The Effect of Including Sea Buckthorn Berry By-Products on White Chocolate Quality and Bioactive Characteristics under a Circular Economy Context
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Parameters
2.2. Quality and Colour Parameters
2.3. Antioxidant Compounds and Activity
2.4. Mineral Elements
2.5. Sensorial Features
3. Materials and Methods
3.1. Experimental Protocol and Raw Materials
3.2. Sea Buckthorn Material, Fruit Processing and Chocolate Preparation
3.3. Chocolate Processing
3.4. Determination of Textural Properties
3.5. Determination of Total Dry Matter Content
3.6. Determination of Protein Content
3.7. Determination of Fat Content
3.8. Determination of the Colour Components
3.9. Extraction of Bioactive Substances from Chocolate Samples Added with Hippophae Rhamnoides L. By-Products
3.10. Determination of Carotenoid Compounds
3.11. Determination of Total Polyphenol Content
3.12. Determination of Vitamin C Content
3.13. Determination of Antioxidant Activity
3.14. Determination of Mineral Elements
3.15. Sensorial Features
3.16. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Terpou, A.; Gialleli, A.I.; Bosnea, L.; Kanellaki, M.; Koutinas, A.A.; Castro, G.R. Novel cheese by incorporation of sea buckthorn berries (Hippophae rhamnoids L.) supported probiotic cells. LWT—Food Sci. Tech. 2017, 79, 616–624. [Google Scholar] [CrossRef]
- European Commission. Functional Foods. European Union 2010. Available online: https://publications.europa.eu/resource/cellar/238407ee-0301-4309-9fac-e180e33a3f89.0001.02/DOC_1 (accessed on 19 July 2024).
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef] [PubMed]
- European Union. Directive 2000/36/EC of the European Parliament and of the Council of 23 June 2000 Relating to Cocoa and Chocolate Products intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex%3A32000L0036 (accessed on 19 July 2024).
- Corsi, L.; Avallone, R.; Cosenza, F.; Farina, F.; Baraldi, C.; Baraldi, M. Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 2002, 73, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.F.; Silva Lannes, C.S. Effects of chicken by-prodduct gelatin on the physicochemicalproperties and texture of chocolate spread. J. Texture Stud. 2017, 48, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Konar, N.; Toker, O.S.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Enrichment of milk chocolate by using EPA and DHA originated from various origins: Effects and products quality. Sugar Tech 2018, 20, 745–755. [Google Scholar] [CrossRef]
- Toker, O.S.; Konar, N.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Deveeloping functional white chocolate by incorporating different forms of EPA and DHA—Effects on products quality. LWT—Food Sci. Technol. 2018, 87, 177–185. [Google Scholar] [CrossRef]
- Tolve, R.; Tchuenbou-Magaia, F.L.; Verderese, D.; Simonato, B.; Puggia, D.; Galgano, F.; Zamboni, A.; Favati, F. Physico-chemical and sensory acceptability of no added sugar chocolate spreads fortified with multiple micronutrients. Food Chem. 2021, 364, 130386. [Google Scholar] [CrossRef]
- Bolenz, S.; Glöde, L. Technological and nutritional aspects of milk chocolate enriched with grape pomace products. Eur. Food Res. Technol. 2021, 247, 623–636. [Google Scholar] [CrossRef]
- Lipșa, F.D.; Stoica, F.; Rațu, R.N.; Ionuț Dumitru Veleșcu, Petru Marian Cârlescu, Iuliana Motrescu, Marius Giorgi Usturoi, Gabriela Râpeanu. Red Onion Peel Powder as a Functional Ingredient for Manufacturing Ricotta Cheese. Foods 2024, 13, 182. [Google Scholar] [CrossRef]
- Postolache, A.N.; Veleșcu, I.D.; Stoica, F.; Crivei, I.C.; Arsenoaia, V.N.; Usturoi, M.G.; Constantinescu, C.G.; Lipșa, F.D.; Frunză, G.; Simeanu, D.; et al. A clean-label formulation of fortified yogurt based based on rhododendron flower powder as a functional ingredient. Foods 2023, 12, 4365. [Google Scholar] [CrossRef]
- Tarahi, M.; Tahmouzi, S.; Kianini, M.R.; Ezzati, S.; Hedayati, S.; Niakousari, M. Current innovations in the development of functional gummy candies. Foods 2024, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Luntraru, C.M.; Apostol, L.; Oprea, O.B.; Neagu, M.; Popescu, A.F.; Tomescu, J.A.; Mulțescu, M.; Susman, I.E.; Gaceu, L. Reclaim and valorization on sea buckthorn (Hippophae rhamnoides) by-products: Antioxidant activity and chemical characterization. Foods 2022, 11, 462. [Google Scholar] [CrossRef] [PubMed]
- Stobdan, T.; Phunchok, T. Value Chain Analysis of Seabuckthorn (Hippophae rhamnoides L.) in Leh Ladakh; Ministry of Agriculture and Farmer Welfare, Government of India: New Dehli, India, 2017.
