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Abstract: Accurately detecting the maturity and 3D position of flowering Chinese cabbage
(Brassica rapa var. chinensis) in natural environments is vital for autonomous robot harvesting in
unstructured farms. The challenge lies in dense planting, small flower buds, similar colors and oc-
clusions. This study proposes a YOLOv8-Improved network integrated with the ByteTrack tracking
algorithm to achieve multi-object detection and 3D positioning of flowering Chinese cabbage plants
in fields. In this study, C2F-MLCA is created by adding a lightweight Mixed Local Channel At-
tention (MLCA) with spatial awareness capability to the C2F module of YOLOv8, which improves
the extraction of spatial feature information in the backbone network. In addition, a P2 detection
layer is added to the neck network, and BiFPN is used instead of PAN to enhance multi-scale fea-
ture fusion and small target detection. Wise-IoU in combination with Inner-IoU is adopted as a
new loss function to optimize the network for different quality samples and different size bound-
ing boxes. Lastly, ByteTrack is integrated for video tracking, and RGB-D camera depth data are used
to estimate cabbage positions. The experimental results show that YOLOv8-Improve achieves a pre-
cision (P) of 86.5% and a recall (R) of 86.0% in detecting the maturity of flowering Chinese cabbage.
Among them, mAP50 and mAP75 reach 91.8% and 61.6%, respectively, representing an improvement
of 2.9% and 4.7% over the original network. Additionally, the number of parameters is reduced by 25.43%.
In summary, the improved YOLOv8 algorithm demonstrates high robustness and real-time detection
performance, thereby providing strong technical support for automated harvesting management.

Keywords: flowering Chinese cabbage; small object; deep learning; ByteTrack; real-time detection

1. Introduction

Flowering Chinese cabbage, a variety of Brassica rapa subspecies of the family Cruciferae,
is one of the main cultivated vegetables in South China; the leaves of the plant can be used
as food, the plant grows rapidly to a height of 20–30 cm within one month, and the stubble
can be left to grow repeatedly, so it has good economic characteristics [1]. Flowering Chinese
cabbage is preferred by many people as it is a vegetable rich in vitamins and other nutrients [2].
Currently, the main stem and leaf crops are mainly hand-picked after manual inspection [3]. It is
worth noting that the maturity time of flowering Chinese cabbage often varies even in the same
carefully cultivated batch, which requires frequent and accurate assessment of the maturity of
each plant to implement timely hand picking. However, the traditional hand-picking method is
not only time-consuming, labor-intensive and inefficient, but also costly, which severely limits
the development of Chinese flowering cabbage industry. Mechanical harvesting and picking can
significantly reduce labor intensity and production costs. The combination of image processing
and machine vision technology can realize accurate real-time detection of Chinese flowering
cabbage to understand its maturity, which can provide the necessary support for automatic
harvesting machines and is one of the cores of future mechanical harvesting technology [4].
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The rapid detection of flowers and fruits is crucial for the development of automated
flower and fruit harvesting robots [5,6], and the prerequisite for accurate and selective
harvesting is the efficient detection of targets using computer vision, which is a challenging
problem [7]. Traditional machine vision techniques focus on intuitive features as the basis
for flower and fruit recognition. With the continuous development of traditional target
detection algorithms, the performance improvement of existing traditional algorithms
has become extremely limited [8]. However, the current research of maturity detection
in leafy vegetables, particularly Chinese cabbage, faces unique challenges. Compared to
the obvious ripening characteristics of fruits, vegetables have very little variation among
individuals at different growth stages. Leafy vegetables, on the other hand, have fewer
detectable traits and pose significant hurdles for non-destructive maturity evaluation [9].
Consequently, there is a notable dearth of research focusing on non-invasive pre-harvest
maturity assessment of Chinese cabbage. Drawing inspiration from China’s established
industrial norms for grading flowering Chinese cabbage, the discernible changes in the
morphology and coloration of cabbage buds across maturity stages emerge as crucial
indicators for maturity assessment [10]. Thus, there is a pressing need to develop innovative
approaches that can overcome the limitations of traditional methods and harness these
indicators for accurate and timely maturity detection in leafy vegetables.

Pornpanomchai et al. [11] utilized the features of herbaceous flowers to design classifi-
cation algorithms for herbaceous flower detection and recognition. Lin et al. [12] proposed
a support vector machine (SVM) that relies on silhouette information SVM to overcome the
problem of light variations and low color contrast for the recognition of citrus and tomato
fruits. Guru et al. [13] segmented flower images by removing the background through a
threshold-based method, specifically utilizing color texture moments, gray-level co-occurrence
matrix and Gabor responses for flower recognition and classification purposes. Guo et al. [14]
used a customized hyperspectral dataset that integrates both spectral and textural attributes of
strawberries to assess their ripeness, achieving a classification accuracy of more than 85%. Al-
though some problems can be solved based on traditional methods, traditional target detection
algorithms still have certain limitations: first, the generation of candidate regions generates
a large amount of redundancy, which significantly increases the computational burden and
results in a waste of resources; second, in the face of variable and complex backgrounds, it
is difficult to accurately capture the key semantic information by relying on low-level visual
feature descriptors, which greatly restricts the applicability and generalization ability of the
algorithms in complex environments [15]. Therefore, when facing complex and changing
natural scenes, such as the high complexity of the background, severe mutual occlusion among
targets and uneven distribution of lighting conditions, traditional target detection algorithms
are often difficult to fully satisfy the requirements of high accuracy and robustness.

In the current agricultural field, deep learning technology has become a mainstream
method in the field of flower, fruit and vegetable detection in view of the strong robustness
and generalization ability it exhibits [16,17]. Compared to traditional machine vision
techniques, deep learning techniques learn more abstract and representative features and
semantic information by constructing deep neural network models, which improves the
generalization ability of the models as well as the accuracy and speed of object detection in
complex environments [18]. Tian et al. [19] proposed an instance segmentation model using
U-Net backbone to improve Mask Scoring ReCNN for detecting and segmenting apple
blossoms with three different growth state levels. Lin et al. [20] improved an algorithm for
strawberry blossom detection based on Faster R-CNN coupled with migration learning
techniques. Strawberry flower detection in outdoor environments was realized in the face
of flower overlapping and complex backgrounds. Chen et al. [21] proposed a strawberry
flower and fruit detection system based on Faster R-CNN with high-resolution ortho images
reconstructed from UAV images. Qi et al. [22] used a highly converged, lightweight deep
learning architecture for tea chrysanthemum flower detection based on YOLO (TCYOLO)
to detect tea chrysanthemum flowers in complex natural environments. Zeng et al. [23]
presented the THYOLO algorithm, a lightweight solution tailored for fast tomato fruit
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detection and ripeness categorization. By incorporating MobileNetV3 and optimizing the
neck channels, they achieved a compact model size of 6.04 MB, but only with a recognition
speed rate of about 26.5 FPS. Summarizing the previous research of these methods on
flower, fruit and vegetable detection, there are still some challenges: first, most of the
models lack the required lightweight and efficient features. Second, the focus is on the
detection speed, and the target size variation is not significant. Most of them concentrate on
scenarios involving a small number of targets in close-range imaging, where the restricted
count and substantial size of the targets significantly diminish the complexity of detection.

