Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Compounds 1–3 from the Leaves of A. koraiensis
2.2. Astersaponin J Exhibits Comparable Inhibitory Activity against the Two SARS-CoV-2 Entry Pathways
2.3. Astersaponin J Effectively Inhibits SARS-CoV-2 Entry by Blocking S-Protein-Mediated Viral Membrane Fusion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Absolute Configurations of Sugars
3.5. Cell Culture
3.6. Cell Viability Assay
3.7. Generation of Stable Cell Lines
3.8. SARS-CoV-2 S-Pseudotyped Lentivirus Production and pSARS-CoV-2 Entry Assay
3.9. Cell-to-Cell Fusion Assay
3.10. SARS-CoV-2 S and ACE2 Binding Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment out Coronavirus (COVID-19); StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020, 30, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yu, D.; Yan, H.; Chong, H.; He, Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 2020, 94, e00635-20. [Google Scholar] [CrossRef]
- Baughn, L.B.; Sharma, N.; Elhaik, E.; Sekulic, A.; Bryce, A.H.; Fonseca, R. Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clin. Proc. 2020, 95, 1989–1999. [Google Scholar]
- Bian, J.; Li, Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm. Sin. B 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- De Wilde, A.H.; Snijder, E.J.; Kikkert, M.; van Hemert, M.J. Host factors in coronavirus replication. In Roles of Host Gene and Non-Coding RNA Expression in Virus Infection; Springer: Cham, Switzerland, 2018; pp. 1–42. [Google Scholar]
- Merarchi, M.; Dudha, N.; Das, B.C.; Garg, M. Natural products and phytochemicals as potential anti-SARS-CoV-2 drugs. Phytother. Res. 2021, 35, 5384–5396. [Google Scholar] [CrossRef] [PubMed]
- Boozari, M.; Hosseinzadeh, H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res. 2021, 35, 864–876. [Google Scholar] [CrossRef]
- Septisetyani, E.P.P.; Lestari, D.; Paramitasari, K.A.; Prasetyaningrum, P.W.; Kastian, R.F.; Santoso, A.; Eriani, K. Curcumin and turmeric extract inhibited SARS-CoV-2 pseudovirus cell entry and Spike mediated cell fusion. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ho, T.-Y.; Wu, S.-L.; Chen, J.-C.; Li, C.-C.; Hsiang, C.-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antivir. Res. 2007, 74, 92–101. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, T.Y.; Jeon, S.; Lim, H.; Lee, J.; Kim, S.; Lee, C.J.; Han, S. Synthesis and structure–activity relationship study of saponin-based membrane fusion inhibitors against SARS-CoV-2. Bioorg. Chem. 2022, 127, 105985. [Google Scholar] [CrossRef]