- Janceva, S.; Andersone, A.; Lauberte, L.; Bikovens, O.; Nikolajeva, V.; Jashina, L.; Zaharova, N.; Telysheva, G.; Senkovs, M.; Rieksts, G.; et al. Sea buckthorn (Hippophae rhamnoides) waste biomass after harvesting as a source of valuable biologically active compounds with nutraceutical and antibacterial potential. Plants 2022, 11, 642. [Google Scholar] [CrossRef] [PubMed]
- Bendorf, F.; Georgesc, A.; Marchidan, A. The valorization in food main the sea buckthorn fruits. In Technical Guide No. 28; Ministerul Agriculturii Si Industriei Alimentare: Bucharest, Romania, 1977. [Google Scholar]
- Sabir, S.M.; Maqsood, H.; Hayat, I.; Khan, M.Q.; Khaliq, A. Elemental and nutritional analysis of seabuck thorn (Hippophae rhamnoides ssp. Turkestanica) berries of Pakistani origin. J. Med. Food 2005, 8, 518–522. [Google Scholar] [CrossRef]
- Hibasami, H.; Mitani, A.; Katsuzaki, H.; Imai, K.; Ypshioka, K.; Komiya, T. Isolation of five types of flavonol from seabuckthorn (Hippophae rhamnoides) and induction of apoptosis by some of the flavonols in human promyelotic leukemia HL-60 cells. Int. J. Mol. Med. 2005, 15, 805–809. [Google Scholar]
- Chaman, S.; Nawazish-I-Husain, S.; Danish, Z.; Farrackh, Z.K. Phytochemical analysis, antioxidant and antibacterial effects of sea buckthorn berries. Pak. J. Pharm. Sci. 2011, 24, 345–351. [Google Scholar]
- Chauhan, A.S.; Negi, P.S.; Ramteke, R.S. Antioxidant and antibacterial activities o aqueous extract of sea buckthorn (Hippophae rhamnoides) seeds. Fitoterapia 2007, 78, 590–592. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-oxidant and anti-enzymatic activities of sea buckthorn (Hippophae rhamnoides L.) fruits modulated by chemical components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef]
- Gâtlan, A.M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Fernandes, V.A.; Müller, A.J.; Sandoval, A.J. Thermal, structural and rheological characteristics of dark chocolate with different compositons. J. Food Eng. 2013, 116, 1226–1231. [Google Scholar] [CrossRef]
- Izidoro, D.R.; Scheer, A.P.; Sierakowski, M.-R.; Haminiuk, C.W.I. Influence of green banana pulp on the rheological behaviour and chemical characteristics of emulsions (mayonnaises). LWT—Food Sci. Technol. 2008, 41, 1018–1028. [Google Scholar] [CrossRef]
- Servais, C.; Jones, R.; Roberts, I. The influence of particle size distribution on the processing of food. J. Food Eng. 2002, 51, 201–208. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Rheological properties, melting behaviours and physical quality characteristics of sucrose-free chocolates processed using inulin/polydextrose bulking mixtures sweetened with stevia and thaumatin extracts. LWT—Food Sci. Technol. 2015, 62, 592–597. [Google Scholar] [CrossRef]
- Afoakwa, E.; Paterson, A.; Fowler, M. Factors infuencing rheological and textural qualities in chocolate—Review. Trends Food Sci. Technol. 2007, 18, 290–298. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Industrial manufacture of sugarfree chocolates applicability of alternative sweeteners and carbohydrate polymers as raw materials in product development. Trends Food Sci. Technol. 2013, 32, 84–96. [Google Scholar] [CrossRef]