In the actual agricultural production process, high-precision vision sensors, integrated
atop picking robots, are capable of omnidirectionally capturing image information of mul-
tiple target objects within the operational area, owing to their expansive field of view.
However, the significant variation in target sizes arising from varying imaging distances
poses challenges in accurately detecting small targets. Furthermore, given the high-density
planting pattern inherent to flowering Chinese cabbage crops, the overlapping and occlu-
sion of flowers and leaves complicate the task of distinguishing detection targets from
the background. Meanwhile, the dynamic movement of the camera at different operating
distances not only leads to instantaneous changes in the shape and size of the target objects
in the field of view, but also raises the accuracy and robustness criteria that the detection
algorithms need to fulfill in response to such dynamic environmental changes. In practical
operation scenarios, it is particularly important to realize efficient and accurate detection
of multi-size and multi-targets in view of the possible efficiency difference between robot
picking speed and real-time detection processing speed.

Accordingly, this study is devoted to overcoming the detection challenges inherent to
multi-size and multi-target scenarios and to achieve non-destructive maturity detection. To
this end, it proposes an innovative flower detection and localization network for flowering
Chinese cabbage. The network integrates the color, morphology and other key features
of the flowers to accurately determine the maturity status of flowering Chinese cabbage.
To achieve real-time detection in video, we integrated the ByteTrack tracking algorithm
and introduced the RealSense D435i depth camera (Intel D435i depth camera is from Intel
Corporation, Santa Clara, CA, USA) to extract comprehensive depth data, subsequently
acquiring the precise 3D position of the detection target within the camera coordinate
system. To ensure the broad representativeness and accuracy of the research data, a
flowering Chinese cabbage dataset was meticulously constructed, containing multiple
sizes and target categories, and targets were labeled with great care, including flowers
and buds. Regarding the model design, a comprehensive examination was conducted
of the principles and characteristics of the analytical attention mechanism, multi-feature
fusion mechanism and loss function. Thereafter, a targeted optimization of the YOLOv8
network architecture was undertaken. A series of experiments demonstrated that the
enhanced network exhibited markedly enhanced performance across multiple dimensions.
Specifically, the network demonstrated the capacity to efficiently and accurately recognize
a range of flowering Chinese cabbage targets, while also exhibiting remarkable stability
and robustness in addressing multi-size and high-density target detection tasks. Notably,
the network exhibited enhanced recognition accuracy and a reduced false detection rate
in the context of small target detection, which is a crucial advancement for enhancing the
precision and efficiency of automated agricultural harvesting.

2. Experimental Result and Analysis
2.1. Experimental Platform and Parameter Settings

All experiments conducted in this study were performed on the same platform of
computer. The hardware configuration consisted of a Windows 11 Professional operating
system, 13th generation processor Intel® Core i5-13400F@2.50 GHz, 32 G DDR5 RAM and
NVIDIA GeForce RTX 4070 with 12 GB (NVIDIA GeForce RTX 4070 GPUs is from NVIDIA
Corporation, Santa Clara, CA, USA) of memory. The programming language utilized was
Python 3.10, and the development framework employed was PyTorch 2.1.1. Furthermore,
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CUDA 12.1 was employed to accelerate the training process. The input image size was
configured to 640 × 640, with a batch size of 16. The SGD optimizer was employed, and
both the initial and termination learning rates were set to 0.01. After 100 epochs of training,
the optimal weight file was obtained and used for model evaluation.

2.2. Comparison Experiments of Different Models

This experiment assesses the performance of several advanced target detection models
on datasets collected in natural environments. The models include Faster R-CNN, SSD,
RetinaNet, YOLOv5, YOLOv8, YOLOv9 and RE-DETR [24–30]. A comparison of the
performance of these models in detecting the maturity of flowering Chinese cabbage is
presented in Table 1, which provides specific details of the comparison.

Table 1. Comparison of the performance among various network models. (The best data for that
column is shown in bold).

Model Precision (%) Recall (%) F1 mAP50 (%) GFlops (G)

Faster R-CNN 70.7 81.5 0.76 80.1 132.7
SSD 78.3 55.9 0.65 75.7 274.9

RetinaNet 72.1 88.5 0.80 87.3 128.3
YOLOv5 83.1 83.3 0.83 88.0 4.1
YOLOv8 84.9 83.3 0.84 88.9 8.1
YOLOv9 79.3 74.6 0.77 81.1 18.2
RT-DETR 66.6 66.9 0.67 68.9 100.6

YOLOv8-Improved 86.5 86.0 0.86 91.8 16.5

Faster R-CNN demonstrates remarkable recall in identifying the ripeness of flowering
Chinese cabbage, suggesting that it can efficiently minimize the number of missed targets.
However, its detection precision is relatively low, which may be due to the model’s two-stage
detection method, which, while capable of mitigating missed detections, is deficient in establishing
a feature pyramid and integrating shallow feature information, resulting in a lack of precision in
the details of the target, with mAP50 of 80.1% and a precision rate of only 70.7%.

In contrast, SSD enhances the precision of detection by integrating the predictive out-
comes of diverse feature maps with varying resolutions, thereby enabling the model to more
accurately align targets with the diverse shapes and sizes of flowering Chinese cabbage.
However, in comparison to the two-stage detection approach, the recall rate of SSD exhibits a
notable decline, leading to a comparatively low mAP50 of 75.7% among all evaluated models.

RetinaNet effectively extracts the feature information of flowering Chinese cabbage
through a multi-stage feature fusion method, which, in turn, improves the detection
accuracy. Considering the issue of positive and negative sample imbalance, which is
prevalent in one-stage target detection methods, RetinaNet employs the Focal Loss function
to achieve a more balanced outcome, thereby markedly enhancing its performance. In the
comparative modeling experiments, RetinaNet exhibits a notable improvement of 87.3% in
mAP50 compared to the previous two.

