Next Issue
Volume 13, November-1
Previous Issue
Volume 13, October-1
 
 

Plants, Volume 13, Issue 20 (October-2 2024) – 114 articles

Cover Story (view full-size image): Aquatic macrophytes play a crucial role in wetland-based sewage treatment systems, due to their unique morphophysiological adaptations. These adaptations enable macrophytes to remove pollutants and stabilize sediments, even under environmental stress. This review explores the strategies employed by macrophytes to enhance the resilience and efficiency of wastewater treatment systems. Understanding these adaptations informs wetland design and management, advancing the use of nature-based solutions for sustainable water treatment. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 3074 KiB  
Article
The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings
by Jiuying Li, Yinghui Zhu, Lanlan Sun, Hongle Xu, Wangcang Su, Fei Xue, Chuantao Lu, Wenwei Tang and Renhai Wu
Plants 2024, 13(20), 2946; https://doi.org/10.3390/plants13202946 - 21 Oct 2024
Viewed by 872
Abstract
Fenoxaprop-P-ethyl (FE) can effectively control weeds in rice fields, but it has been found to cause phytotoxicity in rice. In this study, the phytotoxicity of FE was mitigated by perilla leaf essential oil (PEO) in rice seedlings. The injury recovery rates (IRRs) for [...] Read more.
Fenoxaprop-P-ethyl (FE) can effectively control weeds in rice fields, but it has been found to cause phytotoxicity in rice. In this study, the phytotoxicity of FE was mitigated by perilla leaf essential oil (PEO) in rice seedlings. The injury recovery rates (IRRs) for shoot length and fresh weight treated with 800 mg/L of PEO were 101.51% and 99.05%, respectively. Moreover, the damage of s-metolachlor and pretilachlor was also alleviated when co-applied with 800 mg/L PEO; the IRR of s-metolachlor phytotoxicity was 26.07% and 27.34%, respectively, and the IRR of pretilachlor phytotoxicity was 127.27% and 124.39%, respectively. However, PEO had no significant effect on the phytotoxicity of pinoxaden, mesotrione, penoxsulam, mesosulfuron-methyl, and nicosulfuron. The results of GC–MS analysis showed that a total of 23 components were detected in PEO, among which linalool (36.49%), linalyl formate (26.96%), α-terpineol (10.63%), 2-hexanoylfuran (5.81%), geranyl acetate (4.13%), and neryl acetate (2.30%) were the primary components. Among them, 2-hexanoylfuran was the most effective component to alleviate FE damage, for which the IRR of shoot length and fresh weight was 73.17% and 73.02%, respectively, followed by the geranyl acetate, for which the IRR was 72.32% and 60.56%, respectively, and neryl acetate, for which the IRR was 65.28% and 58.11%, respectively. Furthermore, the application of 50 mg/L of 2-hexanofuran significantly improved the tolerance of shoot length and fresh weight to FE stress by factors of 5.32 and 5.35, respectively. This research demonstrates that PEO and 2-hexanoylfuran have the potential to serve as natural safeners to reduce phytotoxicity. Full article
(This article belongs to the Topic Research on Natural Products of Medical Plants)
Show Figures

Figure 1

13 pages, 4801 KiB  
Article
Non-Foliar Photosynthesis in Pea (Pisum sativum L.) Plants: Beyond the Leaves to Inside the Seeds
by Nataliia Stepanova, Tatiana Zhilkina, Anastasia Kamionskaya and Galina Smolikova
Plants 2024, 13(20), 2945; https://doi.org/10.3390/plants13202945 - 21 Oct 2024
Viewed by 790
Abstract
In addition to leaves, photosynthesis can occur in other green plant organs, including developing seeds of many crops. While the majority of studies examining photosynthesis are concentrated on the leaf level, the role of other green tissues in the production of total photoassimilates [...] Read more.
In addition to leaves, photosynthesis can occur in other green plant organs, including developing seeds of many crops. While the majority of studies examining photosynthesis are concentrated on the leaf level, the role of other green tissues in the production of total photoassimilates has been largely overlooked. The present work studies the photosynthetic behavior of leaves and non-foliar (pericarps, coats, and cotyledons) organs of pea (Pisum sativum L.) plants at the middle stage of seed maturation. The Chl a fluorescence transient was examined based on OJIP kinetics using the FluorPen FP 110. A discrepancy was observed between the performance index (PIABS) for foliar and non-foliar plant tissues, with the highest level noted in the leaves. The number of absorbed photons (ABS) and captured energy flow (TRo) per reaction center (RC) were elevated in the non-foliar tissues, which resulted in a faster reduction in QA. Conversely, the energy dissipation flux per RC (DIo/RC and PHI_Do) indicated an increase in the overall dissipation potential of active reaction centers of photosystem II. This phenomenon was attributed to the presence of a higher number of inactive RCs in tissues that had developed under low light intensity. Furthermore, the expression of genes associated with proteins and enzymes that regulate ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) activity was observed, including chaperonins Cpn60α and Cpn60β, RuBisCO activase, as well as phosphoribulokinase. The expression of these genes was found to differ between foliar and non-foliar tissues, indicating that the activation state of RuBisCO may be modified in response to light intensity. Overall, the present study provides insights into the mechanisms by which non-foliar green tissues of plants adapt to efficient light capture and utilization under low light conditions. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

16 pages, 3974 KiB  
Article
Transcriptomic Analysis of the Combined Effects of Methyl Jasmonate and Wounding on Flavonoid and Anthraquinone Biosynthesis in Senna tora
by Saemin Chang, Woo-Haeng Lee, Hyo Ju Lee, Tae-Jin Oh, Si-Myung Lee, Jeong Hwan Lee and Sang-Ho Kang
Plants 2024, 13(20), 2944; https://doi.org/10.3390/plants13202944 - 21 Oct 2024
Viewed by 657
Abstract
Jasmonates, including jasmonic acid (JA) and its derivatives such as methyl jasmonate (MeJA) or jasmonly isoleucine (JA-Ile), regulate plant responses to various biotic and abiotic stresses. In this study, we applied exogenous MeJA onto Senna tora leaves subjected to wounding and conducted a [...] Read more.
Jasmonates, including jasmonic acid (JA) and its derivatives such as methyl jasmonate (MeJA) or jasmonly isoleucine (JA-Ile), regulate plant responses to various biotic and abiotic stresses. In this study, we applied exogenous MeJA onto Senna tora leaves subjected to wounding and conducted a transcriptome deep sequencing analysis at 1 (T1), 3 (T3), 6 (T6), and 24 (T24) h after MeJA induction, along with the pretreatment control at 0 h (T0). Out of 18,883 mapped genes, we identified 10,048 differentially expressed genes (DEGs) between the T0 time point and at least one of the four treatment times. We detected the most DEGs at T3, followed by T6, T1, and T24. We observed the upregulation of genes related to JA biosynthesis upon exogenous MeJA application. Similarly, transcript levels of genes related to flavonoid biosynthesis increased after MeJA application and tended to reach their maximum at T6. In agreement, the flavonols kaempferol and quercetin reached their highest accumulation at T24, whereas the levels of the anthraquinones aloe-emodin, emodin, and citreorosein remained constant until T24. This study highlights an increase in flavonoid biosynthesis following both MeJA application and mechanical wounding, whereas no significant influence is observed on anthraquinone biosynthesis. These results provide insights into the distinct regulatory pathways of flavonoid and anthraquinone biosynthesis in response to MeJA and mechanical wounding. Full article
Show Figures