- Glicerina, V.; Balestra, F.; Dalla Rosa, M.; Romani, S. Rheological, textural and calorimetric modifications of dark chocolate during process. J. Food Eng. 2013, 119, 173–179. [Google Scholar] [CrossRef]
- Wolf, B. Chocolate Flow Properties Beckett’s Industrial Chocolate Manufacture and Use; Beckett, S.T., Fowler, M., Ziegler, G.R., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2017; pp. 274–297. [Google Scholar]
- Glicerina, V.; Balestra, F.; Dalla Rosa, M.; Romani, S. Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. J. Food Eng. 2016, 169, 165–171. [Google Scholar] [CrossRef]
- Afaokwa, E.O. Chocolate Science and Technology; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Zyzelewicz, D.; Krysiak, W.; Nebesny, E.; Budryn, G. Application of various methods for the determination of the color of cocoa beans roasted under variable process parameters. Eur. Food Res. Technol. 2014, 238, 549–563. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture rheological, microstructure and physical quality characteristics. J. Food Eng. 2014, 226, 1259–1268. [Google Scholar] [CrossRef]
- Lindecrantz, A. Investigation of Seedpowder Technology for Pre-Crystallization Processing for Dark Chocolate- Effect on Fat Crystal Structure and Storage Stability. Master’s Thesis, Charmers University of Technology, Gothenburg, Sweden, 2014. [Google Scholar]
- Muhammad, D.; Saputro, A.; Rottiers, H.; Van de Walle, D.; Dewettinck, K. Physicochemical properties and antioxidant activities of chocolates enriched with engineered cinnamon nanoparticles. Eur. Food Res. Technol. 2018, 244, 1185–1202. [Google Scholar] [CrossRef]
- Miller, K.B.; Stuart, D.A.; Smith, N.L.; Lee, C.Y.; McHale, N.L.; Flanagan, J.A.; Ou, B.; Hurst, W.J. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J. Agric. Food Chem. 2006, 54, 4062–4068. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Göppert, A.; Kammerer, D.R.; Schieber, A.; Carle, R. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur. Food Res. Technol. 2008, 227, 267–275. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Maier, T.; Kammerer, D.R.; Carle, R.; Schieber, A.; Bitsch, I.; Bitsch, R. Polyphenole aus trauben—Erste ergebnisse aus metabolisierungsstudien mit traubentresterextrakten und probanden. Flüssiges Obst. 2008, 75, 240–246. [Google Scholar]
- Orem, A.; Yucesan, F.B.; Orem, C.; Akcan, B.; Kural, B.V.; Alasalvar, C.; Shahidi, F. Hazelnut-enriched diet improves cardiovascular risk biomarkers beyond a lipidlowering effect in hypercholesterolemic subjects. J. Clin Lipidol. 2013, 7, 123–131. [Google Scholar] [CrossRef]
- Loffredo, L.; Perri, L.; Battaglia, S.; Nocella, C.; Menichelli, D.; Cammisotto, V.; Marta, N.; Roberto, C.; Francesco, V. Hazelnut and cocoa spread improves flow-mediated dilatation in smokers. Intern. Emerg. Med. 2018, 13, 1211–1217. [Google Scholar] [CrossRef]
