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Abstract: The prevalence of obesity is increasing globally, with approximately 700 million obese
people worldwide. Currently, regulating energy homeostasis by increasing energy expenditure is
attracting attention as a strategy for treating obesity. White adipose tissue is known to play a role
in accumulating energy by storing excess energy, while brown adipose tissue expends energy and
maintains body temperature. Thus, the browning of white adipose tissue has been shown to be
effective in controlling obesity. Hedera helix (H. helix) has been widely used as a traditional medicine
for various diseases. In several previous studies, hederagenin (HDG) from H. helix has demonstrated
many biological activities. In this study, we investigated the antiobesity effect of HDG on fat browning
in 3T3-L1 adipocytes. Consequent to HDG treatment, a reduction in lipid accumulation was measured
through oil red O staining. In addition, this study investigated that HDG increases energy expenditure
by upregulating the expression of several targets related to thermogenesis, including uncoupling
protein 1 (UCP1). This process involves inhibiting lipogenesis via the adenosine monophosphate-
activated protein kinase (AMPK) signaling pathway and promoting lipolysis through the protein
kinase A (PKA) pathway. HDG is expected to be effective in promoting fat browning, indicating its
potential as a natural antiobesity candidate.
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1. Introduction

The prevalence of obesity is rising globally, with approximately 2.2 billion people
overweight and 700 million people obese [1]. Obesity causes adverse health effects and
various metabolic complications, including dyslipidemia, insulin resistance, type 2 diabetes,
fatty liver, and cardiovascular disease [2]. Additionally, obesity is associated with a higher
incidence of cancer [3]. Various methods to combat obesity have been explored [4], such
as exercise, diet, and bariatric surgery. However, diet and exercise alone are often only
partially successful [5]. Bariatric surgery is typically reserved for selected cases. Hence,
developing drugs to treat obesity that can replace or supplement methods such as diet,
exercise, and surgical treatment is necessary.

Three main pharmacological approaches exist for treating obesity: decreasing energy
intake through appetite suppression, reducing energy absorption owing to malabsorption,
and increasing energy expenditure [6]. Among these, strategies to increase energy expen-
diture are particularly significant because, unlike appetite suppression or energy intake
reduction, they can be achieved without affecting the absorption of essential nutrients such
as vitamins and minerals [4].

Mammals have two types of adipose tissue: white adipose tissue (WAT) and brown adi-
pose tissue (BAT). WAT stores excess energy in the form of triglycerides, while BAT maintains
core body temperature via energy expenditure [1]. In humans, a large amount of brown fat
is present during infancy [7] but gradually decreases with age [8]. For a long time, brown fat
was originally believed to not exist in adult humans, but later, studies discovered substantial
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amounts of brown and beige fat cells in the neck and shoulder areas of adults, confirming its
presence [9]. Additionally, Cypess et al. investigated the presence of brown fat in adult humans
when exposed to cold [10]. The activation of BAT and browning of WAT accelerates glycolipid
intake, reduces the requirement for insulin secretion, and improves glycolipid metabolism and
insulin resistance in patients with obesity and type 2 diabetes [11–13]. The thermogenic activity
of BAT primarily relies on uncoupling protein 1 (UCP1), located in the inner mitochondrial
membrane. When activated, UCP1 catalyzes the leak of protons across the mitochondrial
membrane, uncoupling oxidative respiration from ATP synthesis and releasing energy as
heat. Beige adipocytes, formed through fat browning, are also rich in the mitochondria and
UCP1, increasing energy expenditure in response to cold and various stimuli [14]. Numerous
studies are currently exploring the effectiveness of ingredients derived from natural products in
promoting fat browning [15–19]. Therefore, WAT browning is gaining attention as a promising
strategy for treating obesity by increasing energy expenditure.

