Species Substitution and Changes in the Structure, Volume, and Biomass of Forest in a Savanna
Abstract
:1. Introduction
2. Results
2.1. Phytosociology, Floristics, and Diversity
2.2. Horizontal and Vertical Structure
2.3. Aboveground Volume and Biomass
2.4. Dynamics
3. Discussion
3.1. Phytosociology, Floristics, and Diversity
3.2. Horizontal Structure and Vertical Structure
3.3. Volume and Aboveground Biomass
3.4. Dynamics
4. Materials and Methods
4.1. Study Area
4.2. Forest Inventory
4.3. Data Analysis
4.3.1. Floristics and Diversity
4.3.2. Structure of the Vegetation
Phytosociological Structure
Diametric and Vertical Structure
4.3.3. Quantification of Aboveground Volume and Biomass Stocks
4.3.4. Vegetation Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World’s Forests 2022: Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies; FAO: Italy, Rome, 2022; pp. 4–25. [Google Scholar]
- Ministério do Meio Ambiente. Avaliação e Ações Prioritárias para a Conservação da Biodiversidade do Cerrado e Pantanal; Ministério de Meio Ambiente: Brasília, Brazil, 1999; 45p.
- Oliveira-Filho, A.T.; Ratter, J.A. Vegetation physiognomies and woody flora of the cerrado biome. In The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna; Columbia University Press: Columbia, UK, 2002; pp. 91–120. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Mittermeier, C.G. Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. J. Mammal. 2002, 83, 630–633. [Google Scholar] [CrossRef]
- Bustamante, M.M.; Nardoto, G.B.; Pinto, A.S.; Resende, J.C.F.; Takahashi, F.S.C.; Vieira, L.C.G. Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems. Braz. J. Biol. 2012, 72, 655–671. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.G.; Oliveira Filho, F.J.B.; Scaramuzza, C.A.M.; Scarano, F.R.; et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 2017, 1, 1–3. [Google Scholar] [CrossRef]
- Dalle Laste, K.C.; Durigan, G.; Andersen, A.N. Biodiversity responses to land-use and restoration in a global biodiversity hotspot: Ant communities in Brazilian Cerrado. Austral Ecol. 2019, 44, 313–326. [Google Scholar] [CrossRef]
- Françoso, R.D.; Brandão, R.; Nogueira, C.C.; Salmona, Y.B.; Machado, R.B.; Colli, G.R. Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Nat. Conserv. 2015, 13, 35–40. [Google Scholar] [CrossRef]
- Sano, E.E.; Rodrigues, A.A.; Martins, E.S.; Bettiol, G.M.; Bustamante, M.M.; Bezerra, A.S.; Couto, A.F., Jr.; Vasconcelos, V.; Schüler, J.; Bolfe, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 2019, 232, 818–828. [Google Scholar] [CrossRef]
- Klink, C.A. The Role of Vegetation on the Dynamics of Water and Fire in the Cerrado Ecosystems: Implications for Management and Conservation. Plants 2020, 9, 1803. [Google Scholar] [CrossRef]
- Mendonça, R.C.; Felfili, J.M.; Walter, B.M.T.; Silva Júnior, M.C.; Rezende, A.V.; Filgueiras, T.S.; Nogueira, P.E. Flora Vascular do Bioma Cerrado: Checklist com 12.356 espécies. In Cerrado: Ecologia e Flora; Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa Cerrados: Brasília, Brasil, 2008; Volume 1, pp. 213–228. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Maracahipes, L. Estrutura e composição florística da vegetação lenhosa em cerrado rupestre na transição Cerrado-Floresta Amazônica, Mato Grosso, Brasil. Biota Neotrop. 2011, 11, 133–141. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Walter, B.M.T. As principais fitofisionomias do bioma Cerrado. In Cerrado: Ecologia e Flora; Sano, S.M., Almeida, S.P., Eds.; Embrapa Cerrados: Brasília, Brasil, 2008; Volume 1, pp. 151–212. [Google Scholar]
- Marimon Junior, B.H.; Haridasan, M. Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot. Bras. 2005, 19, 913–926. [Google Scholar] [CrossRef]
- Solórzano, A.; Pinto, J.R.R.; Felfili, J.M.; Hay, J.D.V. Perfil florístico e estrutural do componente lenhoso em seis áreas de cerradão ao longo do bioma Cerrado. Acta Bot. Bras. 2012, 26, 328–341. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.T.; Ratter, J.A. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb. J. Bot. 1995, 52, 141–194. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W. H. Freeman: New York, NY, USA, 1955; 887p. [Google Scholar]