- Ross, K. Concepts important in understanding the health benefits of phenolics in fruits and vegetables: Extractables and non-extractables phenolics and the influence of cells wall polysaccarides on bioaccessibility and bioavailability. Res. Health Nutr. 2014, 2, 29–43. [Google Scholar]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Chen, G.-L.; Chen, S.-G.; Zhao, Y.-Y.; Luo, C.-X.; Li, J.; Gao, Y.-Q. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind. Crops Prod. 2014, 57, 150–157. [Google Scholar] [CrossRef]
- Paz-Yépez, C.; Peinado, I.; Heredia, A.; Andr’es, A. Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Res. Int. 2019, 119, 951–959. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bioaccessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Hasni, I.; Bourassa, P.; Hamdani, S.; Samson, G.; Carpentier, R.; Tajmir-Riahi, H.-A. Interaction of milk α- and β-caseins with tea polyphenols. Food Chem. 2011, 126, 630–639. [Google Scholar] [CrossRef]
- Pedro, N.A.R.; de Oliveira, E.; Cadore, S. Study of the mineral content of chocolate flavoured beverages. Food Chem. 2006, 95, 94–100. [Google Scholar] [CrossRef]
- Dobhal, K.; Singh, N.; Semwal, A.; Negi, A. A brief review on: Hazelnuts. Int. J. Recent Sci. Res. 2018, 9, 23680–23684. [Google Scholar] [CrossRef]
- Banu, C. Tratat de Industrie Alimentară, Ed.; ASAB Bucuresti: Bucharest, Romania, 2009; pp. 578–589. ISSN 978-973-7725-62-2. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Aroyeun, S.O.; Okunade, A.F.; Obatoye, A.O.; Olalekan Adeniran, M.A. Nutritional Profile and Organoleptic Qualities of Milk Chocolate Incorporated with Different Spices. Asian Food Sci. J. 2019, 13, 53426. [Google Scholar] [CrossRef]
- Rada, M.; Lalescu, D.; Alda, L.M.; Stoin, D.; Riviş, A.; Velciov, A.-B. Preliminary research on some nutritional parameters of homemade chocolate with added spices. J. Agroalimentary Proc. Technol. 2020, 26, 223–228. [Google Scholar]
- Ciobanu, M.M.; Postolache, A.N.; Lipşa, F.D.; Munteanu, M.; Rațu, R.N.; Murariu, O.C.; Boișteanu, P.C. Meat Fatty Acid Composition of Wild Boars Hunted in Romania in Relationship to Gender and Age-Class. Animals 2022, 12, 810. [Google Scholar] [CrossRef]
- Sindireva, A.; Golubkina, N.; Bezuglova, H.; Fedotov, M.; Alpatov, A.; Erdenotsogt, E.; Sekara, A.; Murariu, O.C.; Caruso, G. Effects of High Doses of Selenate, Selenite and Nano-Selenium on Biometrical Characteristics, Yield and Biofortification Levels of Vicia faba L. Cultivars. Plants 2023, 12, 2847. [Google Scholar] [CrossRef]
- Ðnç, E.; Segliòa, D.; Galoburda, R.; Krasnova, I. Content of phenolic compounds in various sea buckthorn parts. Proc. Latv. Acad. Sci. 2013, 67, 411–415. [Google Scholar]
- Jones, E.; Hughes, R.E. Foliar ascorbic acid in some angiosperms. Phytochemistry 1983, 22, 2493–2499. [Google Scholar] [CrossRef]
- Brezeanu, C.; Brezeanu, P.M.; Stoleru, V.; Irimia, L.M.; Lipșa, F.D.; Teliban, G.-C.; Ciobanu, M.M.; Murariu, F.; Puiu, I.; Branca, F.; et al. Nutritional Value of New Sweet Pepper Genotypes Grown in Organic System. Agriculture 2022, 12, 1863. [Google Scholar] [CrossRef]