Figure 1

23 pages, 2649 KiB  
Review
Review of Mimusops zeyheri Sond. (Milkwood): Distribution, Utilisation, Ecology and Population Genetics
by Christeldah Mkhonto, Salmina Ngoakoana Mokgehle, Wilfred Otang Mbeng, Luambo Jeffrey Ramarumo and Peter Tshepiso Ndlhovu
Plants 2024, 13(20), 2943; https://doi.org/10.3390/plants13202943 - 21 Oct 2024
Viewed by 683
Abstract
Mimusops zeyheri Sond. (Milkwood) is an indigenous fruit tree species with considerable ecological, cultural, and nutritional significance that remains underexploited. This review synthesizes current knowledge on its distribution, taxonomy, phytochemistry, ethnomedicinal applications, ecological functions, genetic diversity, and biotechnological potential. A systematic literature search, [...] Read more.
Mimusops zeyheri Sond. (Milkwood) is an indigenous fruit tree species with considerable ecological, cultural, and nutritional significance that remains underexploited. This review synthesizes current knowledge on its distribution, taxonomy, phytochemistry, ethnomedicinal applications, ecological functions, genetic diversity, and biotechnological potential. A systematic literature search, spanning 1949 to April 2024, yielded 87 relevant publications from an initial 155. Mimusops zeyheri plays a crucial role in supporting the cultural traditions and economic activities of Indigenous Southern African Communities. Its distribution encompasses South, East, and Southern Tropical Africa, with substantial populations across South African provinces. Ethnomedicinally, various plant parts treat conditions including wounds, gastrointestinal issues, and diabetes. The leaves (34%) and roots (32%) are used, with infusion (33%) and decoction (31%) as primary preparation methods. Oral administration (70%) is the most common, primarily addressing skin conditions (18%). Despite its nutritional richness, a standardized nutrient profile is lacking. Limited genetic diversity studies underscore the need for further research. This study highlights Mimusops zeyheri’s multifaceted importance and research gaps, particularly in other Southern African countries. Future investigations should focus on comprehensive phytochemical analysis, ethnomedicinal validation, ecological conservation, genetic diversity assessment, and biotechnological applications. Multidisciplinary collaborations are recommended to promote sustainable utilization while preserving traditional practices. Full article
(This article belongs to the Special Issue Genetic Resources and Ethnobotany in Aromatic and Medicinal Plants)
Show Figures

Figure 1

9 pages, 1834 KiB  
Article
Drought Stress, Elevated CO2 and Their Combination Differentially Affect Carbon and Nitrogen in Different Organs of Six Spring Wheat Genotypes
by Sajid Shokat, Fulai Liu and Dominik K. Großkinsky
Plants 2024, 13(20), 2942; https://doi.org/10.3390/plants13202942 - 21 Oct 2024
Viewed by 857
Abstract
This study aimed to analyze the combined impact of CO2 and drought stress at the flowering stage on carbon (C), nitrogen (N), and CN ratios in leaves, stem, and grains of bread wheat. Six diverse bread wheat genotypes, comprised of two commercial [...] Read more.
This study aimed to analyze the combined impact of CO2 and drought stress at the flowering stage on carbon (C), nitrogen (N), and CN ratios in leaves, stem, and grains of bread wheat. Six diverse bread wheat genotypes, comprised of two commercial checks, two landraces, and two synthetics derivatives, were grown at two levels of CO2, i.e., 400 ppm and 800 ppm, and drought stress was imposed at the flowering stage through progressive soil drying. Stem, leaf, and grain samples were taken at maturity and concentrations of C and N were determined. Our results indicate that the threshold value of fraction of transpirable soil water (CFTSW) at which it diverges towards closure of stomata was different among genotypes and a higher range of values was estimated under elevated CO2. Drought significantly increased C levels in leaves and N levels in grains but decreased N levels in leaves, which increased CN ratios in leaves. In contrast, drought significantly reduced CN ratios in grains. Genotypes differed significantly in N content in grains, where the landrace derivative L2 maintained the highest N content. Moreover, pronounced changes in leaf N and CN ratios were induced by the combination of elevated CO2 and drought stress. Additionally, combined correlation and biplot analyses indicate a strong positive association of grain CN (GCN) with grain number, weight, and grain yield. These effects possibly interact with drought to strongly interfere with the impact of elevated CO2. The differential performance of the tested genotypes shows that selection of appropriate germplasm is essential to maintain agricultural production. Full article
Show Figures

Figure 1

6 pages, 213 KiB  
Editorial
Spectra Analysis and Plants Research 2.0
by Ioan Grozescu, Maria Iorizzi and Adina-Elena Segneanu
Plants 2024, 13(20), 2941; https://doi.org/10.3390/plants13202941 - 21 Oct 2024
Viewed by 420
Abstract
Medicinal plants have held a crucial position throughout human history, used in ethnomedicine, food preparation, preservation, cosmetics, decoration, disinfection, repelling pests, fabric dyeing, fertility techniques, and spiritual rituals [...] Full article
(This article belongs to the Special Issue Spectra Analysis and Plants Research 2.0)
16 pages, 14950 KiB  
Article
Genome-Wide Identification and Characterization of the Aux/IAA Gene Family in Strawberry Species
by Xiaotong Jing, Quan Zou and Hui Yang
Plants 2024, 13(20), 2940; https://doi.org/10.3390/plants13202940 - 21 Oct 2024
Viewed by 881
Abstract
Auxin is the first plant hormone found to play a dominant role in fruit growth, from fruit set to fruit ripening. Strawberry plants represent a suitable model for studying auxin’s biosynthesis, sensing, and signaling machinery. Aux/IAA genes are a classical rapid [...] Read more.
Auxin is the first plant hormone found to play a dominant role in fruit growth, from fruit set to fruit ripening. Strawberry plants represent a suitable model for studying auxin’s biosynthesis, sensing, and signaling machinery. Aux/IAA genes are a classical rapid auxin-responsive family. However, the Aux/IAA gene family in Fragaria genus is poorly understood. In this study, a total of 287 Aux/IAA genes were identified in the eight strawberry genomes. Their physicochemical properties, domain structure, and cis-regulatory elements revealed the functional multiplicity of the strawberry Aux/IAAs. We used a phylogenetic analysis to classify these genes into 12 classes. In addition, based on synteny analysis, gene duplications, and calculation of the Ka/Ks ratio, we found that segmental duplications promote the evolution of Aux/IAAs in Fragaria species, which is followed by purifying selection. Furthermore, the expression pattern and protein–protein interaction network of these genes in Fragaria vesca revealed various tissue-specific expressions and probable regulatory functions. Taken together, these results provide basic genomic information and a functional analysis of these genes, which will serve to expand our understanding of the direction in which the Aux/IAA gene family is evolving in Fragaria species. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