- Scolforo, J.R.S.; Thiersch, C.R. Biometria Florestal: Modelos de Crescimento e Produção Florestal; UFLA/FAEPE: Lavras, Brasil, 2006; 393p. [Google Scholar]
- Odum, E. Ecologia; Guanabara Koogan: Rio de Janeiro, Brasil, 1988; 434p. [Google Scholar]
- Roquette, J.G. Distribuição da biomassa no Cerrado e a sua importância na armazenagem do carbono. Ciência Florest. 2018, 28, 1350–1363. [Google Scholar] [CrossRef]
- Coelho, A.J.P.; Magnago, L.F.S.; Matos, F.A.R.; Mota, N.M.; Meira-Neto, J.A.A. Effects of anthropogenic disturbances on biodiversity and biomass stock of Cerrado, the Brazilian savanna. Biodivers. Conserv. 2020, 29, 3151–3168. [Google Scholar] [CrossRef]
- Colli, G.R.; Vieira, C.R.; Dianese, J.C. Biodiversity and conservation of the Cerrado: Recent advances and old challenges. Biodivers. Conserv. 2020, 29, 1465–1475. [Google Scholar] [CrossRef]
- Morandi, P.S.; Marimon, B.S.; Marimon-Junior, B.H.; Ratter, J.A.; Feldpausch, T.R.; Colli, G.R.; Munhoz, C.B.R.; Silva Júnior, M.C.; Lima, E.S.; Haidar, R.F.; et al. Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodivers. Conserv. 2020, 29, 1519–1536. [Google Scholar] [CrossRef]
- Zimbres, B.; Rodriguez-Veiga, P.; Shimbo, J.Z.; da Conceição Bispo, P.; Balzter, H.; Bustamante, M.; Roitman, I.; Haidar, R.; Miranda, S.; Gomes, L.; et al. Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For. Ecol. Manag. 2021, 499, 1–15. [Google Scholar] [CrossRef]
- Sales, M.C.G.; Brito Filho, E.G.; Campos, M.C.C.; Relvas, C.H.G.; Santos, L.A.C.; Gomes, M.M.; da Cunha, J.M.; Oliveira, F.P.; Almeira, R.G. Seasonality, soil attributes and root biomass in Cerrado, Cerradão and forest environments, western Amazon. Biosci. J. 2022, 38, e38092. [Google Scholar] [CrossRef]
- Franklin, O.; Harrison, S.P.; Dewar, R.; Farrior, C.E.; Brännström, Å.; Dieckmann, U.; Pietsch, S.; Falster, D.; Cramer, W.; Loreau, M.; et al. Organizing principles for vegetation dynamics. Nat. Plants 2020, 6, 444–453. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef]
- Rezende, A.V.; Vale, A.T.; Sanquetta, C.R.; Figueiredo Filho, A.; Felfili, J.M. Comparação de modelos matemáticos para estimativa do volume, biomassa e estoque de carbono da vegetação lenhosa de um cerrado sensu stricto em Brasília, DF. Sci. For. 2006, 71, 65–73. [Google Scholar]
- Miguel, E.P.; Rezende, A.V.; Leal, F.A.; Matricardi, E.A.T.; Vale, A.T.D.; Pereira, R.S. Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite. Pesqui. Agropecu. Bras. 2015, 50, 829–839. [Google Scholar] [CrossRef]
- Schilling, A.C.; Batista, J.L.F. Curva de acumulação de espécies e suficiência amostral em florestas tropicais. Rev. Bras. Bot. 2008, 31, 179–187. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Costa, M.P.; Nappo, M.E.; Caçador, F.R.D.; Barros, H.H.D. Avaliação do processo de reabilitação de um trecho de floresta ciliar na Bacia do Rio Itapemirim-ES. Rev. Árvore 2010, 34, 834–851. [Google Scholar] [CrossRef]
- Bueno, M.L.; Neves, D.R.M.; Souza, A.F.; Oliveira Junior, E.; Damasceno Junior, G.A.; Pontara, V.; Laura, V.A.; Ratter, J.A. Influence of edaphic factors on the floristic composition of an area of Cerradão in the Brazilian central-west. Acta Bot. Bras. 2013, 27, 445–455. [Google Scholar] [CrossRef]
- Rodrigues, R.F.; Araújo, G.M. Estrutura da vegetação e características edáficas de um Cerradão em solo distrófico e em solo mesotrófico no Triângulo Mineiro. Biosci. J. 2013, 29, 2013–2029. [Google Scholar]
- Gomes, B.Z.; Martins, F.R.; Tamashiro, J.Y. Estrutura do cerradão e da transição entre cerradão e floresta paludícola num fragmento da International Paper do Brasil Ltda., em Brotas, SP. Rev. Bras. Bot. 2004, 27, 249–262. [Google Scholar] [CrossRef]
- Scolforo, J.R.S.; Mello, J.M. Inventário Florestal; ESAL/FAEPE: Lavras, Brasil, 2006; p. 126. [Google Scholar]
- Polhill, R.M.; Raven, P.H.; Stirton, C.H. Evolution and Systematics of the Leguminosae; Royal Botanic Gardens: Richmond, UK, 1981; pp. 1–26.