Hedera helix (H. helix), commonly known as ivy, contains various chemical components,
including triterpene saponins, flavonoids, polyacetylenes, and phenolic compounds [20,21].
Traditionally used to treat respiratory diseases since the 19th century [22], H. helix has
become standardized in modern medicine, with its extracts used to manufacture various
types of medicines, such as syrups, suppositories, and eye drops [23]. Studies show that H.
helix exhibits various bioactivities, including anti-inflammatory, analgesic, antimicrobial,
antioxidant, anticancer, and antidiabetic effects, alongside its effects on respiratory dis-
eases [24–29]. One key compound in H. helix is hederagenin (HDG) (Figure 1), a triterpene
that serves as an indicator component of the plant. HDG has been extensively examined for
its bioactivity, including anti-inflammatory, antifungal, antibacterial, antidiabetic, antide-
pressant, antineurodegenerative, antitumor, and antiatherosclerosis effects [30]. However,
research on the antiobesity effect of HDG, particularly related to fat browning, is lacking.
Therefore, this study aims to explore the effect of HDG on fat browning and its underlying
mechanism in 3T3-L1 adipocytes.
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Figure 1. Chemical structure of hederagenin (HDG).

2. Results
2.1. Effect of HDG on Cell Viability

The effect of HDG on cell viability was examined in 3T3-L1 cells using a thiazolyl
blue tetrazolium bromide (MTT) assay. HDG was administered at concentrations ranging
from 2.5 to 40 µM for up to 48 h. Cell viability showed a slight reduction at the highest
concentration of 40 µM. In subsequent experiments, the maximum concentration was set to
20 µM, which did not significantly affect cell viability (Figure 2).
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Figure 2. Effects of HDG on cell viability of 3T3-L1 preadipocytes. The cells were treated with
the compound and incubated for 48 h. All data are presented as mean ± SEM (n = 3). ** p < 0.01
compared with the control. Statistical analysis was conducted using Student’s t-test.

2.2. Effect of HDG on Lipid Accumulation

Lipid accumulation was evaluated using oil red O (ORO) staining. A decrease in lipid
accumulation was observed at concentrations of 5, 10, and 20 µM (Figure 3A), with the
lowest level occurring at 20 µM (Figure 3B). These results prompted further investigation
into lipid metabolism related to fat browning.
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Figure 3. Effects of HDG on lipid accumulation in 3T3-L1 cells. The cells were differentiated for
7 days and stained with ORO (magnification: ×100, scale bar = 100 µm) (A). The stained cells were
eluted with 100% isopropanol. Lipid accumulation was quantified using a microplate reader at
520 nm (B). All data are presented as mean ± SEM (n = 3). * p < 0.05 or ** p < 0.01 compared with the
control. Statistical analysis was performed using Student’s t-test.
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2.3. Effect of HDG on Mitochondrial Biogenesis and Adipocyte Browning

To assess the thermogenic activity of HDG in H. helix, we identified markers such as UCP1
and peroxisome proliferator activated-receptor gamma coactivator-1 alpha (PGC-1α). We also
assessed the protein levels of peroxisome proliferator activated-receptor gamma (PPARγ) and
CCAAT/enhancer-binding protein alpha (C/EBPα) alongside the mRNA expression levels of
Pparg, Cebpa, and CCAAT/enhancer-binding protein beta (Cebpb). These factors collaborate with
PGC-1α to promote the transcriptional expression of UCP1. HDG treatment induced the highest
expression of all fat-browning-specific markers, except for Cebpb and the PR domain containing
16 (Prdm16), at the highest concentration of 20 µM. At 5 µM, Cebpb and Prdm16 exhibited the
highest expression levels, which were statistically significant (Figure 4A).
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Beige-specific markers, indicative of increased expression in beige adipocytes dur-
ing fat browning, were investigated in this study. We analyzed the mRNA expression
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of six targets: tumor necrosis factor receptor superfamily, member 9 (TNFRSF9, Cd137),
cell death inducing DFFA-like effector A (Cidea), carboxy-terminal domain 1 (Cited1), fi-
broblast growth factor 21 (Fgf21), T-box 1 (Tbx1), and transmembrane protein 26 (Tmem26).
Treatment with HDG resulted in the highest increase in expression for all targets at 10 or
20 µM (Figure 4B). These results indicate that HDG treatment promotes fat browning as
the beige-specific marker increased. Additionally, given that the activation of fat browning
likely affects mitochondria, where UCP1 is located, we measured the mRNA expression of
three mitochondrial biogenesis markers: cytochrome c oxidase subunit 4 (Cox4), nuclear
respiratory factor 1 (Nrf1), and mitochondrial transcription factor A (Tfam). HDG treat-
ment elevated the expression levels of these markers. At the highest HDG concentration,
the expression levels of Cox4 were approximately 2-fold higher, and Tfam was approxi-
mately 1.5-fold higher. Nrf1 exhibited the highest expression level at 5 µM, increasing by
approximately 1.3 times compared to that of the control (Figure 4C).