21 pages, 12169 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Melon Aldehyde Dehydrogenase (ALDH) Gene Family in Response to Abiotic and Biotic Stresses
by Dekun Yang, Hongli Chen, Yu Zhang, Yan Wang, Yongqi Zhai, Gang Xu, Qiangqiang Ding, Mingxia Wang, Qi-an Zhang, Xiaomin Lu and Congsheng Yan
Plants 2024, 13(20), 2939; https://doi.org/10.3390/plants13202939 - 21 Oct 2024
Viewed by 791
Abstract
Through the integration of genomic information, transcriptome sequencing data, and bioinformatics methods, we conducted a comprehensive identification of the ALDH gene family in melon. We explored the impact of this gene family on melon growth, development, and their expression patterns in various tissues [...] Read more.
Through the integration of genomic information, transcriptome sequencing data, and bioinformatics methods, we conducted a comprehensive identification of the ALDH gene family in melon. We explored the impact of this gene family on melon growth, development, and their expression patterns in various tissues and under different stress conditions. Our study discovered a total of 17 ALDH genes spread across chromosomes 1, 2, 3, 4, 5, 7, 8, 11, and 12 in the melon genome. Through a phylogenetic analysis, these genes were classified into 10 distinct subfamilies. Notably, genes within the same subfamily exhibited consistent gene structures and conserved motifs. Our study discovered a pair of fragmental duplications within the melon ALDH gene. Furthermore, there was a noticeable collinearity relationship between the melon’s ALDH gene and that of Arabidopsis (12 times), and rice (3 times). Transcriptome data reanalysis revealed that some ALDH genes consistently expressed highly across all tissues and developmental stages, while others were tissue- or stage-specific. We analyzed the ALDH gene’s expression patterns under six stress types, namely salt, cold, waterlogged, powdery mildew, Fusarium wilt, and gummy stem blight. The results showed differential expression of CmALDH2C4 and CmALDH11A3 under all stress conditions, signifying their crucial roles in melon growth and stress response. RT-qPCR (quantitative reverse transcription PCR) analysis further corroborated these findings. This study paves the way for future genetic improvements in melon molecular breeding. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

13 pages, 481 KiB  
Review
Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants
by Katalin Hubai and Nora Kováts
Plants 2024, 13(20), 2938; https://doi.org/10.3390/plants13202938 - 20 Oct 2024
Viewed by 1190
Abstract
Plants exposed to abiotic stressors show diverse physiological, biochemical, and molecular responses. Biosynthesis of plant secondary metabolites—including essential oils—is a vital plant defense mechanism. As these bioactive compounds are widely used in the pharmaceutical, cosmetic and food industries, it is essential to understand [...] Read more.
Plants exposed to abiotic stressors show diverse physiological, biochemical, and molecular responses. Biosynthesis of plant secondary metabolites—including essential oils—is a vital plant defense mechanism. As these bioactive compounds are widely used in the pharmaceutical, cosmetic and food industries, it is essential to understand how their production is affected in various environments. While interaction between specific abiotic stressors such as salt stress has been widely studied, relatively less information is available on how essential oil production is affected by toxic contaminants. Present review intends to give an insight into the possible interaction between chemical stress and essential oil production, with special regard to soil and air pollution. Available studies clearly demonstrate that heavy metal induced stress does affect quantity and quality of EOs produced, however, pattern seems ambiguous as nature of effect depends on the plant taxon and on the EO. Considering mechanisms, genetic studies clearly prove that exposure to heavy metals influences the expression of genes being responsible for EO synthesis. Full article
Show Figures

Figure 1

19 pages, 4172 KiB  
Article
Drought-Induced Alterations in Carbon and Water Dynamics of Chinese Fir Plantations at the Trunk Wood Stage
by Yijun Liu, Li Zhang, Wende Yan, Yuanying Peng, Hua Sun and Xiaoyong Chen
Plants 2024, 13(20), 2937; https://doi.org/10.3390/plants13202937 - 20 Oct 2024
Viewed by 617
Abstract
Over the past three decades, China has implemented extensive reforestation programs, primarily utilizing Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) in southern China, to mitigate greenhouse gas emissions and counter extreme climate events. However, the effects of drought on the carbon sequestration capacity [...] Read more.
Over the past three decades, China has implemented extensive reforestation programs, primarily utilizing Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) in southern China, to mitigate greenhouse gas emissions and counter extreme climate events. However, the effects of drought on the carbon sequestration capacity of these forests, particularly during the trunk wood stage, remain unclear. This study, conducted in Huitong, Hunan, China, from 2008 to 2013, employed the eddy covariance method to measure carbon dioxide (CO2) and water fluxes in Chinese fir forests, covering a severe drought year in 2011. The purpose was to elucidate the dynamics of carbon and water fluxes during a drought year and across multi-normal year averages. The results showed that changes in soil water content (−8.00%), precipitation (−18.45%), and relative humidity (−5.10%), decreases in air temperature (−0.09 °C) and soil temperature (−0.79 °C), and increases in vapor pressure deficit (19.18%) and net radiation (8.39%) were found in the drought year compared to the normal years. These changes in environmental factors led to considerable decreases in net ecosystem exchange (−40.00%), ecosystem respiration (−13.09%), and gross ecosystem productivity (−18.52%), evapotranspiration (−12.50%), and water use efficiency (−5.83%) in the studied forests in the drought year. In this study, the occurrence of seasonal drought due to uneven precipitation distribution led to a decrease in gross ecosystem productivity (GEP) and evapotranspiration (ET). However, the impact of drought on GEP was greater than its effect on ET, resulting in a reduced water use efficiency (WUE). This study emphasized the crucial role of water availability in determining forest productivity and suggested the need for adjusting vegetation management strategies under severe drought conditions. Our results contributed to improving management practices for Chinese fir plantations in response to changing climate conditions. Full article
Show Figures

Figure 1

12 pages, 629 KiB  
Article
Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits
by Dasha Mihaylova, Ivelina Desseva, Yulian Tumbarski, Aneta Popova, Svetla Pandova and Anna Lante
Plants 2024, 13(20), 2936; https://doi.org/10.3390/plants13202936 - 20 Oct 2024
Viewed by 718
Abstract
The current study focuses on evaluating the enzyme inhibition (acetylcholinesterase, α-amylase, α-glucosidase, pancreatin lipase), antioxidant, and antimicrobial activities of the “Modesto” apricot, “Stanley” plum, and their hybrid the “Stendesto” plum–apricot. The “Stendesto” is the only successful plum–apricot hybrid in Bulgaria. A spectrophotometric approach [...] Read more.
The current study focuses on evaluating the enzyme inhibition (acetylcholinesterase, α-amylase, α-glucosidase, pancreatin lipase), antioxidant, and antimicrobial activities of the “Modesto” apricot, “Stanley” plum, and their hybrid the “Stendesto” plum–apricot. The “Stendesto” is the only successful plum–apricot hybrid in Bulgaria. A spectrophotometric approach was used to evaluate the antioxidant activity following four complementary assays (DPPH, ABTS, FRAP, and CUPRAC). The “Stendesto” plum–apricot revealed its enhanced antioxidant potential compared to its parental lines. Apart from the free phenolics extraction, two other techniques (alkaline and acid hydrolysis) were applied to reveal the biological potential of the studied fruit. Not only free but also bound phenolic extracts were able to inhibit α-glucosidase and acetylcholinesterase, while none of the extracts inhibited lipase or α-amylase. None of the apricot extracts had antimicrobial activity, while the other fruit had limited antimicrobial activity. The proposed results undoubtedly reveal that hybrid fruits possess enhanced biological activity compared to their parents. This is a first comprehensive evaluation of hybrid fruits with reference to parental lines. This makes them an interesting research topic that should be better explored. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 7940 KiB  
Article
Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer
by Hao Qi, Zhong Zhuang, Jiang Liu, Siyu Huang, Qiqi Wang, Qi Wang, Huafen Li and Yanan Wan
Plants 2024, 13(20), 2935; https://doi.org/10.3390/plants13202935 - 20 Oct 2024
Viewed by 870
Abstract
Organic fertilizers are widely used to improve soil quality. However, their potential for ensuring the safe production of vegetables in soils with varying levels of heavy metals pollution remains inadequately explored. Here, we conducted a pot experiment to investigate the effects of substituting [...] Read more.
Organic fertilizers are widely used to improve soil quality. However, their potential for ensuring the safe production of vegetables in soils with varying levels of heavy metals pollution remains inadequately explored. Here, we conducted a pot experiment to investigate the effects of substituting chemical fertilizers with organic fertilizer on the HMs accumulation in water spinach by simulating soils with different levels of HMs pollution. The results showed that the organic fertilizer significantly increased the soil pH, cation exchange capacity (CEC), and organic matter (OM). Furthermore, it led to a reduction in the soil DTPA–Cd and DTPA–Pb levels by 3.3–20.6% and 22.4–47.3%, respectively, whereas the DTPA–As levels increased by 0.07–7.7 times. The organic fertilizer effectively reduced the Cd and Pb content in water spinach below the safety limits when the added Cd content in the soil was less than 2 mg/kg and the Pb content was equal to or less than 90 mg/kg. However, its efficacy in reducing As accumulation in water spinach was limited, emphasizing the need for caution when using organic fertilizers in As-contaminated soils. Our results provide valuable insights for the scientific and precise utilization of organic fertilizers, thereby contributing to the safe production of vegetables. Full article
(This article belongs to the Special Issue Soil Heavy Metal Pollution and Agricultural Product Quality)
Show Figures