- Bruneau, A.; Doyle, J.J.; Herendeen, P.; Hughes, C.; Kenicer, G.; Lewis, G.; Mackinder, B.; Pennington, R.T.; Sanderson, M.J.; Wojciechowski, M.F.; et al. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species–rich clades. Taxon 2013, 62, 217–248. [Google Scholar] [CrossRef]
- Mews, H.A.; Marimon, B.S.; Maracahipes, L.; Franczak, D.D.; Marimon-Junior, B.H. Dinâmica da comunidade lenhosa de um Cerrado Típico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotrop. 2011, 11, 73–82. [Google Scholar] [CrossRef]
- Goodland, R. Analise Ecológica da vegetação do Cerrado. In Ecologia do Cerrado; Ferri, M.G., Ed.; Amado, E., Translator; Itatiaia: Belo Horizonte, Brasil, 1979; pp. 61–160. [Google Scholar]
- Santana, O.A.; Encinas, J.I.; Inácio, E.D.S.B.; Amorim, L.B.D.; Vilaverde, J.L.J. Relação entre o índice de avermelhamento do solo e o estoque de carbono na biomassa aérea da vegetação de cerrado. Ciênc. Florest. 2013, 23, 783–794. [Google Scholar] [CrossRef]
- Scolforo, H.F.; Scolforo, J.R.S.; Mello, C.R.; Mello, J.M.; Ferraz Filho, A.C. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland. PLoS ONE 2015, 10, e0128781. [Google Scholar] [CrossRef] [PubMed]
- Morais, V.A.; Scolforo, J.R.S.; Silva, C.A.; Mello, J.M.; Gomide, L.R.; Oliveira, A.D. Carbon and biomass stocks in a fragment of Cerradão in Minas Gerais state, Brazil. Cerne 2013, 19, 237–245. [Google Scholar] [CrossRef]
- Brown, S.; Gillespie, A.J.R.; Lugo, A.E. Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data. For. Sci. 1989, 35, 881–902. [Google Scholar] [CrossRef]
- Fernandes, A.H.B.M.; Salis, S.M.; Fernandes, F.A.; Crispim, S.M.A. Estoques de Carbono do Estrato Arbóreo de Cerrados no Pantanal de Nhecolândia. Comun. Téc. 2008, 68, 1–5. [Google Scholar]
- Silva, L.A.G.C. Biomas Presentes no Estado do Tocantins. Nota Técnica Câmara dos Deputados. Available online: https://bd.camara.leg.br/bd/handle/bdcamara/1424 (accessed on 7 June 2024).
- Clements, F.E. Research Methods in Ecology; University Publishing Company: Lincoln, NE, USA, 1905; 512p. [Google Scholar]
- Marques, E.Q.; Marimon-Junior, B.H.; Marimon, B.S.; Matricardi, E.A.; Mews, H.A.; Colli, G.R. Redefining the Cerrado–Amazonia transition: Implications for conservation. Biodivers. Conserv. 2020, 29, 1501–1517. [Google Scholar] [CrossRef]
- Rossi, L.M.B.; Koehler, H.S.; Sanquetta, C.R.; Arce, J.E. Modelagem de mortalidade em florestas naturais. Floresta 2007, 37, 1–17. [Google Scholar] [CrossRef]
- Felfili, J.M. Growth, recruitment and mortality in the Gama gallery forest in central Brazil over a six-year period (1985–1991). J. Trop. Ecol. 1995, 11, 67–83. [Google Scholar] [CrossRef]
- Tocantins. Lei Ordinária nº 1224, de 11 de Maio de 2001. Leis Estaduais. Available online: https://Leisestaduais.com.br (accessed on 7 June 2024).