YOLOv5 is based on the feature pyramid, which makes full use of the feature infor-
mation of different layers by introducing the CSPnet structure. To extract features, the
feature layer backbone is divided into two distinct branches. which are extracted separately
and then fused, thus making full use of the feature information of different layers. The
deepening of the network layer further improves the learning ability of the model, and the
utilization of residual blocks mitigates the issue of gradient vanishing that arises from deep
networks. Nevertheless, YOLOv5 attains 83.3% and 83.1%, which correspond to recall and
precision, respectively, on the task of detecting the maturity of flowering Chinese cabbage,
indicating that there is still room for further improvement.

However, YOLOv8 uses a new C2F module to achieve further lightweighting, chang-
ing the head part from a coupled head to a decoupled head and adopting an anchor-free
strategy to solve the conflict between classification and regression tasks. This optimization
allows its mAP50 to reach a good value of 88.9%.
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YOLOv9 incorporates the Generalized ELAN (GELAN) architecture to achieve opti-
mized parameters, computational complexity, accuracy and inference speed effects. The
concept of Programmable Gradient Information (PGI) is introduced, which helps in gener-
ating reliable gradients through assisted reversible branching and ensures that the deep
features retain the key features needed to perform the target task. However, these changes
failed to allow the model to show higher recall and precision in the difficult target detection
task on this dataset, with a mAP50 of 81.1%.

The RT-DETR model achieves real-time target detection by optimizing the encoder
and introducing a new attention mechanism. It is able to provide a high frame rate while
maintaining a high precision. However, this model did not show better precision, recall and
mAP50 in the dataset of this study, with results of 66.7%, 66.9% and 68.9%, respectively. As a
Transformer model well balances the detection speed and accuracy, it will be advantageous
in real-time detection, but it also occupies more computational resources.

The YOLOv8-Improved model exhibits optimized performance in feature extraction,
fusion methodology and loss function, resulting in the best overall performance. Specif-
ically, it achieves a recall rate of 86.5% and a precision of 86.0%, ultimately yielding the
highest average precision in all comparative experiments with a mAP50 of 91.8%. Addition-
ally, its comprehensive evaluation index, F1, is 0.86.

Figure 1 represents the original sample image with annotation, with a smaller and
partially obscured portion of the flowering Chinese cabbage. The original label contains
17 targets of Chinese cabbage.
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Figure 2 illustrates the performance of various models in detecting outcomes under a
sunlit environment. The blue circle denotes the area where a detection was missed, while
the black circle represents the region where a false detection occurred. Of the models
evaluated, YOLOv8-Improved demonstrated the most optimal detection performance,
as illustrated in Figure 2h, exhibiting a minimal number of missed detections and false
positives. As shown in Figure 2d, YOLOv5 also demonstrated satisfactory detection perfor-
mance, albeit with a slight increase in the number of false detected targets in comparison to
YOLOv8-Improved. As seen in Figure 2b–f, respectively, one-stage detection models, SSD,
RetinaNet, YOLOv5, YOLOv8 and YOLOv9, exhibited a tendency to miss certain regions,
with SSD demonstrating the greatest propensity for this phenomenon. Additionally, the
detected targets often correspond to anchor frame sizes that are incongruent with the actual
dimensions of the objects in question. In comparison, Faster R-CNN as a two-stage detec-
tion model, as shown in Figure 2a, exhibits a lower miss rate than the one-stage models,
yet it also displays a slight proclivity for false detection targets.

Figure 3 illustrates the performance of various target detection models in detection
scenarios under cloudy conditions. While RT-DETR, in Figure 3g, demonstrates efficacy
in processing certain targets, it is observed that some targets are incorrectly identified. In
the one-stage detection model, as shown in Figure 3b,c,f, the SSD, RetinaNet and YOLOv9
models exhibit a greater tendency to miss regions during detection, with the SSD model
demonstrating particularly notable deficiencies in this regard. In contrast, in the two-stage
detection model, as seen in Figure 3a, Faster R-CNN demonstrates a lower leakage rate and
exhibits superior detection performance compared to many one-stage models. However,
a minor proportion of false detection targets are also observed. All models demonstrate
robust performance in the detection of larger targets. Nevertheless, when confronted with
smaller targets, the detection capabilities of the different models exhibit notable disparities.

Plants 2024, 13, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 1. Original test image of detection sample. 

(a) (b) (c) 

Figure 2. Cont.



Plants 2024, 13, 2808 7 of 25
Plants 2024, 13, x FOR PEER REVIEW 7 of 27 
 

 

Figure 2. Prediction results under sunlight of different models: (a) Faster R-CNN; (b) SSD; (c) Reti-
naNet; (d) YOLOv5; (e) YOLOv8; (f) YOLOv9; (g) RT-DETR; (h) YOLOv8-Improved (Ours). 

(d) (e) (f) 

  
(g) (h) 

Figure 2. Prediction results under sunlight of different models: (a) Faster R-CNN; (b) SSD;
(c) RetinaNet; (d) YOLOv5; (e) YOLOv8; (f) YOLOv9; (g) RT-DETR; (h) YOLOv8-Improved (Ours).



Plants 2024, 13, 2808 8 of 25

Plants 2024, 13, x FOR PEER REVIEW 8 of 27 
 

 

Figure 3 illustrates the performance of various target detection models in detection 
scenarios under cloudy conditions. While RT-DETR, in Figure 3g, demonstrates efficacy 
in processing certain targets, it is observed that some targets are incorrectly identified. In 
the one-stage detection model, as shown in Figure 3b,c,f, the SSD, RetinaNet and YOLOv9 
models exhibit a greater tendency to miss regions during detection, with the SSD model 
demonstrating particularly notable deficiencies in this regard. In contrast, in the two-stage 
detection model, as seen in Figure 3a, Faster R-CNN demonstrates a lower leakage rate 
and exhibits superior detection performance compared to many one-stage models. How-
ever, a minor proportion of false detection targets are also observed. All models demon-
strate robust performance in the detection of larger targets. Nevertheless, when con-
fronted with smaller targets, the detection capabilities of the different models exhibit no-
table disparities. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Plants 2024, 13, x FOR PEER REVIEW 9 of 27 
 

 

Figure 3. Prediction outcomes under cloudy conditions of different models: (a) Faster R-CNN; (b) 
SSD; (c) RetinaNet; (d) YOLOv5; (e) YOLOv8; (f) YOLOv9; (g) RT-DETR; (h) YOLOv8-Improved 
(Ours). 