- Crawford, K.H.; Eguia, R.; Dingens, A.S.; Loes, A.N.; Malone, K.D.; Wolf, C.R.; Chu, H.Y.; Tortorici, M.A.; Veesler, D.; Murphy, M. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses 2020, 12, 513. [Google Scholar] [CrossRef]
- Lee, T.G.; Hyun, S.W.; Lee, I.S.; Park, B.K.; Kim, J.S.; Kim, C.S. Antioxidant and α-glucosidase inhibitory activities of the extracts of Aster koraiensis leaves. Korean J. Med. Crop Sci. 2018, 26, 382–390. [Google Scholar] [CrossRef]
- Jung, H.-J.; Min, B.-S.; Park, J.-Y.; Kim, Y.-H.; Lee, H.-K.; Bae, K.-H. Gymnasterkoreaynes A–F, Cytotoxic Polyacetylenes from Gymnaster koraiensis. J. Nat. Prod. 2002, 65, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-K.; Kim, K.-H.; Ryu, S.-Y.; Choi, S.-U.; Lee, K.-R. Phytochemical constituents from the flowers of Gymnaster koraiensis and their cytotoxic activities in vitro. Bull. Korean Chem. Soc. 2010, 31, 227–229. [Google Scholar] [CrossRef]
- Lee, S.B.; Kang, K.; Oidovsambuu, S.; Jho, E.H.; Yun, J.H.; Yoo, J.-H.; Lee, E.-H.; Pan, C.-H.; Lee, J.K.; Jung, S.H. A polyacetylene from Gymnaster koraiensis exerts hepatoprotective effects in vivo and in vitro. Food Chem. Toxicol. 2010, 48, 3035–3041. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-J.; Hung, T.-M.; Na, M.-K.; Min, B.-S.; Kwon, B.-M.; Bae, K.-H. ACAT Inhibition of polyactylenes from Gymnaster koraiensis. Nat. Prod. Sci. 2009, 15, 110–113. [Google Scholar]
- Dat, N.T.; Cai, X.F.; Shen, Q.; Im, S.L.; Lee, E.J.; Park, Y.K.; Bae, K.; Kim, Y.H. Gymnasterkoreayne G, a new inhibitory polyacetylene against NFAT transcription factor from Gymnaster koraiensis. Chem. Pharm. Bull. 2005, 53, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Kim, J.-Y.; Kwon, H.C.; Jeon, S.; Ji Lee, S.; Jung, H.; Kim, S.; Jang, D.S.; Lee, C.J. Astersaponin I from Aster koraiensis is a natural viral fusion blocker that inhibits the infection of SARS-CoV-2 variants and syncytium formation. Antivir. Res. 2022, 208, 105428. [Google Scholar] [CrossRef]
- Kwon, J.; Ko, K.; Zhang, L.; Zhao, D.; Yang, H.O.; Kwon, H.C. An autophagy inducing triterpene saponin derived from Aster koraiensis. Molecules 2019, 24, 4489. [Google Scholar] [CrossRef]
- Hernández-Carlos, B.; González-Coloma, A.; Orozco-Valencia, Á.U.; Ramírez-Mares, M.V.; Andrés-Yeves, M.F.; Joseph-Nathan, P. Bioactive saponins from Microsechium helleri and Sicyos bulbosus. Phytochemistry 2011, 72, 743–751. [Google Scholar] [CrossRef]
- Su, Y.; Koike, K.; Nikaido, T.; Liu, J.; Zheng, J.; Guo, D. Conyzasaponins I–Q, Nine New Triterpenoid Saponins from Conyza blinii. J. Nat. Prod. 2003, 66, 1593–1599. [Google Scholar] [CrossRef]