Figure 1

16 pages, 2547 KiB  
Article
Cerium Oxide Nanoparticles (CeO2 NPs) Enhance Salt Tolerance in Spearmint (Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition
by Maryam Haghmadad Milani, Asghar Mohammadi, Sima Panahirad, Habib Farhadi, Parisa Labib, Muhittin Kulak, Gholamreza Gohari, Vasileios Fotopoulos and Federico Vita
Plants 2024, 13(20), 2934; https://doi.org/10.3390/plants13202934 - 20 Oct 2024
Viewed by 1271
Abstract
Salinity represents a considerable environmental risk, exerting deleterious effects on horticultural crops. Nanotechnology has recently emerged as a promising avenue for enhancing plant tolerance to abiotic stress. Among nanoparticles, cerium oxide nanoparticles (CeO2 NPs) have been demonstrated to mitigate certain stress effects, [...] Read more.
Salinity represents a considerable environmental risk, exerting deleterious effects on horticultural crops. Nanotechnology has recently emerged as a promising avenue for enhancing plant tolerance to abiotic stress. Among nanoparticles, cerium oxide nanoparticles (CeO2 NPs) have been demonstrated to mitigate certain stress effects, including salinity. In the present study, the impact of CeO2 NPs (0, 25, and 100 mg L−1) on various morphological traits, photosynthetic pigments, biochemical parameters, and the essential oil profile of spearmint plants under moderate (50 mM NaCl) and severe (100 mM NaCl) salinity stress conditions was examined. As expected, salinity reduced morphological parameters, including plant height, number of leaves, fresh and dry weight of leaves and shoots, as well as photosynthetic pigments, in comparison to control. Conversely, it led to an increase in the content of proline, total phenols, malondialdehyde (MDA), hydrogen peroxide (H2O2), and antioxidant enzyme activities. In terms of CeO2 NP applications, they improved the salinity tolerance of spearmint plants by increasing chlorophyll and carotenoid content, enhancing antioxidant enzyme activities, and lowering MDA and H2O2 levels. However, CeO2 NPs at 100 mg L−1 had adverse effects on certain physiological parameters, highlighting the need for careful consideration of the applied concentration of CeO2 NPs. Considering the response of essential oil compounds, combination of salinity stress and CeO2 treatments led to an increase in the concentrations of L-menthone, pulegone, and 1,8-cineole, which are the predominant compounds in spearmint essential oil. In summary, foliar application of CeO2 NPs strengthened the resilience of spearmint plants against salinity stress, offering new insights into the potential use of CeO2 NP treatments to enhance crop stress tolerance. Full article
(This article belongs to the Special Issue Nanomaterials on Plant Growth and Stress Adaptation)
Show Figures

Figure 1

13 pages, 5830 KiB  
Article
Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant
by Yongguo Zhao, Xiaowen Fu and Zhi Zou
Plants 2024, 13(20), 2933; https://doi.org/10.3390/plants13202933 - 19 Oct 2024
Viewed by 748
Abstract
LEA_1 domain-containing proteins constitute a class of late-embryogenesis-abundant proteins that are highly hydrophilic and predominantly accumulate in mature seeds. Though LEA_1 proteins have been proven to be essential for seed desiccation tolerance and longevity, little information is available on their roles in non-seed [...] Read more.
LEA_1 domain-containing proteins constitute a class of late-embryogenesis-abundant proteins that are highly hydrophilic and predominantly accumulate in mature seeds. Though LEA_1 proteins have been proven to be essential for seed desiccation tolerance and longevity, little information is available on their roles in non-seed storage organs. In this study, a first genome-wide characterization of the LEA_1 gene family was conducted in tigernut (Cyperus esculentus L., Cyperaceae), whose underground tubers are desiccation tolerant with a moisture content of less than 6%. Five family members identified in tigernut are comparative to four to six found in seven other Cyperaceae plants, but relatively more than three reported in Arabidopsis. Further comparison of 125 members from 29 plant species supports early divergence of the LEA_1 family into two phylogenetic groups before angiosperm radiation, and gene expansion in tigernut was contributed by whole-genome duplications occurring after the split with the eudicot clade. These two phylogenetic groups could be further divided into six orthogroups in the momocot clade, five of which are present in tigernut and the remaining one is Poaceae specific. Frequent structural variation and expression divergence of paralogs were also observed. Significantly, in contrast to seed-preferential expression of LEA_1 genes in Arabidopsis, rice, and maize, transcriptional profiling and qRT-PCR analysis revealed that CeLEA1 genes have evolved to predominantly express in tubers, exhibiting a seed desiccation-like accumulation during tuber development. Moreover, CeLEA1 transcripts in tubers were shown to be considerably more than that of their orthologs in purple nutsedge, another Cyperaceae plant producing desiccation-sensitive tubers. These results imply species-specific activation and key roles of CeLEA1 genes in the acquisition of desiccation tolerance of tigernut tubers as observed in orthodox seeds. Our findings not only improve the understanding of lineage-specific evolution of the LEA_1 family, but also provide valuable information for further functional analysis and genetic improvement in tigernut. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