2.3. Ablation Experiments 
Four enhancements are made to the original YOLOv8n model (W: adding a small 

object detection layer; X: adding MLCA mechanism to the C2F structure and applying it 
to the backbone; Y: using BiFPN as a neck network; and Z: replacing the original loss 
function with Wise-inner-IoU. In this context, X, Y and Z all add a small object detection 
layer). Each improved module except module W is separately incorporated into the basic 
model for ablation experiments, aimed at demonstrating the performance of the enhanced 
modules. The results are presented in Table 2. The confusion matrices of each model are 
detailed in Figure A1 of Appendix A. 

Table 2. Comparison results of different models for ablation experiments. (The best data for that 
column is shown in bold) 

Tags W X Y Z P 
(%) 

R 
(%) 

mAP50 
(%) 

mAP75 
(%) 

GFlops 
(G) 

Params 
(M) 

1     84.9 83.3 88.9 56.9 8.1 3.01 
2 √    84.0 85.7 90.1 58.7 12.2 2.92 
3 √ √   85.6 85.9 90.7 59.2 12.2 2.92 
4 √  √  85.3 86.8 91.4 59.1 16.5 2.18 
5 √   √ 84.0 86.4 90.3 59.2 12.2 2.92 
6 √ √ √ √ 86.5 86.0 91.8 61.6 16.5 2.18 

When a small object detection layer was added to the model, the mAP50 improved by 
1.2%. After incorporating the MLCA mechanism with the C2F module into the base 
model, the mAP50 increased by 1.8%. The inclusion of the attention mechanism effectively 
enhanced the feature extraction ability of the network and suppressed the interference of 
useless information. The mAP50 increased by 2.5% after replacing PAN as a neck network 
with BiFPN. Replacing CIoU with Wise-Inner-IoU increased the mAP50 by 1.4% at this 
point. Finally, the best performance was exhibited after combining the small object detec-
tion layer, C2F-MLCA, BiFPN and Wise-Inner-IoU. As a result, Params was reduced by 
25.34%, while precision, recall, mAP50 and mAP75 improved by 1.6%, 2.7%, 2.9% and 4.7%, 
respectively. Figure 4a shows the loss curve on the training set, while Figure 4b shows the 
P-R curve on the validation set. This observation suggests that the combination of MLCA, 
BiFPN and Wise-inner-IoU effectively reduces the loss values and enhances the detection 
performance. The FPS data of each model in the ablation experiments are shown in Figure 
5; due to the increase in the computation and the slowing down of the inference speed, 
the YOLOv8-Improved model experiences a minor reduction in FPS when compared to 

  
(g) (h) 

Figure 3. Prediction outcomes under cloudy conditions of different models: (a) Faster R-CNN; (b) SSD;
(c) RetinaNet; (d) YOLOv5; (e) YOLOv8; (f) YOLOv9; (g) RT-DETR; (h) YOLOv8-Improved (Ours).



Plants 2024, 13, 2808 9 of 25

2.3. Ablation Experiments

Four enhancements are made to the original YOLOv8n model (W: adding a small
object detection layer; X: adding MLCA mechanism to the C2F structure and applying it to
the backbone; Y: using BiFPN as a neck network; and Z: replacing the original loss function
with Wise-inner-IoU. In this context, X, Y and Z all add a small object detection layer). Each
improved module except module W is separately incorporated into the basic model for
ablation experiments, aimed at demonstrating the performance of the enhanced modules.
The results are presented in Table 2. The confusion matrices of each model are detailed in
Figure A1 of Appendix A.

Table 2. Comparison results of different models for ablation experiments. (The best data for that
column is shown in bold).

Tags W X Y Z P
(%)

R
(%)

mAP50
(%)

mAP75
(%)

GFlops
(G)

Params
(M)

1 84.9 83.3 88.9 56.9 8.1 3.01
2

√
84.0 85.7 90.1 58.7 12.2 2.92

3
√ √

85.6 85.9 90.7 59.2 12.2 2.92
4

√ √
85.3 86.8 91.4 59.1 16.5 2.18

5
√ √

84.0 86.4 90.3 59.2 12.2 2.92
6

√ √ √ √
86.5 86.0 91.8 61.6 16.5 2.18

When a small object detection layer was added to the model, the mAP50 improved
by 1.2%. After incorporating the MLCA mechanism with the C2F module into the base
model, the mAP50 increased by 1.8%. The inclusion of the attention mechanism effectively
enhanced the feature extraction ability of the network and suppressed the interference of
useless information. The mAP50 increased by 2.5% after replacing PAN as a neck network
with BiFPN. Replacing CIoU with Wise-Inner-IoU increased the mAP50 by 1.4% at this point.
Finally, the best performance was exhibited after combining the small object detection layer,
C2F-MLCA, BiFPN and Wise-Inner-IoU. As a result, Params was reduced by 25.34%, while
precision, recall, mAP50 and mAP75 improved by 1.6%, 2.7%, 2.9% and 4.7%, respectively.
Figure 4a shows the loss curve on the training set, while Figure 4b shows the P-R curve on
the validation set. This observation suggests that the combination of MLCA, BiFPN and
Wise-inner-IoU effectively reduces the loss values and enhances the detection performance.
The FPS data of each model in the ablation experiments are shown in Figure 5; due to the
increase in the computation and the slowing down of the inference speed, the YOLOv8-
Improved model experiences a minor reduction in FPS when compared to the baseline
model. This decrement, however, remains within an acceptable threshold for a real-time
detection model capable of processing over 60 frames per second.

Attention Mechanism

In this study, for the YOLOv8-Improved model, the MLCA mechanism is introduced,
with focus on the effects of its parameter “ks” (i.e., Size) which represents the number
of blocks in the W or H dimension, and the weights (i.e., Weight) when global and local
branches are summed up, as detailed in Section 3.2.2, on the model performance. By
adjusting different combinations of the two parameters, the role of the attention mech-
anism on the model’s precision, recall and mAP50 metrics is systematically analyzed.
Table 3 represents the experimental results.
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Table 3. Comparison experiment of attention mechanism parameters. (The best data for that column
is shown in bold).

Size Weight Precision (%) Recall (%) mAP50 (%)

5 0.3 85.2 85.5 90.1
5 0.5 86.5 86.0 91.8
5 0.7 84.3 87.3 90.7
5 1.0 84.7 87.3 91.0
3 0.5 83.3 87.4 90.3
7 0.5 84.8 84.8 90.5

The experimental results show that when the size is set to 5 and the weight is set to 0.5,
the model exhibits optimal comprehensive performance, with precision reaching 86.5% and
mAP50 as high as 91.8%, indicating that this configuration performs excellently in accurately
recognizing and localizing targets. Although recall reaches a peak of 87.4% for size = 3,
weight = 0.5 and size = 5, weight = 7 conditions, in the overall evaluation, the significant
improvement of the combination of (5, 0.5) on mAP50 makes it the optimal configuration.