- Avasiloaiei, D.I.; Calara, M.; Brezeanu, P.M.; Murariu, O.C.; Brezeanu, C. On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses. Genes 2023, 14, 955. [Google Scholar] [CrossRef] [PubMed]
Type of Hippophae rhamnoides Powder (TP) × Percentage of Addition (PA) | Texture (N) | A1—Total Shear Energy (mJ) | A2—Shear Energy (mJ) | Cohesiveness | Gummosity (N) |
---|---|---|---|---|---|
Chocolate with no addition | 7.0 ± 0.3 e | 145 ± 9 e | 72 ± 2 e | 0.50 ± 0.01 c | 0.49 ± 0.02 d |
Chocolate with 5% full powder (FP) addition | 7.1 ± 0.2 e | 151 ± 11 de | 76 ± 5 e | 0.50 ± 0.01 c | 0.50 ± 0.02 cd |
Chocolate with 10% full powder (FP) addition | 7.7 ± 0.4 e | 166 ± 13 d | 92 ± 1 d | 0.55 ± 0.02 ab | 0.54 ± 0.02 ac |
Chocolate with 15% full powder (FP) addition | 13.9 ± 0.5 a | 290 ± 18 a | 169 ± 8 a | 0.58 ± 0.02 a | 0.58 ± 0.02 a |
Chocolate with 5% oil-deprived powder (ODP) addition | 8.7 ± 0.3 d | 200 ± 12 c | 109 ± 5 c | 0.51 ± 0.02 bc | 0.48 ± 0.02 d |
Chocolate with 10% oil-deprived powder (ODP) addition | 10.3 ± 0.4 c | 216 ± 13 c | 111 ± 8 c | 0.52 ± 0.02 bc | 0.52 ± 0.02 bd |
Chocolate with 15% oil-deprived powder (ODP) addition | 11.9 ± 0.4 b | 244 ± 15 b | 131 ± 6 b | 0.55 ± 0.02 ab | 0.55 ± 0.02 ab |
Type of Hippophae rhamnoides Powder (TP) × Percentage of Addition (PA) | Dry Matter (%) | Proteins (%) | Fats (%) | pH | L | A | B |
---|---|---|---|---|---|---|---|
Chocolate with no addition | 93 ± 6 b | 11.3 ± 0.4 c | 18 ± 1 e | 6.2 ± 0.1 a | 44 ± 1 e | 5.7 ± 0.1 e | 36 ± 1 a |
Chocolate with 5% full powder (FP) addition | 96 ± 5 ab | 11.5 ± 0.4 bc | 21 ± 1 c | 6.2 ± 0.2 a | 45 ± 0 e | 7.6 ± 0.1 c | 34 ± 2 a |
Chocolate with 10% full powder (FP) addition | 98 ± 7 ab | 11.5 ± 0.5 bc | 24 ± 1 b | 6.1 ± 0.3 a | 45 ± 1 de | 7.6 ± 0.2 c | 25 ± 2 c |
Chocolate with 15% full powder (FP) addition | 99 ± 7 a | 11.8 ± 0.6 bc | 28 ± 1 a | 5.1 ± 0.2 bc | 57 ± 1 a | 9.8 ± 0.1 a | 19 ± 1 e |
Chocolate with 5% oil-deprived powder (ODP) addition | 93 ± 3 b | 11.5 ± 0.4 bc | 19 ± 1 de | 6.0 ± 0.2 a | 50 ± 1 cd | 6.0 ± 0.1 e | 29 ± 1 b |
Chocolate with 10% oil-deprived powder (ODP) addition | 91 ± 2 bc | 12.3 ± 0.4 ab | 20 ± 1 cd | 5.6 ± 0.2 b | 50 ± 1 bc | 6.9 ± 0.1 d | 21 ± 1 d |
Chocolate with 15% oil-deprived powder (ODP) addition | 86 ± 1 c | 12.7 ± 0.4 a | 25 ± 1 b | 4.8 ± 0.2 c | 54 ± 1 ab | 9.1 ± 0.1 b | 19 ± 1 e |
Type of Hippophae rhamnoides Powder (TP) × Percentage of Addition (PA) | Total Carotenoids (mg g−1 f.w.) | β-Carotene (mg g−1 f.w.) | Lycopene (mg g−1 f.w.) | Total Polyphenols (mg g−1 f.w.) | Antioxidant Activity (% Inhibition) | ABTS | Vitamin C (mg 100 g−1 f.w.) |
---|---|---|---|---|---|---|---|
Chocolate with no addition | 1.1 ± 0.1 d | 0.6 ± 0.0 d | 0.3 ± 0.0 d | 0.3 ± 0.1 d | 8 ± 1 d | 39 ± 2 f | 81 ± 5 e |
Chocolate with 5% full powder (FP) addition | 1.3 ± 0.1 d | 0.9 ± 0.1 d | 0.3 ± 0.1 d | 0.3 ± 0.0 d | 8 ± 1 cd | 46 ± 2 d | 88 ± 7 e |
Chocolate with 10% full powder (FP) addition | 3.3 ± 0.2 b | 2.6 ± 0.3 b | 1.2 ± 0.2 b | 0.3 ± 0.1 d | 10 ± 1 c | 59 ± 3 c | 154 ± 9 c |
Chocolate with 15% full powder (FP) addition | 6.3 ± 0.4 a | 4.8 ± 0.4 a | 2.2 ± 0.3 a | 0.6 ± 0.1 b | 18 ± 2 a | 70 ± 4 a | 264 ± 13 b |