22 pages, 6617 KiB  
Article
Contrasting Alleles of OsNRT1.1b Fostering Potential in Improving Nitrogen Use Efficiency in Rice
by Jonaliza L. Siangliw, Mathurada Ruangsiri, Cattarin Theerawitaya, Suriyan Cha-um, Wasin Poncheewin, Decha Songtoasesakul, Burin Thunnom, Vinitchan Ruanjaichon and Theerayut Toojinda
Plants 2024, 13(20), 2932; https://doi.org/10.3390/plants13202932 - 19 Oct 2024
Viewed by 791
Abstract
Nitrogen use efficiency (NUE) is important for the growth and development of rice and is significant in reducing the costs of rice production. OsNRT1.1b is involved in nitrate assimilation, and the alleles at position 21,759,092 on chromosome 10 clearly separate indica (Pathum Thani [...] Read more.
Nitrogen use efficiency (NUE) is important for the growth and development of rice and is significant in reducing the costs of rice production. OsNRT1.1b is involved in nitrate assimilation, and the alleles at position 21,759,092 on chromosome 10 clearly separate indica (Pathum Thani 1 (PTT1) and Homcholasit (HCS)) and japonica (Azucena and Leum Pua (LP)) rice varieties. Rice morphological and physiological traits were collected at three nitrogen levels (N0 = 0 kg ha−1, N7 = 43.75 kg ha−1, and N14 = 87.5 kg ha−1). Leaf and tiller numbers in PTT1 and HCS at N7 and N14 were two to three times higher than those at N0. At harvest, the biomass yield in PTT1 was the highest, while the total grain number in HCS was the maximum. The leaf widths and total chlorophyll contents (SPAD units) of Azucena and LP increased with nitrogen application as well as photosynthetic pigment parameters; for example, plant senescence reflectance indices (PSRIs), structure-insensitive pigment indices (SIPIs), and modified chlorophyll absorption ratio indices (MCARIs) were highly related in the japonica varieties. PTT1 and HCS, both carrying the A allele at OsNRT1.1b, had better NUE than Azucena and LP with the G allele. HCS, overall, had better NUE than PTT1. The translation to grain yield of assimilates was remarkable in PTT1 and HCS compared with Azucena and LP. In addition, HCS converted biomass for a 75% higher yield than PTT1. The ability of HCS to produce high yields was achieved even at N7 nitrogen fertilization, manifesting efficient use of nitrogen. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

18 pages, 931 KiB  
Article
Supercritical CO2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry (Rubus fruticosus L.) Pomace
by Indrė Čechovičienė, Kiril Kazancev, Ewellina Hallmann, Eglė Sendžikienė, Marcin Kruk, Jonas Viškelis and Živilė Tarasevičienė
Plants 2024, 13(20), 2931; https://doi.org/10.3390/plants13202931 - 19 Oct 2024
Viewed by 627
Abstract
The main objective of this work was to extract bioactive compounds from different cultivars of blackberry pomace using conventional Soxhlet and supercritical CO2 (SC-CO2) extraction methods. For Soxhlet extraction, two different solvents, ethanol and n-hexane, were used. Qualitative and [...] Read more.
The main objective of this work was to extract bioactive compounds from different cultivars of blackberry pomace using conventional Soxhlet and supercritical CO2 (SC-CO2) extraction methods. For Soxhlet extraction, two different solvents, ethanol and n-hexane, were used. Qualitative and quantitative composition of fatty acids was determined by GC, carotenoids and chlorophylls by HPLC, and volatile organic compounds were identified with an e-nose based on GC. The yield of the extract was influenced by the extraction, while the qualitative content of the extracts was also dependent on the cultivar. While there were no differences in the types of fatty acids extracted, their content varied significantly depending on the cultivar, extraction method, and their interaction. The results showed that linoleic acid (C18:2), oleic acid (C18:1), and α-linolenic acid (C18:3) were the most prevalent in all cultivars of blackberry pomace extracts. The linoleic acid content varied from 33.33 to 64.77% depending on the variety, and the ratio of omega-6 to omega-3 varied from 3.17% to 5.71%. Significantly higher quantities of carotenoids and chlorophylls were obtained in Soxhlet extraction with n-hexane in all extracts. The major carotenoid in the ‘Orkan’ and ‘Polar’ extracts was lutein, while in the ‘Brzezina’ extract, it was β-carotene. The extraction method has a significant impact on the flavor profile of the extracts. Full article
Show Figures

Figure 1

14 pages, 2926 KiB  
Article
Food and Environment During the Late Roman Age at the Site of Alba Fucens (Abruzzi, Italy)
by Claudia Moricca, Gilda Russo, Duilio Iamonico, Emanuela Ceccaroni, Gabriele Favero and Laura Sadori
Plants 2024, 13(20), 2930; https://doi.org/10.3390/plants13202930 - 19 Oct 2024
Viewed by 703
Abstract
Archaeobotanical analyses in Italy are uneven in terms of geographical and chronological distribution. Amongst the different regions, Abruzzi is poorly represented, with only one study covering the Roman Age. In this framework, the analyses carried out on carpological remains collected from the Late [...] Read more.
Archaeobotanical analyses in Italy are uneven in terms of geographical and chronological distribution. Amongst the different regions, Abruzzi is poorly represented, with only one study covering the Roman Age. In this framework, the analyses carried out on carpological remains collected from the Late Roman (late 5th–early 6th century AD) filling of a well in the Sanctuary of Hercules in Alba Fucens represents an important addition to the state of the art. The plant assemblage consists of over 1500 remains attributed to 68 different taxa. These are partly represented by gathered fruit plants, such as Corylus avellana, Juglans regia and Sambucus nigra, while cereals and pulses are missing. An interesting aspect is represented by evergreen plants (Pinus pinea and Cupressus sempervirens) that are likely to have been used for ritual purposes rather than for human consumption. Finally, the impressive amount of ruderal and spontaneous plants represents a unicum for this type of study, allowing us to describe the past environment surrounding Alba Fucens, characterized by substantial water availability, Apennine grasslands and influenced by human presence. Full article
(This article belongs to the Special Issue Advances in Vegetation History and Archaeobotany)
Show Figures

Figure 1

21 pages, 1470 KiB  
Article
Phenological Adaptation of Wheat Varieties to Rising Temperatures: Implications for Yield Components and Grain Quality
by Davide Gulino and Marta S. Lopes
Plants 2024, 13(20), 2929; https://doi.org/10.3390/plants13202929 - 18 Oct 2024
Viewed by 702
Abstract
This study examined the effects of late sowing, water restrictions, and interannual weather variations on wheat grain yield and quality through field trials in Spain over two growing seasons. Delayed sowing and water scarcity significantly reduced yields, with grain quality mainly affected under [...] Read more.
This study examined the effects of late sowing, water restrictions, and interannual weather variations on wheat grain yield and quality through field trials in Spain over two growing seasons. Delayed sowing and water scarcity significantly reduced yields, with grain quality mainly affected under rainfed conditions. Early-maturing varieties performed better in these conditions, benefiting from lower temperatures and extended grain-filling periods, leading to higher solar radiation interception, potentially increased photosynthetic activity, and improved yields. These varieties also saved water through reduced total cumulative evapotranspiration from sowing to maturity (ETo TOT), which was advantageous in water-limited environments. In contrast, late-maturing varieties were exposed to higher maximum temperatures during grain filling and experienced greater ETo TOT, leading to lower yields, reduced hectoliter weight, and a lower P/L ratio (tenacity/extensibility). This study highlighted the importance of optimizing temperature exposure and evapotranspiration for improved grain yield and quality, especially under climate change conditions with higher temperatures and water shortages. Notably, it established, for the first time, the importance of phenology on wheat quality of different varieties, suggesting that targeted selection for specific phenology could mitigate the negative impacts of heat stress not only on grain yield but also on grain quality. Full article
Show Figures