Consistent with this, UCP1 showed increased expression at the highest concentration
when measured using immunofluorescence. Furthermore, MitoTracker Red displayed
an elevated expression compared to that of the control and a similar expression pattern
to that of UCP1 (Figure 5). These results demonstrate that HDG affects mitochondrial
biogenesis. Collectively, these findings suggest that HDG enhances markers of fat browning
and thermogenesis.
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Figure 5. Effect of HDG on UCP1 and mitochondria measured using immunofluorescence staining.
3T3-L1 adipocytes treated with 20 µM HDG for 7 days were stained for UCP1-FITC, MitoTracker
Red, and DAPI. The images were captured at 60× magnification (scale bars = 20 µm). The blue, red,
and green arrows indicate the adipocyte nucleus, mitochondria, and UCP1, respectively.

2.4. Effect of HDG on Lipogenesis and Lipolysis

We explored the effects of HDG on lipogenesis markers acetyl CoA carboxylase (ACC)
and adenosine monophosphate-activated protein kinase (AMPK). The results showed an in-
crease in the expression level of p-AMPK, which peaked at the highest HDG concentration
of 20 µM (Figure 6A). ACC exhibited the highest phosphorylation level at a concentration
of 10 µM (Figure 6A). This suggests that HDG may inhibit lipogenesis in 3T3-L1 cells. Fatty
acid oxidation, which breaks down fats, is regulated by the phosphorylation of AMPK
and ACC. The p-AMPK enhances the expression of carnitine palmitoyl transferase 1 (Cpt1,
a fatty acid oxidation marker), thereby promoting fatty acid oxidation, which provides
the protons necessary for the activation of UCP1 and subsequent thermogenesis. In this
study, we assessed the mRNA expression of three fatty acid oxidation markers: acyl-CoA
oxidase 1 (Aco1), Cpt1, and peroxisome proliferator activated-receptor alpha (Ppara). HDG
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treatment resulted in an increase in the expression levels of Aco1 and Ppara at the highest
concentration (Figure 6B), indicating that HDG influences fatty acid oxidation. Lipolysis
provides the energy required for thermogenesis. Therefore, we investigated the expression
of lipolysis-related markers in fat browning. HDG treatment led to increased expres-
sion levels of phosphorylated hormone-sensitive lipase (HSL), perilipin (PLIN), adipose
triglyceride lipase (ATGL), and protein kinase A (PKA). Particularly, ATGL increased in a
dose-dependent manner (Figure 6C). Moreover, the mRNA expression levels of Hsl and
Plin showed concentration-dependent increases (Figure 6C). These results show that HDG
has lipolytic activity.
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3. Discussion

As obesity continues to pose a significant global health threat [1], various methods are
being explored to combat it. Among these, fat browning, which transforms WAT into BAT
and increases energy expenditure, has emerged as a promising strategy [4]. Previous studies
showed that H. helix exhibits bioactive effects, including anti-inflammatory, antioxidant,
anticancer, and antidiabetic effects [24–29]. Given the close relationship between these
diseases and obesity, investigating the effect of H. helix on obesity is warranted. In this
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study, we assessed the fat-browning effect of HDG in H. helix and found that the compound
promotes the browning of white adipocytes, converting them into beige adipocytes.