- Prance, G.T.; Pirani, J.R. Caryocaraceae. Flora e Funga do Brasil. Available online: https://floradobrasil.jbrj.gov.br/FB16719 (accessed on 7 June 2024).
- Ratter, J.A. Some notes on two types of Cerradão occurring in Northeastern Mato Grosso. In III Simpósio Sobre o Cerrado; Governo do Estado: São Paulo, Brazil, 1971. [Google Scholar]
- Köppen, W. Das Geographische System der Klimate; Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Thornthwaite, C.W. An Approach Toward a Rational Classification of Climate; American Geographical Society: New York, NY, USA, 1948; pp. 55–94. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V061 [Data set]. NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mod11a1v061/ (accessed on 13 June 2024).
- Péllico Netto, S.; Brena, D. Inventário Florestal; UFPR: Curitiba, Brasil, 1997; 316p. [Google Scholar]
- Byng, J.; Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Judd, W.S.; Mabberley, D.J.; Sennikov, A.N.; Soltis, D.E.; Soltis, P.S.; Stevens, P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Mori, S.A.; Silva, L.A.M.; Lisboa, G.; Coradin, L. Manual de Manejo de Herbário Fanerogâmico; CEPLAC: Ilhéus, Brasil, 1989; 103p. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, PU, USA, 1988; pp. 81–99. [Google Scholar]
- Hutcheson, K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 1970, 29, 151–154. [Google Scholar] [CrossRef]
- May, R.M. Patterns of species abundance and diversity. In Ecology and Evolution of Communities; Cody, M.L., Diamond, J.M., Eds.; Belknap Press of the Harvard University Press: Cambridge, UK, 1975; pp. 81–120. [Google Scholar]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Pielou, E.C. Ecological Diversity; John Wiley & Sons: New York, NY, USA, 1975; 165p. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: New Jersey, NJ, USA, 1999. [Google Scholar]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 2012; 5, 3–21. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 1 June 2024).
- Taylor, D.; Kent, M.; Coker, P. Vegetation Description and Analysis: A Practical Approach. Geogr. J. 1993, 159, 237. [Google Scholar] [CrossRef]
- Lamprecht, H. Ensaio sobre unos métodos para el análisis estructural de los bosques tropicales. Acta Cient. Venez. 1962, 13, 57–65. [Google Scholar]
- Stephens, M.A. Use of the Kolmogorov–Smirnov, Cramér–Von Mises and Related Statistics Without Extensive Tables. J. R Stat. Soc. Ser. B Stat. Methodol. 1970, 32, 115–122. [Google Scholar] [CrossRef]
- Miguel, E.P.; Rezende, A.V.; Leal, F.A.; Matricardi, E.A.T.; Encinas, J.M.I.; Miranda, J.F.N. Floristic, structural, and allometric equations to estimate arboreal volume and biomass in a cerradão site. Semin. Ciênc. Agrár. 2017, 38, 1691–1702. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef]
- Oliveira, G.M.V. Densidade da Madeira em Minas Gerais: Amostragem, Espacialização e Relação com Variáveis Ambientais. Ph.D. Thesis, Universidade Federal de Lavras, Lavras, Brazil, 2014. [Google Scholar]
- Silva, C.J. Densidade Básica e Potencial Energético de Espécies Lenhosas do Cerrado do Estado de Tocantins. Ph.D. Thesis, Universidade de Brasília, Brasília, Brazil, 2014. [Google Scholar]