- Castro, V.H.; Eamirez, E.; Mora, G.A.; Iwase, Y.; Nagao, T.; Okabe, H.; Matsunaga, H.; Katano, M.; Mori, M. Structures and antiproliferative activity of saponins from Sechium pittieri and S. talamancense. Chem. Pharm. Bull. 1997, 45, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.; Liang, C. Pseudotyped Viruses for Retroviruses. In Pseudotyped Viruses; Springer: Cham, Switzerland, 2023; pp. 61–84. [Google Scholar]
- Aqib, A.I.; Atta, K.; Muneer, A.; Arslan, M.; Shafeeq, M.; Rahim, K. Chapter 2—Saponin and its derivatives (glycyrrhizin) and SARS-CoV-2. In Application of Natural Products in SARS-CoV-2; Niaz, K., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 25–46. [Google Scholar]
- Li, H.; Sun, J.; Xiao, S.; Zhang, L.; Zhou, D. Triterpenoid-mediated inhibition of virus–host interaction: Is now the time for discovering viral entry/release inhibitors from nature? J. Med. Chem. 2020, 63, 15371–15388. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33, 612–616. [Google Scholar] [CrossRef]
- Mieres-Castro, D.; Mora-Poblete, F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023, 15, 348. [Google Scholar] [CrossRef]
- Gowtham, H.; Monu, D.; Ajay, Y.; Gourav, C.; Vasantharaja, R.; Bhani, K.; Koushalya, S.; Shazia, S.; Priyanka, G.; Leena, C. Exploring structurally diverse plant secondary metabolites as a potential source of drug targeting different molecular mechanisms of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pathogenesis: An in silico approach. Res. Sq. 2020. [Google Scholar] [CrossRef]
Position | Aglycon | Position | Sugar | ||
---|---|---|---|---|---|
δH Multi (J in Hz) | δC | δH Multi (J in Hz) | δC | ||
1 | 1.26/2.30 a | 44.7 | Glc-1′ | 5.14 d (8.0) | 105.4 |
2 | 4.77 a | 71.1 | Glc-2′ | 4.05 a | 74.2 |
3 | 4.32 a | 83.0 | Glc-3′ | 4.08 a | 78.5 |
4 | — | 43.1 | Glc-4′ | 4.12 a | 71.4 |
5 | 1.71 m | 47.9 | Glc-5′ | 3.84 a | 77.7 |
6 | 1.78 m/1.83 m | 18.2 | Glc-6′ | 4.28/4.42 a | 62.0 |
7 | 1.55 m/1.74 m | 33.5 | Glc-1″ | 5.10 d (8.0) | 106.1 |
8 | — | 40.4 | Glc-2″ | 4.07 a | 75.6 |
9 | 1.80 m | 47.8 | Glc-3″ | 4.27 a | 78.3 |
10 | — | 37.2 | Glc-4″ | 4.21 a | 71.6 |
11 | 1.80 m/2.05 m | 24.2 | Glc-5″ | 4.04 a | 78.8 |
12 | 5.62 br s | 124.3 | Glc-6″ | 4.32/4.55 a | 62.6 |
13 | — | 144.6 | Ara-1‴ | 6.49 d (1.8) | 93.5 |
14 | — | 42.4 | Ara-2‴ | 4.53 a | 75.2 |
15 | 1.74 m/2.22-2.43 a | 36.3 | Ara-3‴ | 4.60 a | 69.4 |
16 | 5.26 br s | 74.3 | Ara-4‴ | 4.43 a | 65.3 |
17 | — | 49.7 | Ara-5‴ | 3.92/4.47 a | 62.2 |
18 | 3.60 m | 41.4 | Rha-1‴′ | 5.63 br s | 101.1 |
19 | 1.34/2.76 a | 47.2 | Rha-2‴′ | 4.77 a | 71.5 |
20 | — | 31.2 | Rha-3‴′ | 4.54 dd (9.6, 3.2) | 73.9 |