The crucial factor in fat browning is UCP1, a key protein in thermogenesis that
utilizes excess energy to maintain thermogenesis and energy balance [31,32]. The ectopic
expression of UCP1 and brown-adipocyte-characteristic proteins, such as PGC-1α and
PRDM16, in white adipocytes signify the transition from WAT to BAT [33,34]. PGC-1α links
the nucleus and mitochondria, boosting mitochondrial biogenesis and activating PPARγ.
When PGC-1α activates TFAM, an increased expression of COX4 and activation of NRF1
can be observed, which triggers mitochondrial replication [31]. Mitochondria are essential
organelles involved in energy metabolism and play a critical role in the thermogenesis of
adipocytes. An increase in both the number and activity of mitochondria is a hallmark of
the browning process. Mitochondrial dysfunction in adipocytes can adversely impact lipid
metabolism, insulin sensitivity, and thermogenesis, contributing to metabolic diseases such
as obesity and type 2 diabetes [18]. Our results demonstrated an increase in PGC-1α, a key
regulator of mitochondrial biogenesis, along with important regulators Cox4, Nrf1, and
Tfam, which interact with PGC-1α. Given that mitochondrial dysfunction is a significant risk
factor for the development of obesity and diabetes, enhancing mitochondrial biogenesis
through HDG is expected to be effective in addressing various metabolic syndromes.
Prdm16, a common gene in BAT, increases during fat browning [35]. The expression of this
marker is known to decrease when beige adipocytes are converted back to white adipocytes,
suggesting that PRDM16 plays a central role in fat browning and the maintenance of beige
adipocytes. Additionally, PGC-1α and PRDM16 form a transcription complex with PPARγ,
C/EBPα, and C/EBPβ, which are ultimately involved in UCP1 expression. Considering
that UCP1, located in the mitochondrial inner membrane, is crucial in thermogenesis,
PPARγ, C/EBPα, and C/EBPβ, along with PGC-1α, play pivotal roles in this process [36].
The results of the present study showed that HDG increased UCP1 expression at the highest
concentration. HDG generally enhanced thermogenesis and elevated the expression of
thermogenesis-related markers.

AMPK is a key regulator of metabolism, promoting energy-generating pathways
while inhibiting energy-storage pathways [37]. Numerous studies have shown that when
activated, AMPK is associated with fatty acid oxidation, BAT thermogenesis, and WAT
browning, including lipogenesis. AMPK is a highly conserved and ubiquitously expressed
serine/threonine protein kinase and has a multiheterotrimeric complex structure composed
of α, β, and γ subunits. The α catalytic subunit includes an N-terminal kinase domain,
an auto-inhibitory domain, and a C-terminal β/γ subunit-binding domain. AMPK is acti-
vated when the Thr-172 residue, the catalytic phosphorylation site, is phosphorylated [38].
Additionally, activated AMPK participates in mitochondrial fatty acid oxidation and phos-
phorylates ACC, an inhibitor of CPT1 activity, thus halting fatty acid synthesis [39]. AMPK
also upregulates PGC-1α and PRDM16. Through this, elevated PPARα is known to play a
role in fatty acid oxidation, together with CPT1 [40,41]. ACO1 is an enzyme involved in the
initial step of fatty acid oxidation [42]. When these targets promote fatty acid oxidation, the
oxidized fatty acids work with UCP1 in the mitochondria to enhance thermogenesis. Our
results showed that HDG treatment increased the phosphorylation levels of AMPK and
ACC, suggesting that thermogenesis is enhanced through the phosphorylation of AMPK.