The size of ks is directly correlated with the quantity of spatial information introduced as
a basis for model reference. In consideration of the characteristics of the sample data in this
experiment, the 5 × 5 ks size is identified as a superior option, striking a balance between
the sufficiency and necessity of spatial information. An excessively large ks may result in
the introduction of superfluous spatial information, which impedes the model’s capacity to
discern pivotal target characteristics. Conversely, an insufficiently small ks may lead to an
inadequate extraction of spatial information, which, in turn, affects the accuracy of detection.

The local weight parameter serves to regulate the weight allocation when local features
are fused with global features. The experimental results demonstrate that the model perfor-
mance is optimal when this parameter is set to 0.5, indicating that a balanced combination
of the two types of feature information can enhance the detection effect more effectively on
this dataset. This verifies the superiority of the average reference strategy.

2.4. Application Performance of Tracking

In this study, we integrated the YOLOv8-Improved model with the ByteTrack tracking
algorithm to develop an efficient and robust system for the detection of the maturity of
flowering Chinese cabbage in dynamic scenes. The model is capable of continuous and stable
tracking of the detected targets in complex dynamic environments, effectively mitigating the
issue of target loss due to occlusion, rapid movement, or illumination changes.

In the design, particular emphasis was placed on the collection and processing of data.
By setting the resolution of the RGB-D camera to 1280 × 720 and maintaining a frame rate
of 30 fps, we ensured the high quality and smoothness of the video stream, which provided
a solid foundation for the subsequent model detection. Furthermore, synchronizing the
color stream of the depth camera with the depth stream was a critical step. This ensures
that precise corresponding depth information is obtained for each frame, which is essential
for subsequent accurate positioning and analysis of flowering Chinese cabbage maturity in
three-dimensional space [31].

As illustrated in Figure 6, the system demonstrated the capacity to accurately identify
flowering Chinese cabbage at varying degrees of maturity, concurrently providing precise co-
ordinates of every detected target in the coordinate system of the camera. The implementation
of this functionality facilitates a more comprehensive analysis of the growth status of flowering
Chinese cabbage in three-dimensional space, thereby providing robust technical support for
precision agriculture management. By comparing the spatial distribution and growth trend of
flowering Chinese cabbage at different maturity levels, agricultural management can develop
a more scientific picking plan and enhance the efficiency of agricultural production.
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3. Materials and Methods
3.1. Data Acquisition

The dataset utilized in this study was procured from a field of flowering Chinese
cabbage in its natural environment. The images were captured between October and
November 2023 at South China Agricultural University in Guangzhou City, Guangdong
Province, China, utilizing a specifically designed data acquisition platform with adjustable
height. A mobile phone camera, specifically the OPPO Find X2 (OPPO Find X2 is from
OPPO Guangdong Mobile Communications Co., Ltd., Dongguan, Guangdong, China)
with a resolution of 3840 × 2160, was used for image capture, complemented by an
Intel D435i depth camera for select research components. The camera, positioned at a
height of 0.8 to 1 m from the plant canopy, was mounted on the platform and moved
at a constant speed of approximately 0.15 m/s. The dataset comprised 1016 images,
encompassing 11,970 target samples of flowering Chinese cabbage, capturing various
stages from germination to flowering and maturity. The data collection spanned different
time periods, including mornings and afternoons, under varying light conditions ranging
from soft early morning light to intense midday sun and slanting evening light, to ensure
the diversity of experimental data. The dataset was labeled and randomly divided into
training, validation and test sets in a 7:2:1 ratio. The specific number of data samples
is presented in Table 4, and an illustration of the data types is provided in Figure 7. To
guarantee the training generalization and efficiency of the model, the image resolution of
the training set was uniformly adjusted to 640 × 640.
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Table 4. Data samples of different varieties of flowering Chinese cabbage.

States Training Validation Test Total

Growing 2868 781 434 4063
Ripe 1901 499 314 2714

Over-Ripe 1608 411 259 2278
Harvested 1991 579 325 2895

Model samples 8368 2270 1332 11,970
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3.2. YOLO v8-Improved Model
3.2.1. YOLO·v8 Network Structure

As a one-stage detection algorithm, the YOLO series of networks is distinguished.
Among the YOLO networks, YOLOv8 [24] is regarded as a particularly effective network.
YOLOv8 consists of backbone, neck and head. The backbone network adopts a similar struc-
ture to YOLOv5, which improves the original CSPLayer module into a C2F module, which
consists of a cross-stage partial bottleneck structure with two convolutional layers, which
effectively facilitates the fusion of high-level features with contextual information [25]. A
spatial pyramid structure (SPFF) featuring multiple size pooling windows is used at the
conclusion of the backbone, aiming to further enhance its capacity for feature extraction.
YOLOv8 employs a dual feature fusion strategy of FPN (Feature Pyramid Network) + PAN
(Path Aggregation Network) as the neck network to achieve multi-scale feature extraction
and enrich the detection of small targets. The head network, on the other hand, utilizes
an anchor-frame-free model with a decoupled head structure to handle the regression and
classification tasks separately, while the CIoU (Complete-IoU) [32] and DFL (Distribute
Feature Loss) [33] loss functions are employed for closed frame prediction. Compared to
the anchor-frame-based method, the number of parameters is reduced and better adapted
to small targets with large shape differences.

To address the challenges of small size, high target similarity, overlap and occlusion
faced in flowering Chinese cabbage flower detection, this study makes targeted improve-
ments based on YOLOv8. Specifically, we introduced the C2F-MLCA module in the
backbone network to enhance the feature expression capability; optimized the neck net-
work structure with BiFPN (Bidirectional Feature Pyramid Network) for more effective
fusion of multi-scale features; replaced the loss function with Wise-Inner-IoU to improve
the accuracy of bounding box prediction; and added a detection layer output for small
targets to the head network to better accommodate the detection needs of flowering Chi-
nese cabbage. Figure 8 demonstrates the improved YOLO network framework. Next, the
specific implementation details of these improvements are elaborated.
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3.2.2. BiFPN