Chocolate with 5% oil-deprived powder (ODP) addition | 1.2 ± 0.1 d | 0.7 ± 0.1 d | 0.3 ± 0.0 d | 0.4 ± 0.0 c | 9 ± 1 cd | 41 ± 3 ef | 88 ± 8 e |
Chocolate with 10% oil-deprived powder (ODP) addition | 1.3 ± 0.1 d | 0.8 ± 0.1 d | 0.4 ± 0.0 d | 0.7 ± 0.1 a | 14 ± 1 b | 45 ± 2 de | 132 ± 11 d |
Chocolate with 15% oil-deprived powder (ODP) addition | 2.2 ± 0.1 c | 1.5 ± 0.2 c | 0.7 ± 0.1 c | 0.7 ± 0.1 a | 20 ± 1 a | 65 ± 2 b | 286 ± 10 a |
Type of Hippophae rhamnoides Powder (TP) × Percentage of Addition (PA) | K (mg 100 g−1) | Ca (mg 100 g−1) | Mg (mg 100 g−1) | Na (mg 100 g−1) | P (mg 100 g−1) | Zn (mg 100 g−1) |
---|---|---|---|---|---|---|
Chocolate with no addition | 69 ± 4 a | 144 ± 6 b | 63 ± 2 d | 109 ± 16 | 38 ± 2 bc | 1.70 ± 0.08 a |
Chocolate with 5% full powder (FP) addition | 68 ± 3 a | 151 ± 7 ab | 64 ± 3 d | 111 ± 16 | 38 ± 2 bc | 1.64 ± 0.07 ab |
Chocolate with 10% full powder (FP) addition | 68 ± 3 ab | 155 ± 7 ab | 66 ± 3 cd | 107 ± 16 | 41 ± 2 b | 1.60 ± 0.04 ac |
Chocolate with 15% full powder (FP) addition | 63 ± 3 b | 158 ± 6 a | 74 ± 2 b | 109 ± 16 | 58 ± 2 a | 1.58 ± 0.04 ac |
Chocolate with 5% oil-deprived powder (ODP) addition | 66 ± 4 ab | 145 ± 7 b | 65 ± 3 cd | 110 ± 17 | 36 ± 2 c | 1.68 ± 0.08 ab |
Chocolate with 10% oil-deprived powder (ODP) addition | 63 ± 4 b | 159 ± 7 a | 70 ± 3 bc | 107 ± 17 | 27 ± 2 d | 1.54 ± 0.09 b |
Chocolate with 15% oil-deprived powder (ODP) addition | 61 ± 3 b | 160 ± 7 a | 82 ± 3 a | 109 ± 17 | 17 ± 2 e | 1.47 ± 0.09 c |
n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murariu, O.C.; Lipșa, F.D.; Cârlescu, P.M.; Frunză, G.; Ciobanu, M.M.; Cara, I.G.; Murariu, F.; Stoica, F.; Albu, A.; Tallarita, A.V.; et al. The Effect of Including Sea Buckthorn Berry By-Products on White Chocolate Quality and Bioactive Characteristics under a Circular Economy Context. Plants 2024, 13, 2799. https://doi.org/10.3390/plants13192799
Murariu OC, Lipșa FD, Cârlescu PM, Frunză G, Ciobanu MM, Cara IG, Murariu F, Stoica F, Albu A, Tallarita AV, et al. The Effect of Including Sea Buckthorn Berry By-Products on White Chocolate Quality and Bioactive Characteristics under a Circular Economy Context. Plants. 2024; 13(19):2799. https://doi.org/10.3390/plants13192799
Chicago/Turabian StyleMurariu, Otilia Cristina, Florin Daniel Lipșa, Petru Marian Cârlescu, Gabriela Frunză, Marius Mihai Ciobanu, Irina Gabriela Cara, Florin Murariu, Florina Stoica, Aida Albu, Alessio Vincenzo Tallarita, and et al. 2024. "The Effect of Including Sea Buckthorn Berry By-Products on White Chocolate Quality and Bioactive Characteristics under a Circular Economy Context" Plants 13, no. 19: 2799. https://doi.org/10.3390/plants13192799
APA StyleMurariu, O. C., Lipșa, F. D., Cârlescu, P. M., Frunză, G., Ciobanu, M. M., Cara, I. G., Murariu, F., Stoica, F., Albu, A., Tallarita, A. V., & Caruso, G. (2024). The Effect of Including Sea Buckthorn Berry By-Products on White Chocolate Quality and Bioactive Characteristics under a Circular Economy Context. Plants, 13(19), 2799. https://doi.org/10.3390/plants13192799