The mobilization of metabolic energy from adipocytes relies on a tightly regulated
balance between the hydrolysis and resynthesis of triglycerides [43]. The hydrolysis
of triglycerides activates the cAMP-PKA pathway via β-adrenergic signaling, leading
to the phosphorylation and activation of lipolytic enzymes, including HSL, ATGL, and
PLIN [44,45]. HSL phosphorylation occurs at several sites, including ser-563, and HSL
phosphorylated by PKA affects lipolysis in adipocytes to maintain whole-body energy
homeostasis [43]. In brown and beige adipocytes, fatty acids activate UCP1, enabling
maximum mitochondrial oxidation rates without ATP synthesis, which fuels high thermo-
genesis. Therefore, the mobilization of free fatty acids through lipolysis in brown and beige
adipocytes is crucial for thermogenesis [46]. Pharmacological inhibition of the two-step
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catalytic proteins ATGL and HSL, which are responsible for triglyceride hydrolysis, has
been shown to reduce the adrenergic stimulation of thermogenesis completely. In addition,
Li et al. found that the addition of free fatty acids stimulates thermogenesis in brown
adipocytes even in the absence of adrenergic stimulation [47]. In our experiment, similar to
the results for thermogenesis markers, the highest concentration of HDG showed a strong
lipolysis effect, significantly increasing all protein and mRNA targets.

Consistent with our study, similar trends were observed in fat browning research in-
volving various natural compounds and extracts using 3T3-L1 cells. A study by Liu et al. [16]
using peanut shell extract showed an increase in p-ACC, p-AMPK, p-HSL, PGC-1α, Tfam,
Nrf1, and UCP1. The results in Mulberry leaf flavonoids indicated an increase in p-AMPK,
Cd137, CPT-1, PGC-1α, PRDM16, Tbx1, Tmem26, and UCP1 [18]. Zeaxanthin [48] demon-
strated an upregulation of Nrf1, PGC-1α, PKA, PRDM16, Tfam, and UCP1. A study on
Black Ginseng and Ginsenoside Rb1 showed an increase in p-AMPK, PGC-1α, PRDM16,
and UCP1 [49]. These results strongly support that the upregulation of these targets by
hederagenin may positively influence fat browning through the AMPK and PKA sig-
naling pathways. Some studies utilized inhibitors and activators of AMPK and PKA to
validate the expected effects of inhibition and activation of the corresponding signaling
pathways [48,49]. These results represent effective approaches for evaluating signaling
pathways. Using inhibitors and activators of AMPK and PKA can yield substantial data to
substantiate the signaling pathways involved in the fat browning effect of HDG.

4. Materials and Methods
4.1. Chemical Reagents

3T3-L1 white preadipocytes were obtained from the Korea Cell Line Bank (Seoul, Ko-
rea). HDG (purity ≥ 98%) was sourced from ChemFaces Biochemical Co. (Hubei, China).
Dexamethasone, insulin, phosphate-buffered saline (PBS), ORO, and 10% formalin were
procured from Sigma-Aldrich (St. Louis, MO, USA). Secondary antibodies (goat anti-rabbit
IgG, goat anti-mouse IgG), 3-isobutyl-1-methylxanthine, and isopropanol were purchased
from Merck (Union County, NJ, USA). Dulbecco’s Modified Eagle’s Medium (high glu-
cose) (DMEM), newborn bovine calf serum (NCS), fetal bovine serum, 4′,6-diamidino-2-
phenylindole (DAPI), and penicillin–streptomycin solution were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). Dimethyl sulfoxide (DMSO) and MTT were sourced
from GlenthamLife Sciences (Corsham, UK). MitoTracker® Red CMXRos was obtained from
Cell Signaling Technology (Danvers, MA, USA). Triton® X-100 was obtained from Promega
(Madison, WI, USA). Antibodies used in the Western blot—PPARγ (2435S), C/EBPα (8178S),
AMPK (2532S), phosphorylated AMPK (p-AMPK, 2531S), ACC (3662S), phosphorylated
ACC (p-ACC, 3661S), HSL (18381S), phosphorylated HSL (p-HSL, 4139S), ATGL (2439S),
PLIN (9349S), PKA (5842S), and β-actin (4967S)—were procured from Cell Signaling Tech-
nology (Danvers, MA, USA). UCP1 (sc-293418), UCP1-Fluorescein isothiocyanate (sc-518171
FITC), and PGC-1α (sc-518025) were acquired from Santa Cruz Biotechnology (CA, USA).
For quantitative real-time polymerase chain reaction (qRT-PCR), NucleoZOL and the
NucleoSpin® RNA kit were obtained from MACHEREY-NAGEL (Düren, Germany). The
ReverTra Ace®qPCR RT kit was purchased from TOYOBO (Osaka, Japan).

