [CrossRef]
- de la Rosa-Manzano, E.; Andrade, J.L.; Zotz, G.; Reyes-García, C. Epiphytic orchids in tropical dry forests of Yucatan, Mexico—Species occurrence, abundance and correlations with host tree characteristics and environmental conditions. Flora 2014, 209, 100–109. [Google Scholar] [CrossRef]
- Callaway, R.M.; Reinhart, K.; Moore, G.W.; Pennings, S. Epiphyte host preferences and host traits: Mechanisms for species-specific interactions. Oecologia 2002, 132, 221–230. [Google Scholar] [CrossRef]
- Hietz, P.; Winkler, M.; Scheffknecht, S.; Hülber, K. Germination of epiphytic bromeliads in forests and coffee plantations: Microclimate and substrate effects. Biotropica 2012, 44, 197–204. [Google Scholar] [CrossRef]
- Siaz-Torres, S.S.; Mora-Olivo, A.; Arellano-Méndez, L.U.; Vanoye-Eligio, V.; Flores-Rivas, J.; de la Rosa-Manzano, E. Contribution of peeling host for epiphyte abundance in two tropical dry forests in the “El Cielo Biosphere Reserve”, Mexico. Plant Species Biol. 2021, 36, 269–283. [Google Scholar] [CrossRef]
- Wagner, K.; Zotz, G. Including dynamics in the equation: Tree growth rates and host specificity of vascular epiphytes. J. Ecol. 2020, 108, 761–773. [Google Scholar] [CrossRef]
- ter Steege, H.; Cornelissen, J.H.C. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 1989, 21, 331–339. [Google Scholar] [CrossRef]
- Hietz, P.; Hietz-Seifert, U. Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J. Veg. Sci. 1995, 6, 487–498. [Google Scholar] [CrossRef]
- Zotz, G.; Vollrath, B. The epiphyte vegetation of the palm Socratea exorrhiza-correlations with tree size, tree age and bryophyte cover. J. Trop. Ecol. 2003, 19, 81–90. [Google Scholar] [CrossRef]
- Agresti, A. An Introduction to Categorical Data Analysis, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1996; p. 357. [Google Scholar]
- Barthlott, W.; Schmit-Neuerburg, V.; Nieder, J.; Engwald, S. Diversity and abundance of vascular epiphytes: A comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol. 2001, 152, 145–156. [Google Scholar] [CrossRef]
- Kubota, Y.; Katsuda, K.; Kikuzawa, K. Secondary succession and effects of clear-logging on diversity in the subtropical forests on Okinawa Island, southern Japan. Biodivers. Conserv. 2005, 14, 879–901. [Google Scholar] [CrossRef]
- García-González, A.; Pérez, R. La comunidad orquideológica en la Reserva de la Biosfera Sierra del Rosario, Cuba. Rev. Biol. Trop. 2011, 59, 1805–1812. [Google Scholar] [CrossRef]
- Pincheira-Ulbrich, J.; Hernández, C.E.; Saldaña, A. Consequences of swamp forest fragmentation on assemblages of vascular epiphytes and climbing plants: Evaluation of the metacommunity structure. Ecol. Evol. 2018, 8, 11785–11798. [Google Scholar] [CrossRef] [PubMed]
- Solís-Montero, L.; Flores-Palacios, A.; Cruz-Angon, A. Shade-coffee plantations as refuges for tropical wild orchids in Central Veracruz, Mexico. Conserv. Biol. 2005, 19, 908–916. [Google Scholar] [CrossRef]
- Hietz, P.; Buchberger, G.; Winkler, M. Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 2006, 12, 103–112. [Google Scholar]
- Flores-Palacios, A.; García-Franco, J.G. Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodivers. Conserv. 2008, 17, 191–207. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Olmsted, I.C. Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica 1992, 24, 402–407. [Google Scholar] [CrossRef]
- García-González, A.; Plasencia-Vázquez, A.H.; Serrano-Rodríguez, A.; Riverón-Giró, F.B.; Ferrer-Sánchez, Y.; Zamora-Crescencio, P. Assemblage of vascular epiphytes associated to seasonally inundated forest in the Southeastern Mexico: Challenges for its conservation. Glob. Ecol. Conserv. 2021, 25, e01404. [Google Scholar] [CrossRef]
- Martin, C.E.; McLeod, K.W.; Eades, C.A.; Pitzer, A.F. Morphological and physiological responses to irradiance in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae). Bot. Gaz. 1985, 146, 489–494. [Google Scholar] [CrossRef]
- Adams, W.W., III; Martin, C.E. Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) form in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Am. J. Bot. 1986, 73, 1207–1214. [Google Scholar]
- Diego-Escobar, M.V.; Flores-Cruz, M.; Koch, S.D. Tillandsia L. (Bromeliaceae). In Flora de Guerrero; Universidad Nacional Autónoma de Mexico, Facultad de Ciencias: Ciudad de Mexico, Mexico, 2013; p. 122. [Google Scholar]
- Trejo, I.; Dirzo, R. Deforestation of seasonally dry tropical forest: A national and local analysis in Mexico. Biol. Conserv. 2000, 94, 133–142. [Google Scholar] [CrossRef]
- Comision Nacional Forestal. Mexico. 2023. Available online: https://www.gob.mx/conafor (accessed on 12 September 2023).