- Réjou-Méchain, M.; Tanguy, A.; Piponiot, C.; Chave, J.; Hérault, B. biomass: An R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 2017, 8, 1163–1167. [Google Scholar] [CrossRef]
- Campos, J.C.C.; Leite, H.G. Mensuração Florestal: Perguntas e Respostas, 5th ed.; UFV: Viçosa, Brazil, 2017; 636p. [Google Scholar]
- Sheil, D.; Burslem, D.F.R.P.; Alder, D. The Interpretation and Misinterpretation of Mortality Rate Measures. J. Ecol. 1995, 83, 331–333. [Google Scholar] [CrossRef]
- Korning, J.; Balslev, H. Growth and mortality of trees in Amazonian tropical rain forest in Ecuador. J. Veg. Sci. 1994, 5, 77–86. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.T.; Mello, J.M.; Scolforo, J.R.S. Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduous forest in south-eastern Brazil over a five-year period (1987–1992). Plant Ecol. Former. Veg. 1997, 131, 45–66. [Google Scholar] [CrossRef]
Parameter | Monitoring Year | ||
---|---|---|---|
2012 | 2020 | 2023 | |
Number of Species (S) | 69 | 69 | 70 |
Number of Trees (trees/ha) | 1135 | 1165 | 1229 |
Hmax * or ln(S) | 4.23 | 4.23 | 4.25 |
Shannon–Wiener Index (H′) | 3.22 | 3.31 | 3.33 |
Pielou’s Evenness Index (J′) | 0.76 | 0.78 | 0.78 |
Parameter | Period | Unit | |
---|---|---|---|
2012–2020 | 2020–2023 | ||
Time Interval | 8 | 3 | years |
Mortality | 214 | 90 | trees/ha |
Recruitment | 245 | 154 | trees/ha |
Mortality Rate (M) | 2.57 | 2.64 | %/year |
Recruitment Rate (R) | 2.90 | 4.34 | %/year |
Turnover Rate (Trot) | 2.74 | 3.49 | %/year |
Half-life Time (t½) | 26.53 | 25.86 | years |
Doubling Time (t2) | 24.23 | 16.30 | years |
Turnover Time (trot) | 25.38 | 21.08 | years |
Absolute Growth in volume | 24.28 ns | 15.16 ns | m3/ha |
Absolute Growth in aboveground biomass | 20.56 * | 13.50 ns | Mg/ha |
Volume growth rate | 2.50 | 3.47 | %/year |
Aboveground biomass growth rate | 3.06 | 4.30 | %/year |
Species | Family | V (m3/ha) | IPAV (m3/ha/Year) | Average | |||
---|---|---|---|---|---|---|---|
2012 | 2020 | 2023 | 2012–2020 | 2020–2023 | |||
Emmotum nitens | Metteniusaceae | 12.33 | 20.07 | 25.27 | 0.97 | 1.73 | 1.35 |
Ocotea canaliculata | Lauraceae | 7.40 | 12.58 | 15.15 | 0.65 | 0.86 | 0.75 |
Tapirira guianensis | Anacardiaceae | 12.12 | 13.32 | 14.27 | 0.15 | 0.32 | 0.23 |
Parkia platycephala | Fabaceae | 10.24 | 9.62 | 10.10 | −0.08 | 0.16 | 0.04 |
Mezilaurus itauba | Lauraceae | 5.54 | 8.06 | 9.36 | 0.32 | 0.44 | 0.38 |
Myrcia fenzliana | Myrtaceae | 12.45 | 10.65 | 9.21 | −0.23 | −0.48 | −0.35 |
Caryocar coriaceum | Caryocaraceae | 8.23 | 7.51 | 7.99 | −0.09 | 0.16 | 0.04 |
Tachigali vulgaris | Fabaceae | 6.00 | 6.56 | 7.76 | 0.07 | 0.40 | 0.24 |
Sacoglottis guianensis | Humiriaceae | 1.64 | 4.52 | 6.58 | 0.36 | 0.69 | 0.52 |
Xylopia aromatica | Annonaceae | 5.83 | 7.10 | 6.02 | 0.16 | −0.36 | −0.10 |
Total (10 species) | 81.78 | 99.97 | 111.72 | 2.27 | 3.92 | 3.09 | |
Total (sampled) | 121.47 A | 145.75 AB | 160.91 B | 3.03 | 5.05 | 4.04 |
Species | Family | AGB (Mg/ha) | IPAAGB (Mg/ha/Year) | Average | |||
---|---|---|---|---|---|---|---|
2012 | 2020 | 2023 | 2012–2020 | 2020–2023 | |||
Emmotum nitens | Metteniusaceae | 11.46 | 19.28 | 24.47 | 0.98 | 1.73 | 1.35 |
Tapirira guianensis | Anacardiaceae | 7.17 | 7.95 | 8.62 | 0.10 | 0.22 | 0.16 |