Figure 1

19 pages, 7472 KiB  
Article
Integration of mRNA-miRNA Reveals the Possible Role of PyCYCD3 in Increasing Branches Through Bud-Notching in Pear (Pyrus bretschneideri Rehd.)
by Ze-Shan An, Cun-Wu Zuo, Juan Mao, Zong-Huan Ma, Wen-Fang Li and Bai-Hong Chen
Plants 2024, 13(20), 2928; https://doi.org/10.3390/plants13202928 - 18 Oct 2024
Viewed by 576
Abstract
Bud-notching in pear varieties with weak-branches enhances branch development, hormone distribution, and germination, promoting healthier growth and improving early yield. To examine the regulatory mechanisms of endogenous hormones on lateral bud germination in Pyrus spp. (cv. ‘Huangguan’) (Pyrus bretschneideri Rehd.), juvenile buds [...] Read more.
Bud-notching in pear varieties with weak-branches enhances branch development, hormone distribution, and germination, promoting healthier growth and improving early yield. To examine the regulatory mechanisms of endogenous hormones on lateral bud germination in Pyrus spp. (cv. ‘Huangguan’) (Pyrus bretschneideri Rehd.), juvenile buds were collected from 2-year-old pear trees. Then, a comprehensive study, including assessments of endogenous hormones, germination and branching rates, RNA-seq analysis, and gene function analysis in these lateral buds was conducted. The results showed that there was no significant difference in germination rate between the control and bud-notching pear trees, but the long branch rate was significantly increased in bud-notching pear trees compared to the control (p < 0.05). After bud-notching, there was a remarkable increase in IAA and BR levels in the pruned section of shoots, specifically by 141% and 93%, respectively. However, the content of ABA in the lateral buds after bud-notching was not significantly different from the control. Based on RNA-seq analysis, a notable proportion of the differentially expressed genes (DEGs) were linked to the plant hormone signal transduction pathway. Notably, the brassinosteroid signaling pathway seemed to have the closest connection with the branching ability of pear with the related genes encoding BRI1 and CYCD3, which showed significant differences between lateral buds. Finally, the heterologous expression of PyCYCD3 has a positive regulatory effect on the increased Arabidopsis growth and branching numbers. Therefore, the PyCYCD3 was identified as an up-regulated gene that is induced via brassinosteroid (BR) and could act as a conduit, transforming bud-notching cues into proliferative signals, thereby governing lateral branching mechanisms in pear trees. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 3116 KiB  
Article
A Model for the Gene Regulatory Network Along the Arabidopsis Fruit Medio-Lateral Axis: Rewiring the Pod Shatter Process
by José Moya-Cuevas, Elizabeth Ortiz-Gutiérrez, Patricio López-Sánchez, Miguel Simón-Moya, Patricia Ballester, Elena R. Álvarez-Buylla and Cristina Ferrándiz
Plants 2024, 13(20), 2927; https://doi.org/10.3390/plants13202927 - 18 Oct 2024
Viewed by 661
Abstract
Different convergent evolutionary strategies adopted by angiosperm fruits lead to diverse functional seed dispersal units. Dry dehiscent fruits are a common type of fruit, characterized by their lack of fleshy pericarp and the release of seeds at maturity through openings (dehiscence zones, DZs) [...] Read more.
Different convergent evolutionary strategies adopted by angiosperm fruits lead to diverse functional seed dispersal units. Dry dehiscent fruits are a common type of fruit, characterized by their lack of fleshy pericarp and the release of seeds at maturity through openings (dehiscence zones, DZs) in their structure. In previous decades, a set of core players in DZ formation have been intensively characterized in Arabidopsis and integrated in a gene regulatory network (GRN) that explains the morphogenesis of these tissues. In this work, we compile all the experimental data available to date to build a discrete Boolean model as a mechanistic approach to validate the network and, if needed, to identify missing components of the GRN and/or propose new hypothetical regulatory interactions, but also to provide a new formal framework to feed further work in Brassicaceae fruit development and the evolution of seed dispersal mechanisms. Hence, by means of exhaustive in-silico validations and experimental evidence, we are able to incorporate both the NO TRANSMITTING TRACT (NTT) transcription factor as a new additional node, and a new set of regulatory hypothetical rules to uncover the dynamics of Arabidopsis DZ specification. Full article
Show Figures

Figure 1

18 pages, 3391 KiB  
Article
The Germination Performance After Dormancy Breaking of Leucaena diversifolia (Schltdl.) Benth. Seeds in a Thermal Gradient and Its Distribution Under Climate Change Scenarios
by Andrés Flores, Cesar M. Flores-Ortíz, Patricia D. Dávila-Aranda, Norma Isela Rodríguez-Arévalo, Salvador Sampayo-Maldonado, Daniel Cabrera-Santos, Maraeva Gianella and Tiziana Ulian
Plants 2024, 13(20), 2926; https://doi.org/10.3390/plants13202926 - 18 Oct 2024
Viewed by 563
Abstract
Climate change models predict temperature increases, which may affect germination, an important stage in the recruitment of individuals in agroecosystems. Therefore, it is crucial to conduct research on how temperature will impact the germination of multipurpose native species. Leucaena diversifolia (Schltdl.) Benth. is [...] Read more.
Climate change models predict temperature increases, which may affect germination, an important stage in the recruitment of individuals in agroecosystems. Therefore, it is crucial to conduct research on how temperature will impact the germination of multipurpose native species. Leucaena diversifolia (Schltdl.) Benth. is native to America and is commonly cultivated around the world due to having a high protein content in seeds, and their trees are used in agrosilvopastoral systems because they fix nitrogen and provide shade and cattle feed. However, climate change affects the critical phases of its life cycle and influences its growth, reproduction, phenology, and distribution. To assess the germination performance of Leucaena diversifolia under different temperatures throughout thermal times, we estimated germination variables and determined cardinal temperatures and thermal time; we also analysed germination and potential distribution under two climate change scenarios. We found significant variations in seed germination (78–98%) and differences in cardinal temperatures (Tb = 5.17 and 7.6 °C, To = 29.42 and 29.54 °C, and Tc = 39.45 and 39.76 °C). On the other hand, the sub-optimal and supra-optimal temperature values showed little differences: 51.34 and 55.57 °Cd. The models used showed variations in germination time for the analysed scenarios and the potential distribution. We confirm that the populations and distribution of L. diversifolia will be altered due to climate changes, but the species retains the ability to germinate under warmer conditions. Full article
(This article belongs to the Topic Responses of Trees and Forests to Climate Change)
Show Figures

Figure 1

14 pages, 2296 KiB  
Article
G-Quadruplex Structures as Epigenetic Regulatory Elements in Priming of Defense Genes upon Short-Term Trichoderma atroviride Inoculation in Maize
by Romina B. Agostini, Ernesto J. Piga, Candela Bayón, Andrés Binolfi, Pablo Armas, Valeria A. Campos-Bermudez and Sebastián P. Rius
Plants 2024, 13(20), 2925; https://doi.org/10.3390/plants13202925 - 18 Oct 2024
Viewed by 592
Abstract
Symbiosis establishment between Trichoderma atroviride and plant roots triggers the priming of defense responses, among other effects. Currently, there is no clear evidence regarding the molecular mechanisms that allow the plant to remain alert to future stimulus, either by pathogen attack or any [...] Read more.
Symbiosis establishment between Trichoderma atroviride and plant roots triggers the priming of defense responses, among other effects. Currently, there is no clear evidence regarding the molecular mechanisms that allow the plant to remain alert to future stimulus, either by pathogen attack or any other abiotic stress. Epigenetic modifications have emerged as a strategy to explain the increased defense response of plants in a priming state conferred by Trichoderma. Recently, various non-canonical structures of nucleic acids, especially G-quadruplex structures (G-quadruplexes or G4s), have been identified as potential targets during the establishment or maintenance of plant signals. In the present study, we developed a screening test for the identification of putative G4-forming sequences (PQSs) in previously identified Z. mays priming genes. Bioinformatic analysis revealed the presence of PQSs in the promoter region of five essential genes playing a critical role in priming in maize. Biophysical and spectroscopy studies showed the formation of G4s by these PQSs in vitro, and ChIP assays demonstrate their formation in vivo. Therefore, G4 formation could play a role as an epigenetic regulatory mechanism involved in the long-lasting primed state in maize plants. Full article
(This article belongs to the Special Issue Plant Immune Mechanisms)
Show Figures

Figure 1

15 pages, 5278 KiB  
Article
Cloning and Expression Analysis of ATG8 (Autophagy-Related 8) Gene Family in Solanaceae
by Yahan Chen, Yunshuang Lu, Shibo Dong, Chengde Yang and Shunyi Yang
Plants 2024, 13(20), 2924; https://doi.org/10.3390/plants13202924 - 18 Oct 2024
Viewed by 726
Abstract
The autophagy-related gene family ATG8 (Autophagy-related 8) plays an important role in plant growth, development, and stress response. In this study, 15 ATG8 gene family sequences were amplified from Solanaceae, namely tobacco, tomato, and pepper, using RT-PCR to evaluate their basic properties, protein [...] Read more.
The autophagy-related gene family ATG8 (Autophagy-related 8) plays an important role in plant growth, development, and stress response. In this study, 15 ATG8 gene family sequences were amplified from Solanaceae, namely tobacco, tomato, and pepper, using RT-PCR to evaluate their basic properties, protein structure, and function, as well as the role of ATG8 in autophagy. The physicochemical properties, the predicted secondary and tertiary protein structures, subcellular localisation, gene structures, conserved motifs, and phylogenetic relationships of the ATG8 genes were analysed using bioinformatic techniques, and their expression patterns under sericin-induced plant disease resistance were investigated by RT-qPCR. The lengths of these proteins ranged from 79 to 120 aa, while their predicted molecular weights and isoelectric points (PI) ranged from 9283.62 to 13,778.74 and 6.32 to 11.44, respectively. The majority of the proteins were localised in the nucleus or chloroplasts. Conserved protein motifs and various cis-regulatory elements in the protein, with a wide range of related functions, were identified. The ATG8 gene family members showed expression changes after treatment with osthole, which induces disease resistance in tobacco, tomato, and pepper. These findings provide a foundation for further analyses of the ATG8 gene family in Solanaceae and the mechanism underlying the response to adverse conditions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 15476 KiB  
Article
Dynamics of Hydrogen Peroxide Accumulation During Tip Growth of Infection Thread in Nodules and Cell Differentiation in Pea (Pisum sativum L.) Symbiotic Nodules
by Anna V. Tsyganova, Artemii P. Gorshkov, Maxim G. Vorobiev, Igor A. Tikhonovich, Nicholas J. Brewin and Viktor E. Tsyganov
Plants 2024, 13(20), 2923; https://doi.org/10.3390/plants13202923 - 18 Oct 2024
Viewed by 621
Abstract
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium–legume symbiosis, hydrogen peroxide plays an important [...] Read more.
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium–legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, H2O2 has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence. In this study, the pattern of H2O2 accumulation in pea (Pisum sativum L.) wild-type and mutant nodules blocked at different stages of the infection process was analyzed using a cytochemical reaction with cerium chloride. The observed dynamics of H2O2 deposition in the infection thread walls indicated that the distribution of H2O2 was apparently related to the stiffness of the infection thread wall. The dynamics of H2O2 accumulation was traced, and its patterns in different nodule zones were determined in order to investigate the relationship of H2O2 localization and distribution with the stages of symbiotic nodule development in P. sativum. The patterns of H2O2 localization in different zones of the indeterminate nodule have been partially confirmed by comparative analysis on mutant genotypes. Full article
Show Figures

Figure 1

15 pages, 9050 KiB  
Article
Genome-Wide Identification of MKK Gene Family and Response to Hormone and Abiotic Stress in Rice
by Fan Zhang, Jingjing Wang, Yiwei Chen, Junjun Huang and Weihong Liang
Plants 2024, 13(20), 2922; https://doi.org/10.3390/plants13202922 - 18 Oct 2024
Viewed by 742
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades are pivotal and highly conserved signaling modules widely distributed in eukaryotes; they play essential roles in plant growth and development, as well as biotic and abiotic stress responses. With the development of sequencing technology, the complete genome assembly [...] Read more.
Mitogen-activated protein kinase (MAPK/MPK) cascades are pivotal and highly conserved signaling modules widely distributed in eukaryotes; they play essential roles in plant growth and development, as well as biotic and abiotic stress responses. With the development of sequencing technology, the complete genome assembly of rice without gaps, T2T (Telomere-to-Telomere)—NIP (version AGIS-1.0), has recently been released. In this study, we used bioinformatic approaches to identify and analyze the rice MPK kinases (MKKs) based on the complete genome. A total of seven OsMKKs were identified, and their physical and chemical properties, chromosome localization, gene structure, subcellular localization, phylogeny, family evolution, and cis-acting elements were evaluated. OsMKKs can be divided into four subgroups based on phylogenetic relationships, and the family members located in the same evolutionary branch have relatively similar gene structures and conserved domains. Quantitative real-time PCR (qRT-PCR) revealed that all OsMKKs were highly expressed in rice seedling leaves. The expression levels of all OsMKKs were more or less altered under exogenous hormone and abiotic stress treatments, with OsMKK1, OsMKK6, and OsMKK3 being induced under almost all treatments, while the expression of OsMKK4 and OsMKK10-2 was repressed under salt and drought treatments and IAA treatment, respectively. In this study, we also summarized the recent progress in rice MPK cascades, highlighted their diverse functions, and outlined the potential MPK signaling network, facilitating further studies on OsMKK genes and rice MPK cascades. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Application of Lanthanum at the Heading Stage Effectively Suppresses Cadmium Accumulation in Wheat Grains by Downregulating the Expression of TaZIP7 to Increase Cadmium Retention in Nodes
by Caixia Xiao, Hua Yang, Xingwang Chen, Jie Li, Xiongfei Cai and Jian Long
Plants 2024, 13(20), 2921; https://doi.org/10.3390/plants13202921 - 18 Oct 2024
Viewed by 512
Abstract
Reducing cadmium (Cd) accumulation in wheat is an effective way to decrease the potential threats of Cd to human health. The application of lanthanum (La) in agricultural fields is eliciting extensive attention due to its beneficial effects on improving yields and inhibiting Cd [...] Read more.
Reducing cadmium (Cd) accumulation in wheat is an effective way to decrease the potential threats of Cd to human health. The application of lanthanum (La) in agricultural fields is eliciting extensive attention due to its beneficial effects on improving yields and inhibiting Cd accumulation in edible parts of crops. However, the potential mechanism of La-restricted Cd accumulation in crop grains is not entirely understood. Here, we investigated the effects of La and Cd accumulation in wheat grains by implementing application at the shooting and heading stages. Some associated mechanisms were explored. Results showed that La application at the shooting and heading stages considerably promoted the thousand-grain weight. La application at the shooting and heading stages increased Cd accumulation in the first node beneath the panicle (N1) but reduced Cd levels in the other tissues. La application at the heading stage exerted greater effects on Cd storage in N1 while reducing Cd concentrations in the other tissues compared with La application at the shooting stage. La addition substantially decreased the translocation of Cd from the lower nodes to the upper internodes, but increased Cd translocation from the lower internodes to the upper nodes. The expression of TaZIP7 in N1 was downregulated by La treatment. These results suggest that the effective reduction in Cd in wheat grains by La application at the heading stage is probably a consequence of the successful promotion of Cd storage in nodes by downregulating the expression of TaZIP7 during the grain-filling stage, thereby hindering the redirection Cd from nodes to grains. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Graphical abstract