- Bonnet, A.; Queiroz, M.H.; Lavoranti, O.J. Relações de bromélias epifíticas com características dos forófitos em diferentes estádios sucessionais da floresta ombrófila densa, Santa Catarina, Brasil. Floresta 2007, 37, 83–94. [Google Scholar] [CrossRef]
- Ingram, S.; Nadkarni, N. Composition and distribution of epiphytic organic matter in a Neotropical cloud forest, Costa Rica. Biotropica 1993, 25, 370–383. [Google Scholar] [CrossRef]
- Burns, K.C. Meta-community structure of vascular epiphytes in a temperate rainforest. Botany 2008, 86, 1252–1259. [Google Scholar] [CrossRef]
- Woods, C.L.; Cardelús, C.L.; Dewalt, S.J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 2015, 103, 421–430. [Google Scholar] [CrossRef]
- Werner, F.A.; Gradstein, S.R. Diversity of dry forest epiphytes along a gradient of human disturbance in the tropical. Andes. J. Veg. Sci. 2009, 20, 59–68. [Google Scholar] [CrossRef]
- Benzing, D.H. The life history profile of Tillandsia circinnata (Bromeliaceae) and the rarity of extreme epiphytism among the angiosperm. Selbyana 1978, 2, 325–337. [Google Scholar]
- Johansson, D. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr. Suec. 1974, 59, 1–136. [Google Scholar]
- Chilpa-Galván, N.; Tamayo-Chim, M.; Andrade, J.L.; Reyes-García, C. Water table depth may influence the asymmetric arrangement of epiphytic bromeliads in a tropical dry forest. Plant Ecol. 2013, 214, 1037–1048. [Google Scholar] [CrossRef]
- Zotz, G. Johansson revisited: The spatial structure of epiphyte assemblages. J. Veg. Sci. 2007, 18, 123–130. [Google Scholar] [CrossRef]
- Hernández-Apolinar, M. Dinámica Poblacional de Laelia speciosa (H.B.K.) Schltr. (Orchidaceae). Bachelor’s Thesis, Facultad de Ciencias, UNAM, Ciudad de México, Mexico, 1992; p. 86. [Google Scholar]
- Larson, R.J. Population dynamics of Encyclia tampensis in Florida. Selbyana 1992, 13, 50–56. [Google Scholar]
- Zotz, G. Demography of the epiphytic orchid, Dimerandra emarginata. J. Trop. Ecol. 1998, 14, 725–741. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Chen, G.; Li, C.; Dao, Z.; Sun, W. Rescuing Magnolia sinica (Magnoliaceae), a Critically Endangered species endemic to Yunnan, China. Oryx 2016, 50, 446–449. [Google Scholar] [CrossRef]
- Cardelús, C.L.; Chazdon, R.L. Inner-crown microenvironments of two emergent tree species in a lowland wet forest. Biotropica 2005, 37, 238–244. [Google Scholar] [CrossRef]
- Arévalo, R.; Betancur, J. Vertical distribution of vascular epiphytes in four forest types of the Serranía de Chiribiquete, Colombian Guayana. Selbyana 2006, 27, 175–185. [Google Scholar]
- Pennington, T.D.; Sarukhán, J. Árboles Tropicales de México: Manual para la Identificación de las Principales Especies, 1st ed.; Fondo de Cultura Económica, Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2005; p. 523. [Google Scholar]
- Lowman, M.D.; Schowalter, T.D.; Franklin, J.F. Methods in Forest Canopy Research; University of California Press: Berkeley, CA, USA, 2012; p. 221. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org. (accessed on 10 September 2023).
- Martínez-Bernal, A.; Vasquez-Velasco, B.; Ramírez-Arriaga, E.; Zárate-Hernández, M.; Martínez-Hernández, E.; Téllez-Valdés, O. Composition, structure and diversity of tree and shrub strata in a tropical deciduous forest at Tehuacán Valley, Mexico. Rev. Mex. Biodivers. 2021, 92, 1–16. [Google Scholar] [CrossRef]
- Mishra, A.K.; Behera, S.K.; Singh, K.; Sahu, N.; Bajpai, O. Relation of forest structure and soil properties in natural, rehabilitated and degraded forest. J. Biodivers. Manag. For. 2013, 8, 27–29. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book. Stat. Pap. 2009, 50, 445–446. [Google Scholar] [CrossRef]
- Dunn, P.K.; Smyth, G.K. Generalized Linear Models: Inference. In Generalized Linear Models with Examples in R; Springer: New York, NY, USA, 2018; pp. 265–296. [Google Scholar]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Vergara-Torres, C.A.; Pacheco-Álvarez, M.C.; Flores-Palacios, A. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J. Trop. Ecol. 2010, 26, 563–570. [Google Scholar] [CrossRef]
- NatureServe. US. 2023. Available online: www.natureserve.org (accessed on 21 October 2023).