21 | 1.29/2.22–2.43 a | 36.2 | Rha-4‴′ | 4.52 a | 83.6 |
22 | 2.14/2.26 a | 32.4 | Rha-5‴′ | 4.40 a | 68.6 |
23 | 4.30 br d (10.4)/3.62 br d (10.4) | 65.2 | Rha-6‴′ | 1.74 d (6.4) | 18.80 |
24 | 1.35 s | 15.3 | Xyl-1‴″ | 5.39 d (8.0) | 104.9 |
25 | 1.61 s | 17.6 | Xyl-2‴″ | 3.92 a | 75.9 |
26 | 1.19 s | 17.9 | Xyl-3‴″ | 4.19 a | 82.2 |
27 | 1.78 s | 27.5 | Xyl-4‴″ | 4.08 a | 68.8 |
28 | — | 176.3 | Xyl-5‴″ | 3.46 dd (12.0, 0.8)/4.04 a | 67.0 |
29 | 0.99 s | 33.5 | Rha-1‴‴ | 6.19 br s | 102.6 |
30 | 1.15 s | 25.0 | Rha-2‴‴ | 4.78 dd (3.6, 1.8) | 72.3 |
Rha-3‴‴ | 4.58 dd (8.8, 3.2) | 72.4 | |||
Rha-4‴‴ | 4.30 ma | 72.8 | |||
Rha-5‴‴ | 4.95 dq (9.6, 6.4) | 69.1 | |||
Rha-6‴‴ | 1.64 d (6.4) | 18.84 | |||
Xyl-1‴‴′ | 5.03 d (8.0) | 106.2 | |||
Xyl-2‴‴′ | 3.94 a | 74.2 | |||
Xyl-3‴‴′ | 3.96 a | 77.8 | |||
Xyl-4‴‴′ | 4.04 a | 69.6 | |||
Xyl-5‴‴′ | 3.56 dd (14.4, 4.8)/4.04 a | 66.7 |
Position | Aglycon | Position | Sugar | ||
---|---|---|---|---|---|
δH Multi (J in Hz) | δC | δH Multi (J in Hz) | δC | ||
1 | 1.26/2.30 a | 44.8 | Glc-1′ | 5.17 d (7.5) | 105.9 |
2 | 4.80 m | 71.3 | Glc-2′ | 4.04 a | 74.7 |
3 | 4.35 m | 83.2 | Glc-3′ | 4.08 a | 88.0 |
4 | — | 43.3 | Glc-4′ | 4.13 a | 69.7 |
5 | 1.71 a | 48.1 | Glc-5′ | 3.84 ddd (9.0, 4.5, 2.0) | 78.3 |
6 | 1.78/1.83 a | 18.4 | Glc-6′ | 4.28/4.41 a | 62.6 |
7 | 1.55/1.74 a | 33.6 | Xyl-1″ | 5.22 d (7.5) | 106.7 |
8 | — | 40.6 | Xyl-2″ | 4.02 a | 75.7 |
9 | 1.80 a | 48.0 | Xyl-3″ | 4.16 a | 78.6 |
10 | — | 37.4 | Xyl-4″ | 4.18 a | 71.2 |
11 | 1.80/2.05 a | 24.4 | Xyl-5″ | 3.70 m/4.32 (11.5, 4.0) | 67.8 |
12 | 5.64 br s | 123.5 | Ara-1‴ | 6.56 br s | 93.5 |
13 | — | 144.8 | Ara-2‴ | 4.48 a | 76.0 |
14 | — | 42.6 | Ara-3‴ | 4.59 a | 69.1 |
15 | 1.74/2.22–2.43a | 36.5 | Ara-4‴ | 4.44 a | 65.7 |
16 | 5.25 m | 74.5 | Ara-5‴ | 3.97/4.63 a | 62.5 |
17 | — | 50.0 | Rha-1‴′ | 5.64 br s | 101.5 |
18 | 3.61 a | 41.6 | Rha-2‴′ | 4.73 a | 72.0 |
19 | 1.34/2.76 a | 47.4 | Rha-3‴′ | 4.36 a | 82.9 |
20 | — | 31.3 | Rha-4‴′ | 4.46 a | 78.6 |
21 | 1.29/2.22–2.43 a | 36.4 | Rha-5‴′ | 4.32 a | 69.3 |
22 | 2.14/2.26 | 32.5 | Rha-6‴′ | 1.77 d (6.0) | 19.0 |
23 | 3.68 d (9.5)/4.31 d (9.5) | 65.4 | Xyl-1‴″ | 5.39 d (8.0) | 105.5 |
24 | 1.35 s | 15.5 | Xyl-2‴″ | 3.94 a | 75.9 |
25 | 1.61 s | 17.8 | Xyl-3‴″ | 4.26 a | 78.3 |
26 | 1.17 s | 18.1 | Xyl-4‴″ | 4.08 a | 71.6 |
27 | 1.78 s | 27.6 | Xyl-5‴″ | 3.39 t (11.0)/4.14 a | 67.6 |
28 | — | 176.4 | Api-1‴‴ | 6.05 d (5.0) | 112.1 |
29 | 1.01 s | 33.6 | Api-2‴‴ | 4.78 br d (5.0) | 77.8 |
30 | 1.19 s | 25.2 | Api-3‴‴ | — | 80.0 |
Api-4‴‴ | 4.18 br d (9.5)/4.56 br d (9.5) | 74.9 | |||
Api-5‴‴ | 4.06 br d (10.5) | 64.7 |