To optimize the target detection architecture, we augment the existing P3, P4 and P5
detection layers with a P2 layer. The P2 layer has a narrow receptive field and is specialized
for recognizing small target objects. When integrated with the BiFPN neck, it enables seamless
bidirectional feature data exchange between layers. This multi-scale feature fusion technique
enhances the network’s ability to localize small targets because the relevant features are
prominently located in lower-level, high-resolution maps. The addition of P2 enhances
the BiFPN’s ability to merge multiple levels of features, allowing the network to better
integrate details from lower levels and abstract semantics from higher levels. In particular, the
bidirectional information flow within the BiFPN ensures comprehensive contextual evaluation
during feature integration, which is important for distinguishing visually similar targets.
BiFPN employs a weighted feature fusion mechanism to integrate features of disparate levels.
During the training process, the fused weights are learned, thereby ensuring optimal feature
integration [34]. The structure of this feature fusion network is shown in Figure 9b. The
majority of neck networks employ a straightforward aggregation approach for the integration
of disparate input features, lacking any form of differentiation. However, this results in an
uneven contribution to the fused output features, due to the inherent differences in resolution
between the input features. In BiFPN, the input to the neck is given a multi-scale feature list
→
P

in
= (pin

l1 , pin
l2 , . . .), where pin

l1 denotes the features of the li layer. The BiFPN transformation

aggregates disparate features to produce a new feature list
→
P

out
= f (

→
P

in
) as output.
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Given the varying resolutions of the input feature maps, there is a natural variability in their
contributions to the output feature maps. To optimize this fusion process, BiFPN introduces a
more fine-grained strategy, in contrast to the previous traditional approach that simply treats all
input features as equal weights. It assigns unique weight parameters to each input feature, which
are adaptively learned during the training phase of the network, and the model automatically
assigns appropriate weights to each input feature. In this network, fast normalized feature fusion
will be used as a weighting method as shown in the following equations:

O = ∑
i

wi
∈ +∑

j
wj

·li (1)
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where wi is required to be non-negative ( wi ≥ 0), so a ReLU (Rectified Linear Unit) acti-
vation function is subsequently applied to ensure nonlinear processing. To alleviate the
numerical instability problem, a minimum value ∈= 0.0001 is specifically introduced.
Ultimately, the BiFPN achieves an effective integration of features under the combined
influence of bidirectional connectivity and a normalized fusion approach. Specifically,
the fused features in layers 3 and 4 in BiFPN can be expressed as shown in the following
equations, respectively.

Ptd
n = Block

(
w1·Pin

n + w2·Resize
(

Pin
n+1
)

w1 + w2+ ∈

)
(2)

Pout
n = Block

(
w’

1·Pin
n + w’

2·Ptd
n + w’

3·Resize
(

Pout
n−1
)

w’
1+w’

2 + w’
3+ ∈

)
(3)

In this context, for top-down paths, Ptd
3 refers to the intermediate feature representation

on layer 3, which is located on that particular layer of the path; correspondingly, on layer 3
of bottom-up paths, Pout

3 represents the output feature, which is the result of the path on
that layer. Similarly, Ptd

4 refers to the intermediate features on layer 4 of the top-down
path, while Pout

4 represents the output features on layer 4 of the bottom-up path. The term
“Resize” refers to the up-sampling or down-sampling operation performed. In addition,
“Block” refers to the feature processing convolutional operations.

3.2.3. Mixed Local Channel Attention

The growth of flowers in the context of the complex background of the flowering Chinese
cabbage plant exhibits a high degree of irregularity and morphological diversity. This is
evident not only in the differences in the size of flowers at different stages of growth but also
in the size and morphology of flowers between plants at the same stage of maturity. Further-
more, the growth direction of flowers is haphazard and disorganized, and the perspective
effect during imaging is influenced by the perceived target distance, resulting in significant
alterations in the morphology, rotation angle and spatial position of objects within the field
of view. However, the primitive network is constrained in its capacity to process spatial
transformation information. This presents a significant challenge for accurately detecting their
maturity. Many current channel attention mechanisms exclude spatial feature information,
which limits the model’s performance in feature representation and target detection tasks.
Moreover, the spatial attention module is often not used in practical applications because it
tends to increase the computational complexity. For these issues, it may be more effective if
the model fuses the channel and information of spatial and local features [35].

Accordingly, this study proposes the incorporation of the MLCA (Mixed Local Channel
Attention) mechanism into the C2F module. The module depicted in Figure 10 illustrates the
underlying principle of MLCA. The input feature vectors of MLCA undergo two pooling steps.
Initially, the input is transformed into a vector of dimensions 1 ∗ C ∗ ks ∗ ks, facilitating the ex-
traction of local spatial information through the initial local pooling operation. Building upon
the initial stage, the input is transformed into a vector through two distinct branches. which
contains global information and local spatial information. Subsequently, one-dimensional
convolution is applied, followed by inverse pooling to restore the original resolution of the
individual vectors. Finally, the information from both branches is fused to facilitate hybrid
attention. The size of the convolution kernel, denoted as “k”, is proportional to the channel
dimension C. This implies that the local cross-channel interaction information is captured by
considering only the relationship between each channel and its k neighboring channels. The
selection of k is determined according to Equation (4) [36]:

k = Φ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(4)
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where C denotes the number of channels, k represents the size of the convolution kernel,
γ and b are hyperparameters with a default value of 2, and the term “odd” specifies that k
should be an odd number. If k is even, 1 is added to ensure it becomes odd.
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Figure 10. Mixed Local Channel Attention (MLCA): (a) Structural diagram; (b) Schematic diagram.

MLCA is able to combine channel and spatial information, as well as local and global
information simultaneously. This comprehensive information integration helps the model
to better capture the features of small-sized targets, while the spatial attention mechanisms
help the model to distinguish subtle differences between different targets and focus on critical
regions in the image, even if these regions are occluded by other targets. And by suppressing
irrelevant background information, the model can locate the occluded targets more accurately.

3.2.4. Wise-Inner-IoU

During the experiments, we observed that although high-quality training samples can
enhance the network fitting ability, it is also easy for the model to ignore the potential effects
of low-quality samples, especially the uneven distribution of sample quality due to the large
morphological changes and labeling subjectivity during the growth of flowering Chinese
cabbage. Blind bounding box regression (BBR) enhancement of low-quality samples may
impair localization performance. Existing BBR methods lack the flexibility to adapt to
different detectors and tasks [37]. More importantly, existing bounding box regression
methods often lack sufficient flexibility to adapt themselves to different detectors and tasks
and are not very generalizable [38].

In order to overcome the limitations of the existing bounding box regression (BBR) loss
function, this paper proposes a method that integrates two loss functions, Wise-IoU and
Inner-IoU, and their related strategies, and expects to construct a more comprehensive and
efficient one by combining the dynamic non-monotonic FM of Wise-IoU and the meticulous
evaluation of the anchor frame quality of the Inner-IoU loss function to further enhance the
performance of the target detection model.

