Pharmacological Potential and Electrochemical Characteristics of Typha angustifolia Pollen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Extraction
2.2. Phytochemical Analysis
2.2.1. Total Phenolic Content (TPC) Analysis
2.2.2. Total Flavonoid Content (TFC) Analysis
2.2.3. Total Condensed Tannin (TCTC) Analysis
2.3. Antioxidant Activity
2.3.1. DPPH Free Radical Scavenging Activity
2.3.2. Ferric Reduction Antioxidant Power (FRAP) Assay
2.4. High-Performance Liquid Chromatography (HPLC) Analysis
2.5. Power-Density Determination via MFCs
Microbial Fuel Cell Framework and Microbial Cultures
2.6. Power Density
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Phytochemical Analysis
3.2. Antioxidant Activity Assessment
3.3. HPLC Analysis of T. angustifolia Extract
3.4. Power Density Measurements
4. Significance of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.Y.; Hsueh, C.C.; Tsai, P.W.; Lin, Y.H.; Tsai, P.S.; Lien, T.K.; Yang, C.W.; Jiang, L.D. Deciphering Biotransformation of Anthraquinone Electron Shuttles in Rheum palmatum L. for Value-Added Production. J. Taiwan Inst. Chem. Eng. 2022, 139, 104508. [Google Scholar] [CrossRef]
- Lin, C.K.; Chen, B.Y.; Ting, J.U.; Rogio, K.G.G.; Tsai, P.W.; Liu, Y.C. Deciphering Houttuynia cordata Extract as Electron Shuttles with Anti-COVID-19 Activity and Its Performance in Microbial Fuel Cells. J. Taiwan Inst. Chem. Eng. 2023, 145, 104838. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.W.; Hsieh, C.Y.; Ting, J.U.; Ciou, Y.R.; Lee, C.J.; Hsieh, C.L.; Lien, T.K.; Hsueh, C.C.; Chen, B.Y. Synergistic Deciphering of Bioenergy Production and Electron Transport Characteristics to Screen Traditional Chinese Medicine (TCM) for COVID-19 Drug Development. J. Taiwan Inst. Chem. Eng. 2022, 135, 104365. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Verma, R.K. Taxonomical and Pharmacological Status of Typha: A Review. Ann. Plant Sci. 2018, 7, 2101. [Google Scholar] [CrossRef]
- Typha angustifolia—Plant Finder. Available online: https://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?taxonid=287386 (accessed on 17 August 2024).
- Demirezen, D.; Aksoy, A. Accumulation of Heavy Metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) