Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management
Abstract
:1. Introduction
2. Results
2.1. Phytocompound Effects on Soybean Growth Traits
2.2. Phytocompound Inhibitory Effects on SCN Abundance
3. Discussion
4. Materials and Methods
4.1. Seed Treatments and Growth Conditions
4.2. Nematode Extraction and Inoculation
4.3. Data Collection
4.4. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandara, A.Y.; Weerasooriya, D.K.; Bradley, C.A.; Allen, T.W.; Esker, P.D. Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE 2020, 15, e0231141. [Google Scholar] [CrossRef] [PubMed]
- Bent, A.F. Exploring Soybean Resistance to Soybean Cyst Nematode. Annu. Rev. Phytopathol. 2022, 60, 379–409. [Google Scholar] [CrossRef] [PubMed]
- Nissan, N.; Mimee, B.; Cober, E.R.; Golshani, A.; Smith, M.; Samanfar, B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. Biology 2022, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, W.; Mangelinckx, S.; Kyndt, T.; Vanholme, B. A Phytochemical Perspective on Plant Defense Against Nematodes. Front. Plant Sci. 2020, 11, 602079. [Google Scholar] [CrossRef] [PubMed]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Walia, S.; Saha, S.; Tripathi, V.; Sharma, K.K. Phytochemical biopesticides: Some recent developments. Phytochem. Rev. 2017, 16, 989–1007. [Google Scholar] [CrossRef]
- Khalil, M.S. Bright Future with Nematicidal Phytochemicals. Biol. Med. 2014, 6, 1. [Google Scholar] [CrossRef]
- Zaim, N.S.H.B.H.; Tan, H.L.; Rahman, S.M.A.; Abu Bakar, N.F.; Osman, M.S.; Thakur, V.K.; Radacsi, N. Recent Advances in Seed Coating Treatment Using Nanoparticles and Nanofibers for Enhanced Seed Germination and Protection. J. Plant Growth Regul. 2023, 42, 7374–7402. [Google Scholar] [CrossRef]
- Kavusi, E.; Shahi Khalaf Ansar, B.; Dehghanian, Z.; Asgari Lajayer, B.; Nobaharan, K.; Ma, Y.; Glick, B.R. Delivery of Beneficial Microbes via Seed Coating for Medicinal and Aromatic Plant Production: A Critical Review. J. Plant Growth Regul. 2023, 42, 575–597. [Google Scholar] [CrossRef]
- Dawar, S.; Sattar, A.; Zaki, M. Seed dressing with biocontrol agents and nematicides for the control of root knot nematode on sunflower and okra. Pak. J. Bot. 2008, 40, 2683–2691. [Google Scholar]
- Cui, J.K.; Huang, W.K.; Peng, H.; Lv, Y.; Kong, L.A.; Li, H.X.; Luo, S.J.; Wang, Y.; Peng, D.L. Efficacy Evaluation of Seed-Coating Compounds Against Cereal Cyst Nematodes and Root Lesion Nematodes on Wheat. Plant Dis. 2017, 101, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Bouzidi, A.; Krouma, A.; Chaieb, M. Chemical seed priming alleviates salinity stress and improves Sulla carnosa germination in the saline depression of Tunisia. Plant Direct 2021, 5, e357. [Google Scholar] [CrossRef] [PubMed]
- Worrall, D.; Holroyd, G.H.; Moore, J.P.; Glowacz, M.; Croft, P.; Taylor, J.E.; Paul, N.D.; Roberts, M.R. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytol. 2012, 193, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Front. Plant Sci. 2019, 10, 1357-1357. [Google Scholar] [CrossRef] [PubMed]
- Song, G.C.; Choi, H.K.; Kim, Y.S.; Choi, J.S.; Ryu, C.-M. Seed defense biopriming with bacterial cyclodipeptides triggers immunity in cucumber and pepper. Sci. Rep. 2017, 7, 14209. [Google Scholar] [CrossRef] [PubMed]
- Monfort, W.S.; Kirkpatrick, T.L.; Long, D.L.; Rideout, S. Efficacy of a Novel Nematicidal Seed Treatment against Meloidogyne incognita on Cotton. J. Nematol. 2006, 38, 245–249. [Google Scholar] [PubMed]
- Javed, T.; Afzal, I.; Shabbir, R.; Ikram, K.; Saqlain Zaheer, M.; Faheem, M.; Haider Ali, H.; Iqbal, J. Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. J. Saudi Soc. Agric. Sci. 2022, 21, 536–545. [Google Scholar] [CrossRef]
- Chen, J.-X.; Song, B.-A. Natural nematicidal active compounds: Recent research progress and outlook. J. Integr. Agric. 2021, 20, 2015–2031. [Google Scholar] [CrossRef]
- Schleker, A.S.S.; Rist, M.; Matera, C.; Damijonaitis, A.; Collienne, U.; Matsuoka, K.; Habash, S.S.; Twelker, K.; Gutbrod, O.; Saalwächter, C.; et al. Mode of action of fluopyram in plant-parasitic nematodes. Sci. Rep. 2022, 12, 11954. [Google Scholar] [CrossRef]
- VanEtten, H.D.; Mansfield, J.W.; Bailey, J.A.; Farmer, E.E. Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins”. Plant Cell 1994, 6, 1191–1192. [Google Scholar] [CrossRef]
- Lanoue, A.; Burlat, V.; Schurr, U.; Röse, U.S. Induced root-secreted phenolic compounds as a belowground plant defense. Plant Signal. Behav. 2010, 5, 1037–1038. [Google Scholar] [CrossRef] [PubMed]
- Metwally, W.; Khalil, A.; Khalil, E.; Mostafa, F. Biopesticides as Eco-friendly Alternatives for the Management of Root-Knot Nematode, Meloidogyne incognita on Cowpea (Vigna unguiculata L.). Egypt. J. Agronem. 2019, 18, 129–145. [Google Scholar] [CrossRef]
- Krif, G.; Lahlali, R.; El Aissami, A.; Laasli, S.-E.; Mimouni, A.; Serderidis, S.; Picaud, T.; Moens, A.; Dababat, A.A.; Fahad, K.; et al. Efficacy of authentic bio-nematicides against the root-knot nematode, Meloidogyne javanica infecting tomato under greenhouse conditions. Physiol. Mol. Plant Pathol. 2022, 118, 101803. [Google Scholar] [CrossRef]
- Reddy, D.S.; Chowdary, N.M. Botanical biopesticide combination concept—A viable option for pest management in organic farming. Egypt. J. Biol. Pest Control 2021, 31, 23. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological control and integrated pest management in organic and conventional systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Khan, R.; Naz, I.; Hussain, S.; Khan, R.A.A.; Ullah, S.; Rashid, M.U.; Siddique, I. Phytochemical management of root knot nematode (Meloidogyne incognita) kofoid and white chitwood by Artemisia spp. in tomato (Lycopersicon esculentum L.). Braz. J. Biol. 2019, 80, 829–838. [Google Scholar] [CrossRef]
- Paravar, A.; Piri, R.; Balouchi, H.; Ma, Y. Microbial seed coating: An attractive tool for sustainable agriculture. Biotechnol. Rep. 2023, 37, e00781. [Google Scholar] [CrossRef]
- Arshad, U.; Jabran, M.; Ahmed, S.; Abbas, A.; Jabbar, A.; Zahid, M.S.; Ali, M.A. Seed-Priming: A Novel Approach for Improving Growth Performance and Resistance Against Root-Knot Nematode (Meloidogyne incognita) in Bread Wheat (Triticum aestivum L.). Gesunde Pflanz. 2022, 74, 1041–1051. [Google Scholar] [CrossRef]
- Ahmad, A.; Javed, N.; Khan, S.; Abbas, H.; Kamran, M. Efficacy of rhizospheric organism Rhizobium leguminosarum against meloidogyne incognita in soybean. Pak. J. Agric. Sci. 2016, 53, 377–381. [Google Scholar] [CrossRef]
- Ben-Jabeur, M.; Kthiri, Z.; Djébali, N.; Karmous, C.; Hamada, W. A case study of seed biopriming and chemical priming: Seed coating with two types of bioactive compounds improves the physiological state of germinating seeds in durum wheat. Cereal Res. Commun. 2022, 51, 125–133. [Google Scholar] [CrossRef]
- Ludwig, E.J.; Nunes, U.R.; Prestes, O.D.; Fagundes, L.K.; Fernandes, T.S.; Saibt, N. Polymer coating in soybean seed treatment and their relation to leaching of chemicals. Rev. Ambiente Agua 2020, 15, e2602. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Caboni, P. Botanical nematicides: A review. J. Agric. Food. Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.S.; Barbosa, P.; Vieira, P.; Vicente, C.S.L.; Figueiredo, A.C.; Mota, M. Phytochemicals as Biopesticides against the Pinewood Nematode Bursaphelenchus xylophilus: A Review on Essential Oils and Their Volatiles. Plants 2021, 10, 2614. [Google Scholar] [CrossRef] [PubMed]
- Aissani, N.; Balti, R.; Sebai, H. Potent nematicidal activity of phenolic derivatives on Meloidogyne incognita. J. Helminthol. 2018, 92, 668–673. [Google Scholar] [CrossRef]
- Chitwood, D.J. Nematicides. In Encyclopedia of Agrochemicals; Plimmer, J.R., Gammon, D.W., Ragsdale, N.R., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Chitwood, D.J. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef]