Ocotea canaliculata | Lauraceae | 3.67 | 6.32 | 7.69 | 0.33 | 0.46 | 0.39 |
Mezilaurus itauba | Lauraceae | 4.13 | 6.25 | 7.34 | 0.27 | 0.36 | 0.31 |
Parkia platycephala | Fabaceae | 6.69 | 6.50 | 6.92 | −0.02 | 0.14 | 0.06 |
Myrcia fenzliana | Myrtaceae | 8.58 | 7.40 | 6.38 | −0.15 | −0.34 | −0.24 |
Tachigali vulgaris | Fabaceae | 4.66 | 5.26 | 6.36 | 0.07 | 0.37 | 0.22 |
Caryocar coriaceum | Caryocaraceae | 5.31 | 4.97 | 5.29 | −0.04 | 0.11 | 0.03 |
Sacoglottis guianensis | Humiriaceae | 1.21 | 3.37 | 4.97 | 0.27 | 0.53 | 0.40 |
Miconia cuspidata | Melastomataceae | 1.67 | 3.20 | 4.48 | 0.19 | 0.43 | 0.31 |
Total (10 species) | 54.55 | 70.50 | 82.53 | 1.99 | 4.01 | 3.00 | |
Total (sampled) | 84.0 A | 104.6 B | 118.1 B | 2.57 | 4.50 | 3.54 |
Variable | Formula |
---|---|
Shannon–Wiener Index (H′) | |
Pielou’s Evenness (J′) |
Variable | Unit | Formula |
---|---|---|
Basal Area of species i (Gi) | m2 | |
Absolute Density of species i (DAi) | trees/ha | |
Relative Density of species i (DRi) | % | |
Absolute Dominance of species i (DoAi) | m2/ha | |
Relative Dominance of species i (DoRi) | % | |
Absolute Frequency of species i (FAi) | % | |
Relative Frequency of species i (FRi) | % | |
Importance Value of species i (IVi) | % |
Species | ρ | Precision | Species | ρ | Precision |
---|---|---|---|---|---|
Agonandra brasiliensis Miers ex Benth. & Hook.f. | 0.82 | Species | Moquilea egleri (Prance) Sothers & Prance | 0.64 | Species |
Andira cordata Arroyo ex R.T.Penn. & H.C.Lima | 0.77 | Genus | Licania kunthiana Hook.f. | 0.88 | Species |
Aspidosperma macrocarpon Mart. & Zucc. | 0.71 | Species | Leptobalanus octandrus Sothers & Prance | 0.76 | Species |
Bocageopsis multiflora (Mart.) R.E.Fr. | 0.61 | Species | Mabea fistulifera Mart. | 0.64 | Species |
Bowdichia virgilioides Kunth | 0.86 | Species | Machaerium acutifolium Vogel | 0.68 | Species |
Terminalia tetraphylla (Aubl.) Gere & Boatwr. | 0.62 | Species | Maprounea guianensis Aubl. | 0.70 | Species |
Byrsonima crassifolia (L.) Kunth | 0.58 | Species | Matayba guianensis Aubl. | 0.81 | Species |
Byrsonima pachyphylla A.Juss. | 0.68 | Species | Mezilaurus itauba (Meisn.) Taub. ex Mez | 0.73 | Species |
Byrsonima sericea DC. | 0.72 | Species | Miconia albicans (Sw.) Steud. | 0.69 | Species |
Caryocar coriaceum Wittm. | 0.69 | Genus | Miconia cuspidata Naudin | 0.88 | Species |
Casearia arborea (Rich.) Urb. | 0.57 | Species | Mouriri glazioviana Cogn. | 0.84 | Genus |
Connarus perrottetii (DC.) Planch. | 0.55 | Species | Mouriri pusa Gardner | 0.84 | Genus |
Copaifera langsdorffii Desf. | 0.65 | Species | Myrcia fenzliana O.Berg | 0.73 | Species |
Cordiera sessilis (Vell.) Kuntze | 0.68 | Species | Myrcia splendens (Sw.) DC. | 0.80 | Species |
Dalbergia miscolobium Benth. | 0.62 | Species | Ocotea canaliculata (Rich.) Mez | 0.48 | Species |
Davilla elliptica A.St.-Hil. | 0.49 | Species | Ocotea nitida (Meisn.) Rohwer | 0.54 | Species |
Didymopanax morototoni (Aubl.) Decne. & Planch. | 0.46 | Species | Ouratea hexasperma (A.St.-Hil.) Baill. | 0.63 | Species |
Dimorphandra gardneriana Tul. | 0.79 | Genus | Parkia platycephala Benth. | 0.69 | Species |
Diospyros sericea A.DC. | 0.60 | Species | Physocalymma scaberrimum Pohl | 0.85 | Species |
Emmotum nitens (Benth.) Miers | 0.93 | Species | Plathymenia reticulata Benth. | 0.50 | Species |
Eriotheca gracilipes (K.Schum.) A.Robyns | 0.47 | Species | Pouteria ramiflora (Mart.) Radlk. | 0.77 | Species |
Eriotheca pubescens (Mart.) Schott & Endl. | 0.50 | Species | Protium heptaphyllum (Aubl.) Marchand | 0.63 | Species |
Erythroxylum squamatum Sw. | 0.71 | Species | Qualea grandiflora Mart. | 0.61 | Species |
Ferdinandusa elliptica (Pohl) Pohl | 0.65 | Species | Qualea parviflora Mart. | 0.73 | Species |
Hancornia speciosa Gomes | 0.68 | Species | Roupala montana Aubl. | 0.78 | Species |
Handroanthus serratifolius (Vahl) S.Grose | 0.92 | Species | Rourea induta Planch. | 0.47 | Species |
Heteropterys byrsonimifolia A.Juss. | 0.61 | Species | Sacoglottis guianensis Benth. | 0.67 | Species |
Himatanthus articulatus (Vahl) Woodson | 0.49 | Species | Simarouba versicolor A.St.-Hil. | 0.44 | Species |
Hirtella glandulosa Spreng. | 0.93 | Species | Sloanea guianensis (Aubl.) Benth. | 0.82 | Species |
Hymenaea stigonocarpa Mart. ex Hayne | 0.90 | Species | Tachigali vulgaris L.G.Silva & H.C.Lima | 0.74 | Species |
Hymenolobium petraeum Ducke | 0.71 | Species | Tapirira guianensis Aubl. | 0.57 | Species |
Inga alba (Sw.) Willd. | 0.61 | Species | Thyrsodium spruceanum Benth. | 0.64 | Species |
Inga cylindrica (Vell.) Mart. | 0.48 | Species | Vatairea macrocarpa (Benth.) Ducke | 0.79 | Species |
Kielmeyera coriacea Mart. & Zucc. | 0.56 | Species | Virola sebifera Aubl. | 0.65 | Species |
Kielmeyera lathrophyton Saddi | 0.67 | Species | Vochysia gardneri Warm. | 0.38 | Species |
Lafoensia pacari A.St.-Hil. | 0.80 | Species | Xylopia aromatica (Lam.) Mart. | 0.59 | Species |
Variable | Unit | Formula |
---|---|---|
Mortality Rate (M) | %/year | |
Recruitment Rate (R) | %/year | |
Turnover Rate (Trot) | %/year | |
Doubling Time (t2) | years | |
Half-life Time (t½) | years | |
Turnover Time (trot) | years | |
Annual Periodic Increment (IPAY) | Y/year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, K.N.; Miguel, E.P.; Martins, M.S.; Rezende, A.V.; dos Santos, J.A.; Nappo, M.E.; Matricardi, E.A.T. Species Substitution and Changes in the Structure, Volume, and Biomass of Forest in a Savanna. Plants 2024, 13, 2826. https://doi.org/10.3390/plants13192826
Oliveira KN, Miguel EP, Martins MS, Rezende AV, dos Santos JA, Nappo ME, Matricardi EAT. Species Substitution and Changes in the Structure, Volume, and Biomass of Forest in a Savanna. Plants. 2024; 13(19):2826. https://doi.org/10.3390/plants13192826
Chicago/Turabian StyleOliveira, Kennedy Nunes, Eder Pereira Miguel, Matheus Santos Martins, Alba Valéria Rezende, Juscelina Arcanjo dos Santos, Mauro Eloi Nappo, and Eraldo Aparecido Trondoli Matricardi. 2024. "Species Substitution and Changes in the Structure, Volume, and Biomass of Forest in a Savanna" Plants 13, no. 19: 2826. https://doi.org/10.3390/plants13192826
APA StyleOliveira, K. N., Miguel, E. P., Martins, M. S., Rezende, A. V., dos Santos, J. A., Nappo, M. E., & Matricardi, E. A. T. (2024). Species Substitution and Changes in the Structure, Volume, and Biomass of Forest in a Savanna. Plants, 13(19), 2826. https://doi.org/10.3390/plants13192826