In this paper, Wise-IoU version 3 (WIoU-v3), which introduces a dynamic non-
monotonic focusing mechanism (FM), is used, and the principle is as follows: the degree of
the outlier of the anchor box is characterized by the ratio of L∗

IoU to LIoU as shown in the
following equation:

β =
L*

IoU

LIoU
∈ [0,+∞) (5)

where LIoU is the exponential running average with momentum. The anchor frame is
of high quality and has a small outlier. To prioritize anchor frames of average quality
for the bounding box regression (BBR), we assign a small gradient gain to such frames.
Furthermore, anchor frames with significant outliers are assigned a reduced gradient
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gain, which mitigates the generation of large, detrimental gradients from low-quality
examples effectively. Non-monotonic focusing factors using β are constructed and applied
to Wise-IoU version 1 (WIoU v1) as shown in the following equation:

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(6)

where δ makes r = 1 when β = δ. The anchor frames receive the maximum gain of gradient
when their outliers satisfy β = C (C is a constant value). Since LIoU and the quality classifica-
tion criteria of anchor frames are dynamic, so WIoU v3 is designed to facilitate the allocation
of gradient gains in a manner that best adapts to the current situation at every moment.

In the Inner-IoU method, we introduce a core scale factor ratio (“ratio”), which pro-
vides flexibility in the size adjustment of the auxiliary bounding box. The issue of restricted
generalization capacity, a common limitation of existing methods, is addressed by em-
ploying auxiliary bounding boxes of varying scales for diverse datasets and detector
specifications. Specifically, given the anchor denoted as B and ground truth (GT) box
denoted as Bgt, as illustrated in Figure 11, the center (red dot) of the GT box is identified
as (xgt

c , ygt
c ), whereas the center (red dot) of the anchor is labeled as (xc, yc). The width and

height of the GT box are, respectively, represented as wgt and hgt, while w and h denotes
the width and height of the anchor. To make sure that the size and shape of targets in
different datasets match more efficiently, a scale factor variable called “ratio” is defined,
whose value is usually set within a reasonable range value [0.5, 1.5]. By adjusting the ratio
factor, the size of the auxiliary bounding box can be controlled in a flexible manner, thereby
optimizing the performance of the detector on targets of different sizes and shapes. This
results in an improved overall detection effect.
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Consequently, the application of the Inner-IoU loss to the Wise-IoU bounding box
regression loss function yields the following equation:

LInner−WIoUv3 = LWIoUv3 + IoU − IoUinner (7)

The auxiliary bounding box computational loss at different scales facilitates the con-
vergence process, while the dynamic allocation strategy of the Wise-IoU gradient gain
effectively mitigates the detrimental effect of low-quality samples, thus improving the
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detection precision and effectiveness of the network. Introduction of an auxiliary bounding
box, a scaled-down version of the original, is vital for optimizing loss functions in complex
scenes with small, overlapping and occluded targets. It focuses on overlapping regions,
enhancing accuracy in highly overlapping scenarios. Fine-tuning its scale enables Inner-IoU
to concentrate on small targets’ cores, mitigating background noise and boosting small
target detection. At the same time, combined with the dynamic focusing mechanism of
Wise-IoU, the loss function can intelligently adjust its focus so that the model focuses more
on targets or regions that are difficult to distinguish during the training process, such as
highly similar or heavily occluded targets.

3.3. Tracking Based on ByteTrack

The inconsistency in the maturity period of flowering Chinese cabbage crops due to
differences in growth cycles requires improved real-time detection capability of the model
to achieve mobile scanning detection and synchronized harvesting to avoid economic losses.
It is difficult to use methods that rely only on target detection and image classification
algorithms to accurately reflect the actual ripening state and location of flowering Chinese
cabbage in real time when facing the dynamically changing field environment, thus limiting
the effectiveness of automated mechanical harvesting. In order to accurately detect the
category and location of flowering Chinese cabbage during the mobile detection process,
this study introduced the ByteTrack [39] target tracking algorithm to solve the above
problems, aiming to achieve continuous and stable tracking of the flowering Chinese
cabbage plants in complex dynamic scenes and to ensure that the ripening status of each
flowering Chinese cabbage plant is continuously monitored during the mobile scanning
process. Meanwhile, to enhance the detection accuracy and spatial localization capability,
this study adopted the Intel RealSense D435i depth camera (Intel D435i depth camera is
from Intel Corporation, Santa Clara, CA, USA) as the data acquisition device, which is
capable of real-time capturing and extracting the 3D spatial information of the flowering
Chinese cabbage plants, including the depth, distance and other key parameters.

In the context of monitoring Chinese flowering cabbages, ByteTrack, a detection-based
tracking (DBT) algorithm, is employed to generate tracks corresponding to individual
cabbages. These tracks are subsequently matched frame-by-frame with the detection results
produced by the YOLOv8-Improved model, enabling effective object tracking. The overall
workflow of the model is depicted in Figure 12. In this context, the term “tracks” refers to
the data representing the trajectories of objects. The ByteTrack algorithm categorizes the
detection boxes generated by the YOLOv8-Improved model into two distinct categories:
high-score boxes and low-score boxes. These categories are determined based on the
confidence scores associated with each box. Additionally, ByteTrack divides the tracks into
two types: long-term tracks and short-term tracks. Subsequently, the long-term tracks are
matched with the high-score boxes, which have been identified through the application of
the Kalman filter [40]. A successful match results in an immediate update of the position,
whereas a failed match leads to the subsequent matching with low-score boxes.

Prior to the advent of ByteTrack, conventional detection-based tracking (DBT) algorithms
placed exclusive reliance on high-scoring detection boxes, effectively discarding low-scoring
ones. This approach frequently resulted in the loss of genuine targets and the fragmentation
of trajectories. ByteTrack transformed this methodology by incorporating all detection boxes,
including those with low scores, into the tracking process. This method not only enhanced the
overall performance of the tracker but also addressed issues such as transient target disappear-
ance which can be caused by occlusion, motion blur and other challenges. Furthermore, by
incorporating low-scoring boxes, ByteTrack mitigated the issues of trajectory fragmentation
and frequent ID switches that often occur due to low target confidence scores. Finally, Byte-
Track achieved this enhancement without compromising on tracking speed, demonstrating its
exceptional efficiency and reliability in real-world applications.
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3.4. Evaluation Metrics

Performance metrics are utilized to comprehensively evaluate the model’s perfor-
mance: precision (P), recall (R), average precision (AP) and comprehensive evaluation
index (F1). These are defined in accordance with the equations presented in (8)–(11):

Precision =
TP

TP + FP
× 100% (8)

Recall =
TP

TP + FN
× 100% (9)

AP =
∫ 1

0
p(r)dr (10)

F1 = 2 × Precision × Recall
Precision + Recall

(11)

The term “true positives” (TP) is used to indicate the number of target object samples
that are correctly predicted by the model. In contrast, the term “false negatives” (FN) is
used to indicate the number of target object samples that are incorrectly identified by the
model. In contrast, false positives (FP) represent the number of instances where the model
erroneously identifies non-target objects as target objects. Precision–recall (PR) curves were
constructed by calculating a series of precision and recall values for varying confidence
thresholds. Subsequently, the precision values for each recall were integrated along the
precision–recall curve, resulting in the calculation of the average precision (AP) [41].