14 pages, 3511 KiB  
Article
The Impact of Short-Term Drought on the Photosynthetic Characteristics and Yield of Peanuts Grown in Saline Alkali Soil
by Kang He, Yang Xu, Hong Ding, Qing Guo, Dunwei Ci, Jialei Zhang, Feifei Qin, Manlin Xu and Guanchu Zhang
Plants 2024, 13(20), 2920; https://doi.org/10.3390/plants13202920 - 18 Oct 2024
Viewed by 489
Abstract
Peanuts grown in saline alkali soil are also subjected to drought stress caused by water scarcity. Therefore, we used HY25 (peanut variety) as an experimental material to investigate the effects of drought on the height of peanut main stems, length of the first [...] Read more.
Peanuts grown in saline alkali soil are also subjected to drought stress caused by water scarcity. Therefore, we used HY25 (peanut variety) as an experimental material to investigate the effects of drought on the height of peanut main stems, length of the first lateral branch, leaf area per plant, SPAD value, net photosynthetic rate, and accumulation and distribution of photosynthetic products in saline alkali soil. The results showed that the combined stress of short-term drought and salt significantly reduced the main stem height, first lateral branch length, single plant leaf area, SPAD value, net photosynthetic rate (Pn), intercellular carbon dioxide concentration (Ci), and dry matter accumulation of peanuts, including a decrease in single plant pod yield, 100-pod weight, 100-kernel weight, and peanut yield. And the impact of drought stress on peanut yield varies at different growth stages. For example, under drought stress alone, the sensitive period is the 40th day after planting (40D) > 60th day after planting (60D) > 30th day after planting (30D). Short-term drought has the greatest impact on peanut yield at 40D, while in contrast, resuming watering after drought at 30D results in a slight but not significant increase in peanut yield in comparison with the control. Under the combined stress of drought and salt, the sensitive period of peanuts was 40D > 30D > 60D, and the single pod weight of peanuts was significantly reduced by 15.26% to 57.60% from the flowering stage to the pod stage under drought treatment compared to salt treatment, indicating a significant interaction between drought and salt stress, reducing the single leaf area and net photosynthetic rate of peanut leaves, ultimately leading to a decrease in peanut yield. Therefore, when planting peanuts in saline alkali soil, drought should be avoided, especially early drought, in order to prevent the combined effects of drought and salt stress from harming peanut yield. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

15 pages, 886 KiB  
Article
Early Flowering and Maturity Promote the Successful Adaptation and High Yield of Quinoa (Chenopodium quinoa Willd.) in Temperate Regions
by Nazgol Emrani, Nathaly Maldonado-Taipe, Mario Hasler, Dilan S. R. Patiranage and Christian Jung
Plants 2024, 13(20), 2919; https://doi.org/10.3390/plants13202919 - 18 Oct 2024
Viewed by 521
Abstract
Quinoa (Chenopodium quinoa Willd.) can offer an alternative for staple food considering its tolerance to abiotic stresses and high seed quality. However, its cultivation in temperate regions has not been successful due to its photoperiod sensitivity and low seed yield. This study [...] Read more.
Quinoa (Chenopodium quinoa Willd.) can offer an alternative for staple food considering its tolerance to abiotic stresses and high seed quality. However, its cultivation in temperate regions has not been successful due to its photoperiod sensitivity and low seed yield. This study investigated the agronomical performance and quality traits of 48 accessions for cultivation in northern Europe. We conducted two-year field trials and phenotyped traits related to phenological development, plant architecture, yield components, seed quality, and disease resistance. The major determinants of seed yield in this study were days to flowering, days to maturity, thousand-kernel weight, and panicle density, while downy mildew susceptibility and stem lodging showed a negative correlation with seed yield. We developed a selection index to enable simultaneous selection based on different important agronomical traits. We evaluated the stability of different accessions over the two years of the experiment. Finally, we provided a list of 10 selected accessions that can be directly integrated and serve as new crossing parents in quinoa breeding programs for temperate regions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

2 pages, 144 KiB  
Editorial
Multiple Response Mechanisms of Plants to Drought Stress
by Jie Gao, Jie Zhao and Peijian Shi
Plants 2024, 13(20), 2918; https://doi.org/10.3390/plants13202918 - 18 Oct 2024
Viewed by 491
Abstract
As climate change increasingly affects global ecosystems, understanding plant responses to drought stress has become essential for both conservation and agricultural productivity [...] Full article
(This article belongs to the Special Issue Multiple Response Mechanisms of Plants to Drought Stress)
20 pages, 1250 KiB  
Article
Radish and Spinach Seedling Production and Early Growth in Response to Struvite Use as a Phosphorus Source
by Giannis Neofytou, Antonios Chrysargyris, Maria G. Antoniou and Nikolaos Tzortzakis
Plants 2024, 13(20), 2917; https://doi.org/10.3390/plants13202917 - 18 Oct 2024
Viewed by 799
Abstract
To sustain the increasing needs of a rapidly growing population, agriculture has relied on the use of synthetic fertilizers to intensify its production. However, the economical, environmental and health impacts associated with their use have raised significant concerns, especially given the scarcity of [...] Read more.
To sustain the increasing needs of a rapidly growing population, agriculture has relied on the use of synthetic fertilizers to intensify its production. However, the economical, environmental and health impacts associated with their use have raised significant concerns, especially given the scarcity of phosphorus. Utilizing nutrient-recovered materials like struvite can enhance circularity in agriculture and reduce its reliance on synthetic fertilizers. The objective of this study was to assess the implementation of struvite as a complete substitute to triple superphosphate, for radish and spinach seedling production and early growth, with or without supplementary fertigation. In addition, two rates of struvite were examined (0.68 and 1.37 g L−1 substrate) to evaluate its solubility. In the germination of radish, struvite had similar performance with conventional fertilization, while in spinach, the use of struvite decreased mean germination times. Both plants maintained comparable growth, chlorophyll content and antioxidant capacity when struvite was used, in comparison to conventional fertilizers. However, higher struvite rates under un-fertigated conditions significantly increased the chlorophyll b and total chlorophylls in the spinach, while phenolics and flavonoids decreased, contingent on the fertigation applications. In the radish, struvite maintained similar MDA and H2O2 levels to conventional fertilization, while decreases occurred in the spinach, with the application of ST1 under un-fertigated conditions, compared with conventional fertilization. The P and N contents of the plants were also affected, though these effects varied depending on the plant species, fertigation applications and struvite rates. This variance can be attributed to the characteristics of struvite, the plant species and the cultivation practices. The results of this study suggest that struvite can be successfully implemented in seedling production, establishing significant prospects for its commercialization and use in nurseries. Full article
(This article belongs to the Special Issue Effect of Growing Media on Plant Performance)
Show Figures

Figure 1

Previous Issue
Back to TopTop