Position | Aglycon | Position | Sugar | ||
---|---|---|---|---|---|
δH Multi (J in Hz) | δC | δH Multi (J in Hz) | δC | ||
1 | 1.26/2.29 a | 44.2 | Glc-1′ | 5.14 d (7.5) | 105.4 |
2 | 4.82 a | 70.7 | Glc-2′ | 4.03 m | 74.4 |
3 | 4.32 a | 82.9 | Glc-3′ | 4.07 t (9.0) | 87.6 |
4 | — | 42.8 | Glc-4′ | 4.13 br t (9.0) | 69.4 |
5 | 1.70 m | 47.6 | Glc-5′ | 3.84 ddd (9.0, 4.5, 2.0) | 77.9 |
6 | 1.78/1.82 a | 18.0 | Glc-6′ | 4.28 dd (11.5, 4.5)/4.40 m | 62.2 |
7 | 1.54 m/1.73 a | 33.2 | Xyl-1″ | 5.20 d (7.5) | 106.3 |
8 | — | 40.1 | Xyl-2″ | 4.00 t (8.0) | 75.3 |
9 | 1.80 a | 47.7 | Xyl-3″ | 4.15 a | 78.2 |
10 | — | 36.9 | Xyl-4″ | 4.16 a | 70.9 |
11 | 1.80 a/2.05 m | 24.0 | Xyl-5″ | 3.70 t (11.0)/4.30 a | 67.4 |
12 | 5.62 br s | 123.0 | Ara-1‴ | 6.49 br s | 93.4 |
13 | — | 144.3 | Ara-2‴ | 4.52 a | 75.2 |
14 | — | 42.2 | Ara-3‴ | 4.53 a | 69.9 |
15 | 1.74 m/2.23–2.45 a | 36.1 | Ara-4‴ | 4.39 a | 66.1 |
16 | 5.28 m | 73.9 | Ara-5‴ | 3.95 dd (11.0, 4.0)/4.55 a | 63.0 |
17 | — | 49.5 | Rha-1‴′ | 5.70 br s | 101.0 |
18 | 3.38 dd (5.0, 14.0) | 41.2 | Rha-2‴′ | 4.82 br dd (3.0, 1.5) | 71.9 |
19 | 1.34 a/2.75 m | 47.0 | Rha-3‴′ | 4.50 a | 72.7 |
20 | — | 30.8 | Rha-4‴′ | 4.33 a | 83.9 |
21 | 1.29 m/2.23–2.45 a | 35.9 | Rha-5‴′ | 4.35 a | 68.6 |
22 | 2.18 m/2.27 a | 32.0 | Rha-6‴′ | 1.72 d (5.5) | 18.4 |
23 | 3.65 d (10.0)/4.35 d (10.0) | 65.1 | Xyl-1‴″ | 5.09 d | 106.8 |
24 | 1.34 s | 15.0 | Xyl-2‴″ | 4.00 t (8.5) | 76.2 |
25 | 1.60 s | 17.3 | Xyl-3‴″ | 4.19 a | 83.3 |
26 | 1.18 s | 17.6 | Xyl-4‴″ | 4.10 a | 69.3 |
27 | 1.77 s | 27.1 | Xyl-5‴″ | 3.44 t (11.0)/4.18 a | 67.3 |
28 | — | 175.9 | |||
29 | 0.99 s | 33.2 | |||
30 | 1.15 s | 24.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-Y.; Kim, T.Y.; Son, S.-R.; Kim, S.Y.; Kwon, J.; Kwon, H.C.; Lee, C.J.; Jang, D.S. Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2. Plants 2024, 13, 303. https://doi.org/10.3390/plants13020303
Kim J-Y, Kim TY, Son S-R, Kim SY, Kwon J, Kwon HC, Lee CJ, Jang DS. Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2. Plants. 2024; 13(2):303. https://doi.org/10.3390/plants13020303
Chicago/Turabian StyleKim, Ji-Young, Tai Young Kim, So-Ri Son, Suyeon Yellena Kim, Jaeyoung Kwon, Hak Cheol Kwon, C. Justin Lee, and Dae Sik Jang. 2024. "Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2" Plants 13, no. 2: 303. https://doi.org/10.3390/plants13020303
APA StyleKim, J. -Y., Kim, T. Y., Son, S. -R., Kim, S. Y., Kwon, J., Kwon, H. C., Lee, C. J., & Jang, D. S. (2024). Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2. Plants, 13(2), 303. https://doi.org/10.3390/plants13020303