4.2. Cell Culture and Differentiation

3T3-L1 preadipocytes were cultured in DMEM with NCS for 3 days, subcultured,
and then differentiated (37 ◦C in a 5% CO2 incubator). Once the cells were fully grown,
the medium was replaced with differentiation initiation medium and cultured for 7 days.
During the differentiation process, HDG, dissolved in DMSO at concentrations of 2.5 to
20 µM, was added.

4.3. Cell Viability Assay

The medium was then replaced and treated with HDG at the specified concentration
for 48 h. After treatment, 20 µL of MTT solution (5 mg/mL in PBS) was added to each well
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and incubated in a CO2 incubator for 2 h. After the reaction was completed, the medium
and MTT solution were removed, and 100 µL of DMSO was added to dissolve the formazan
crystals under dark conditions for 10 min. Cell viability was determined by measuring the
absorbance value at 540 nm using a spectrophotometer.

4.4. Oil Red O Staining

The cells were fixed with 10% formalin and washed twice with distilled water (DW).
The ORO solution and DW were mixed in a 6:4 ratio, added to each well (500 µL/well),
and incubated at 25 ◦C for 30 min. Photographs were taken under a microscope. The
24-well plate was inverted and dried in dark conditions at 25 ◦C for 24 h to ensure complete
drying. Lipid accumulation was assessed by measuring the absorbance at 520 nm using a
spectrophotometer.

4.5. Mitochondrial Analysis and Immunofluorescence

3T3-L1 preadipocytes were cultured (1 × 105 cells/well) and differentiated in 24-well
plates using sterile coverslips. After differentiation, MitoTracker® Red CMXRos (50 nM)
was incorporated into the growth medium for mitochondrial staining and incubated for
30 min. The cells were fixed with 10% formalin for 15 min at 25 ◦C. Following fixation, the
cells were treated with a blocking buffer (5% bovine serum albumin, 0.1% Triton®). The
primary antibody (UCP1, diluted 1:250 in the blocking buffer) was incubated overnight at
4 ◦C. Subsequently, the cells were treated with DAPI (1:2000) for 1 min for nuclear staining.
A coverslip containing the stained cells was placed on a glass slide to dry. Fluorescence
images were captured using EZ-C1 software version 3.9 (Nikon, Tokyo, Japan) on a Nikon
C1 confocal laser scanning microscopy apparatus.

4.6. Western Blot Analysis

The differentiated 3T3-L1 cells (1 × 106 cells/well) were scraped and centrifuged
(14,000 rpm, 5 min). After removing the resulting supernatant, lysis buffer (Radio-
immunoprecipitation assay buffer 98%, a phosphatase inhibitor 1%, and a protease in-
hibitor 1%) was added to the cell pellet, mixed, and then incubated on ice for 30 min. The
mixture was then centrifuged, and the resulting supernatant was used in the next step.
The quantified protein (40 µg) was prepared by adding DW and sample buffer (900 µL of
4 × Laemmli sample buffer + 100 µL of 2-mercaptoethanol). Samples were boiled at 100
◦C for 10 min and then centrifuged (4 ◦C, 15,000 rpm). Depending on the protein target, a
10% or 15% gel was prepared and placed in a PowerPac for electrophoresis (80 V, 20 min;
120 V, 60 min). Electrophoresed protein samples were transferred to an Immun-Blot® PVDF
membrane for 1 h (100 V, 60 min). Blocking was performed by shaking the membrane
for 1 h in 5% skim milk diluted with Tris buffer saline (TBS) with Tween 20 (TBS-T) (DW
900 mL + 10× TBS buffer 100 mL + 10% Tween 20 solution 1 mL) buffer. The membrane
was shaken with the primary antibody (diluted 1:1000, in TBS-T containing 5% bovine
serum albumin) for 1 h, followed by overnight incubation at 4 ◦C and incubation with the
secondary antibody (diluted 1:4000 in TBS-T containing 5% skim milk) for 1 h. Finally,
protein bands were detected using Image Lab software (Bio-Rad, Hercules, CA, USA).