Tree Species | Family | Bark Type | Relative Abundance (%) | Relative Frequency (%) | Relative Dominance (%) | IVI 100% | Epiphyte Abundance (%) |
---|---|---|---|---|---|---|---|
Taxodium mucronatum | Cupressaceae | Rugose | 88.88 | 60 | 80.08 | 76.34 | 97.31 |
Ficus sp. | Moraceae | Smooth | 8.35 | 30 | 19.89 | 19.40 | 2.60 |
Tabernaemontana alba Mill. | Apocynaceae | Semi-rugose | 2.77 | 10 | 0.03 | 4.26 | 0.09 |
Total | 100 | 100 | 100 | 100 | 100 |
Tree Species | Family | Bark Type | Relative Abundance (%) | Relative Frequency (%) | Relative Dominance (%) | IVI 100% | Epiphyte Abundance (%) |
---|---|---|---|---|---|---|---|
Ehretia anacua | Boraginaceae | Rugose | 20.00 | 12.90 | 30.61 | 21.17 | 25.12 |
Ocotea tampicensis | Lauraceae | Smooth | 24.71 | 12.90 | 15.63 | 17.75 | 2.29 |
Zanthophyllum fagara (L.) Sarg. | Rutaceae | Rugose | 11.76 | 9.68 | 8.97 | 10.14 | 7.74 |
Quercus sp. | Fagaceae | Rugose | 5.88 | 9.68 | 14.78 | 10.11 | 49.85 |
Havardia pallens (Benth.) Britton & Rose. | Fabaceae | Smooth | 8.24 | 6.45 | 4.99 | 6.56 | 2.07 |
Sebastiana pavonia Muell. | Euohorbiaceae | Semi-rugose | 7.06 | 9.68 | 2.39 | 6.37 | 1.69 |
Pithecellobium flexicaule (Benth.) Coult. | Fabaceae | Rugose | 5.88 | 6.45 | 5.94 | 6.09 | 0.61 |
Casimiroa greggi (S.Watson) F.Chiang | Rutaceae | Smooth | 3.53 | 9.68 | 4.68 | 5.96 | 0 |
Ugnadia speciosa Endl. | Sapindaceae | Smooth | 3.53 | 6.45 | 3.09 | 4.36 | 7.73 |
Randia obcordata S. Watson | Rubiaceae | Smooth | 3.53 | 3.23 | 5.30 | 4.02 | 0.15 |
Acacia coulteri Benth. | Fabaceae | Smooth | 3.53 | 6.45 | 1.46 | 3.81 | 0 |
Persea liebmannii Mez | Lauraceae | Smooth | 1.18 | 3.23 | 1.83 | 2.08 | 2.75 |
Robinsonella discolor Rose & Baker f. ex Rose | Malvaceae | Smooth | 1.18 | 3.23 | 0.34 | 1.58 | 0 |
Total | 100 | 100 | 100 | 100 | 100 |
Estimate | Standard Error | t Value | Pr(>|t|) | |
---|---|---|---|---|
Intercept | 3.730 | 0.394 | 9.45 | 0.001 |
JZ2 | 1.759 | 0.416 | 4.22 | 0.001 |
JZ3 | 2.116 | 0.411 | 5.14 | 0.001 |
JZ4 | 1.673 | 0.422 | 3.96 | 0.001 |
Submontane scrub | −1.324 | 0.197 | −6.70 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siaz Torres, S.S.; de la Rosa-Manzano, E.; Arellano-Méndez, L.U.; Aguilar-Dorantes, K.M.; Martínez Ávalos, J.G.; Juárez Aragón, M.C. Species Richness, Abundance, and Vertical Distribution of Epiphytic Bromeliads in Primary Forest and Disturbed Forest. Plants 2024, 13, 2754. https://doi.org/10.3390/plants13192754
Siaz Torres SS, de la Rosa-Manzano E, Arellano-Méndez LU, Aguilar-Dorantes KM, Martínez Ávalos JG, Juárez Aragón MC. Species Richness, Abundance, and Vertical Distribution of Epiphytic Bromeliads in Primary Forest and Disturbed Forest. Plants. 2024; 13(19):2754. https://doi.org/10.3390/plants13192754
Chicago/Turabian StyleSiaz Torres, Sugeidi S., Edilia de la Rosa-Manzano, Leonardo U. Arellano-Méndez, Karla M. Aguilar-Dorantes, José Guadalupe Martínez Ávalos, and María Cruz Juárez Aragón. 2024. "Species Richness, Abundance, and Vertical Distribution of Epiphytic Bromeliads in Primary Forest and Disturbed Forest" Plants 13, no. 19: 2754. https://doi.org/10.3390/plants13192754
APA StyleSiaz Torres, S. S., de la Rosa-Manzano, E., Arellano-Méndez, L. U., Aguilar-Dorantes, K. M., Martínez Ávalos, J. G., & Juárez Aragón, M. C. (2024). Species Richness, Abundance, and Vertical Distribution of Epiphytic Bromeliads in Primary Forest and Disturbed Forest. Plants, 13(19), 2754. https://doi.org/10.3390/plants13192754