- Nengroo, Z.R.; Shah, Z.U.; Ganie, A.S.; Danish, M. Evaluation of various seed extracts for their nematicidal efficacies against root nematode, Meloidogyne incognita. Discov. Sustain. 2021, 2, 12. [Google Scholar] [CrossRef]
- Eder, R.; Consoli, E.; Krauss, J.; Dahlin, P. Polysulfides Applied as Formulated Garlic Extract to Protect Tomato Plants against the Root-Knot Nematode Meloidogyne incognita. Plants 2021, 10, 394. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Seo, D.J.; Kim, K.Y.; Park, R.D.; Kim, D.H.; Han, Y.S.; Kim, T.H.; Jung, W.J. Nematicidal activity of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa bark against Meloidogyne incognita. Microb. Pathog. 2013, 59–60, 52–59. [Google Scholar] [CrossRef]
- Dzomba, P.; Mureya, C.; Gwatidzo, L. Nematicidal Activity of phytocompounds from Piliostigma thonningii Stem Bark against Meloidogyne javanica. Chem. Afr. 2020, 3, 937–947. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Menkissoglu-Spiroudi, U.; Giannakou, I.O.; Prophetou-Athanasiadou, D.A. Efficacy evaluation of a neem (Azadirachta indica A. Juss) formulation against root-knot nematodes Meloidogyne incognita. Crop Prot 2009, 28, 489–494. [Google Scholar] [CrossRef]
- Khan, F.; Asif, M.; Khan, A.; Tariq, M.; Ansari, T.; Shariq, M.; Siddiqui, M.A. Evaluation of the nematicidal potential of some botanicals against root-knot nematode, Meloidogyne incognita infected carrot: In vitro and greenhouse study. Curr. Plant Biol. 2019, 20, 100115. [Google Scholar] [CrossRef]
- Santhi, V.S.; Salame, L.; Muklada, H.; Azaizeh, H.; Haj-Zaroubi, M.; Awwad, S.; Landau, S.Y.; Glazer, I. Toxicity of phenolic compounds to entomopathogenic nematodes: A case study with Heterorhabditis bacteriophora exposed to lentisk (Pistacia lentiscus) extracts and their chemical components. J. Invertebr. Pathol. 2019, 160, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Ohri, P.; Pannu, S.K. Effect of phenolic compounds on nematodes—A review. J. Appl. Nat. Sci. 2010, 2, 344–350. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, A.U. Plant parasitic nematodes effectors and their crosstalk with defense response of host plants: A battle underground. Rhizosphere 2021, 17, 100288. [Google Scholar] [CrossRef]
- Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.H. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int. J. Mol. Sci. 2021, 22, 8995. [Google Scholar] [CrossRef]
- Kisiriko, M.; Anastasiadi, M.; Terry, L.A.; Yasri, A.; Beale, M.H.; Ward, J.L. Phenolics from Medicinal and Aromatic Plants: Characterisation and Potential as Biostimulants and Bioprotectants. Molecules 2021, 26, 6343. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in Sustainable Agriculture: Volume 1; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; pp. 517–532. [Google Scholar]
- Wallis, C.M.; Galarneau, E.R.-A. Phenolic Compound Induction in Plant-Microbe and Plant-Insect Interactions: A Meta-Analysis. Front. Plant Sci. 2020, 11, 580753. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; Foletto-Felipe, M.d.P.; Abrahão, J.; et al. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Hitaj, C.; Smith, D.J.; Code, A.; Wechsler, S.; Esker, P.D.; Douglas, M.R. Sowing Uncertainty: What We Do and Don’t Know about the Planting of Pesticide-Treated Seed. Bioscience 2020, 70, 390–403. [Google Scholar] [CrossRef]
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed Coating: Science or Marketing Spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [PubMed]
- PubChem. PubChem Compound Summary for CID 126, 4-Hydroxybenzaldehyde. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4-Hydroxybenzaldehyde (accessed on 11 December 2023).
- PubChem. PubChem Compound Summary for CID 19, 2,3-Dihydroxybenzoic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_3-Dihydroxybenzoic-acid (accessed on 11 December 2023).