The computational complexity and performance of the model are measured using
GFlops (giga floating point operations per second):

GFlops =
Nflops/109

T
(12)
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FPS =
1

T100
(13)

where Nflops denotes the overall count of floating-point operations executed by the model,
which contains addition, multiplication and division. Analogously, the time required to
execute the model and the total time required to make inferences of 100 images are denoted
by T and T100, respectively, both quantified in seconds.

4. Discussion

In this study, we carefully constructed a diversified dataset to comprehensively cover
the types of data characteristics under different environmental conditions to ensure the
generalization ability of the model. Based on the biological characteristics and growth cycle of
the target plants, we innovatively divided them into four growth stages, which laid a solid
foundation for the subsequent model training and evaluation. Through a series of rigorous
comparative experiments, the results showed that the YOLOv8-improved model achieves a
significant improvement in detection accuracy and demonstrates excellent detection capability,
which fully validates the robustness and effectiveness of the model in complex agricultural
environments. Furthermore, we integrated the YOLOv8-Improved model with the ByteTrack
tracking algorithm, which strengthens the real-time detection ability of the model in video
streams and achieves accurate localization and continuous tracking of the target object by
relying on the RGB-D camera, providing strong technical support for the intelligent operation
of the harvesting robot. The experimental data show that the integrated system can meet the
strict real-time requirements of harvesting operations while ensuring high detection accuracy.

While this study has achieved notable advancements in detecting the maturity of flow-
ering Chinese cabbage, it is crucial to acknowledge that there is potential for enhancing the
system’s performance, and the present research has the following limitations: (1) Improv-
ing the interpretability of the model. Given the interpretability challenges associated with
convolutional neural networks, it is recommended that visualization tools such as heatmaps
be employed to parse the model’s decision-making basis during the detection process. This
approach allows for the assessment of the impact of different locations on the detection efficacy
of flowering Chinese cabbage. As illustrated in Figure 13, the degree of red hue intensity in the
heatmap correlates with its influence on target detection. (2) The YOLOv8-Improved model
performed well in detecting the vast majority of flowering Chinese cabbage, but still faced
several challenges. Specifically, immature Chinese cabbage has limited detection accuracy
due to its low pixel occupancy in the image, coupled with the high similarity between the
shoots and the background and the fact that they are often occluded by the surrounding
leaves. To solve this problem, future research will be devoted to refining the classification
system by expanding the dataset containing samples from different growth periods to enhance
the model’s ability to recognize subtle features. At the same time, the model structure is
optimized to enhance its ability to extract and understand features in complex scenarios,
aiming to reduce the loss of key semantic information so as to achieve more accurate detection
of immature Chinese cabbage [42]. (3). This study preliminarily verifies the feasibility of
real-time detection and preliminary estimation of the spatial location of flowering Chinese
cabbage using RGB-D cameras, but the current 3D localization accuracy is not yet sufficient to
support the demand for refined automated picking operations. Given that the core focus of
this study is to improve the target detection accuracy, there are deficiencies in the in-depth
exploration and experimental validation of the tracking algorithm. In the future, we will focus
on combining the efficient target detection network with advanced tracking algorithms and
optimize the algorithm design and parameter adjustments to achieve a seamless connection
between detection and tracking tasks, so as to satisfy the needs of automatic harvesting
systems for high-precision real-time tracking and detection of targets [43].
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5. Conclusions

The real-time and accurate detection of the maturity of flowering Chinese cabbage
flowers represents a crucial foundation for the development of an efficient and intelligent
automated harvesting mechanical system for Chinese cabbage. Such a system would
facilitate improvements in the efficiency of harvesting Chinese cabbage and the accuracy of
crop quality management. To address this challenge, an innovative solution, designated
as YOLOv8-Improved, is proposed in this study. The model proposed in this paper
enhances the feature representation of channel and spatial dimensions by integrating the
MLCA mechanism in the YOLOv8 network, weighting different channels and local regions
to improve the model’s ability to recognize small-sized targets, to reduce leakage and
misdetection, and to enhance the model’s ability to distinguish between similar targets;
using BiFPN neck network and adding P2 detection layer, and by combining high-level
semantic information and low-level detail information, the network can more accurately
localize and identify occluded or overlapped targets and improve the detection accuracy of
small-sized targets; adding the Wise-Inner-IoU loss function, which efficiently focuses on
the core region of small-sized targets, combined with the dynamic focusing mechanism to
intelligently adjust its focus, so that the model focuses more on those hard-to-distinguish
targets or regions during the training process. These improvements markedly enhance the
model’s capacity to detect multi-target, multi-category and multi-size Chinese flowering
cabbages, with precision and recall reaching 86.0% and 86.5%, respectively, and mAP50.
The mAP75 reached 91.8% and 61.6%, respectively, with a more pronounced improvement
in model parameters, which decreased by 25.34%. The model demonstrates remarkable
detection capabilities across all stages of Chinese flowering cabbage growth, facilitating
real-time monitoring of the crop’s condition and assessment of its maturity. This precise
information enables the automated harvesting machinery to periodically select only the
ripened cabbage, preventing economic loss due to over-ripeness and unharvested crops.
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Abbreviations
The following abbreviations are used in this manuscript:
RGB-D Red, Green, Blue, and Depth
MLCA Mixed Local Channel Attention
BiFPN Bidirectional Feature Pyramid Network
ReLU Rectified Linear Unit
IoU Intersection over Union
DFL Distributional Feature Loss
FPS Frames Per Second
Params Parameters
GFlops Giga Floating-point Operations Per Second
TP True Positive
FP False Positive
FN False Negative
P Precision
R Recall

Appendix A

The appendix to this section contains the confusion matrix of various models in the
ablation experiment, which is presented here to ensure the fluency of the article.

Figure A1. Cont.
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Figure A1. Confusion matrices: (a) YOLOv8; (b) YOLOv8-W; (c) YOLOv8-WX; (d) YOLOv8-WY;
(e) YOLOv8-WZ; (f) YOLOv8-Improved.
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