4.7. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

3T3-L1 cells (1 × 106 cells/well) were scraped and centrifuged (14,000 rpm, 5 min,
20 ◦C). The resulting supernatant was removed and dissolved in 500 µL of NucleoZOL.
Then, for total RNA extraction, a kit (NucleoSpin® RNA Set for NucleoZOL, Macherey-
Nagel) was used, and for cDNA synthesis, a ReverTra Ace qPCR RT kit was used, according
to the manufacturer’s protocol. qRT-PCR was performed using the CFX384 Touch Real-
Time PCR Detection System (Bio-Rad), with iQ™ SYBR Green Supermix and gene-specific
primer sets. Table 1 shows the primer sequences used in this study.
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Table 1. The primer sequence used for qRT-PCR.

Gene Forward Reverse

Aco1 ATCCAGACTTCCAACATFAG AACCACATGATTTCTTCAGG
Atgl TTCACCATCCGCTTGTTGGAG AGATGGTCACCCAATTTCCTC

Cd137 GGTCTGTGCTTAAGACCGGG TCTTAATAGCTGGTCCTCCCTC
Cebpa AGGTGCTGGAGTTGACCAGT CAGCCTAGAGATCCAGCGAC
Cebpb ACGAGTACAAGATGCGGCG TGAACAAGTTCCGCAGGGTG
Cidea CGGGAATAGCCAGAGTCACC TGTGCATCGGATGTCGTAGG
Cited1 AACCTTGGAGTGAAGGATCGC GTAGGAGAGCCTATTGGAGATGT
Cox4 TGACGGCCTTGGACGG CGATCAGCGTAAGTGGGGA
Cpt1 GTGTTGGAGGTGACAGACTT CACTTTCTCTTTCCACAAGG
Fgf21 CGTCTGCCTCAGAAGGACTC TCTACCATGCTCAGGGGGTC
Hsl GCACTGTGACCTGCTTGGT CTGGCACCCTCACTCCATA

Nrf1 GCTAATGGCCTGGTCCAGAT CTGCGCTGTCCGATATCCTG
Pgc1a ATGTGCAGCCAAGACTCTGTA CGCTACACCACTTCAATCCAC
Plin1 GCAAGAAGAGCTGAGCAGAC AATCTGCCCACGAGAAAGGA
Ppara GAGAGGGCACACGCTAGGAA GAACACCAATGTTCGGAGCC
Pparg CAAGAATACCAAAGTGCGATCAA GAGCTGGGTCTTTTCAGAATAATAAG

Prdm16 GATGGGAGATGCTGACGGAT TGATCTGACACATGGCGAGG
Tbx1 AGCGAGGCGGAAGGGA CCTGGTGACTGTGCTGAAGT
Tfam ATGTGGAGCGTGCTAAAAGC GGATAGCTACCCATGCTGGAA

Tmem26 CCATGGAAACCAGTATTGCAGC ATTGGTGGCTCTGTGGGATG
Ucp1 CCTGCCTCTCTCGGAAACAA GTAGCGGGGTTTGATCCCAT

GAPDH TTGTTGCCATCAACGACCCC GCCGTTGAATTTGCCGTGAG

4.8. Statistical Analysis

Triplicate data are expressed as the mean ± standard error of the mean. Differences
between groups were evaluated using Student’s t-tests in GraphPad prism 8 (GraphPad
Software, San Diego, CA, USA), and p-values < 0.05 were considered statistically significant.

5. Conclusions

We determined that HDG positively affected thermogenesis, significantly increasing
thermogenesis-related factors. Figure 7 summarizes and simplifies this process. The
increase and decrease in the expression levels of various targets suggest that the HDG
compounds in H. helix have the potential to control obesity by enhancing thermogenesis
and promoting fat browning. Our study has established a foundation at the in vitro level
and serves as a cornerstone for conducting long-term investigations, such as on assessing
the safety and efficacy of HDG treatment in both animal models and human subjects.
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