- Sultana, N.; Akhter, M.; Khatoon, Z. Nematicidal natural products from the aerial parts of Rubus niveus. Nat. Prod. Res. 2010, 24, 407–415. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, S.; Zhao, X.; Wu, Q. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. PLoS ONE 2018, 13, e0200903. [Google Scholar] [CrossRef]
- Aissani, N.; Aissani, R.; Zouidi, F.; Sebai, H. Nematicidal activity of o-hydroxybenzaldehyde from common buckwheat methanol extract on Meloidogyne incognita. J. Helminthol. 2023, 97, e60. [Google Scholar] [CrossRef]
- Piasecka, A.; Kachlicki, P.; Stobiecki, M. Analytical Methods for Detection of Plant Metabolomes Changes in Response to Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019, 20, 379. [Google Scholar] [CrossRef]
- Ni, X.; Jin, C.; Liu, A.; Chen, Y.; Hu, Y. Physiological and transcriptomic analyses to reveal underlying phenolic acid action in consecutive monoculture problem of Polygonatum odoratum. BMC Plant Biol. 2021, 21, 362. [Google Scholar] [CrossRef]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef]
- Makaure, B.T.; Aremu, A.O.; Gruz, J.; Magadlela, A. Phenolic Acids and Plant Antioxidant Capacity Enhance Growth, Nutrition, And Plant–Microbe Interaction of Vigna unguiculata L. (Walp) Grown in Acidic and Nutrient-Deficient Grassland and Savanna Soils. J. Soil Sci. Plant Nutr. 2022, 23, 190–203. [Google Scholar] [CrossRef]
- Krogmeier, M.J.; Bremner, J.M. Effects of phenolic acids on seed germination and seedling growth in soil. Biol. Fertility Soils 1989, 8, 116–122. [Google Scholar] [CrossRef]
- Kuiters, A.T. Effects of phenolic acids on germination and early growth of herbaceous woodland plants. J. Chem. Ecol. 1989, 15, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wu, F.; Zhou, X. Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biol. Fertility Soils 2020, 56, 125–136. [Google Scholar] [CrossRef]
- Fu, Y.H.; Quan, W.; Li, C.C.; Qian, C.Y.; Tang, F.H.; Chen, X.J. Allelopathic effects of phenolic acids on seedling growth and photosynthesis in Rhododendron delavayi Franch. Photosynthetica 2019, 57, 377–387. [Google Scholar] [CrossRef]
- Patterson, D.T. Effects of Allelopathic Chemicals on Growth and Physiological Responses of Soybean (Glycine max). Weed Sci. 1981, 29, 53–59. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol. 2010, 11, 705–719. [Google Scholar] [CrossRef]
- Andriana, Y.; Quy, T.N.; Xuan, T.D. Phenolic acids as plant growth inhibitors from Tridax procumbens L. IOP Conf. Ser. Earth Environ. Sci. 2019, 250, 012024. [Google Scholar] [CrossRef]
- Nandakumar, L.; Rangaswamy, N.S. Effect of some Flavonoids and Phenolic Acids on Seed Germination and Rooting. J. Exp. Bot. 1985, 36, 1313–1319. [Google Scholar] [CrossRef]
- Clemensen, A.K.; Provenza, F.D.; Hendrickson, J.R.; Grusak, M.A. Ecological Implications of Plant Secondary Metabolites—Phytochemical Diversity Can Enhance Agricultural Sustainability. Front. Sustain. Food Syst. 2020, 4, 547826. [Google Scholar] [CrossRef]
- Iannucci, A.; Fragasso, M.; Platani, C.; Papa, R. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.). Front. Plant Sci. 2013, 4, 509. [Google Scholar] [CrossRef]
- Bao, L.; Liu, Y.; Ding, Y.; Shang, J.; Wei, Y.; Tan, Y.; Zi, F. Interactions Between Phenolic Acids and Microorganisms in Rhizospheric Soil from Continuous Cropping of Panax notoginseng. Front. Microbiol. 2022, 13, 791603. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fu, J.; Zhou, R.; Wang, D. Effects of phenolic acids from ginseng rhizosphere on soil fungi structure, richness and diversity in consecutive monoculturing of ginseng. Saudi J. Biol. Sci. 2018, 25, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.-J.; Gu, C.-Z.; Zhu, H.-T.; Wang, D.; Zhang, M.-Y.; Zhang, Y.-X.; Yang, C.-R.; Zhang, Y.-J. Allelochemicals of Panax notoginseng and their effects on various plants and rhizosphere microorganisms. Plant Divers. 2020, 42, 323–333. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yates, P.; Janiol, J.; Li, C.; Song, B.-H. Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. Plants 2024, 13, 319. https://doi.org/10.3390/plants13020319
Yates P, Janiol J, Li C, Song B-H. Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. Plants. 2024; 13(2):319. https://doi.org/10.3390/plants13020319
Chicago/Turabian StyleYates, Ping, Juddy Janiol, Changbao Li, and Bao-Hua Song. 2024. "Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management" Plants 13, no. 2: 319. https://doi.org/10.3390/plants13020319
APA StyleYates, P., Janiol, J., Li, C., & Song, B. -H. (2024). Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. Plants, 13(2), 319. https://doi.org/10.3390/plants13020319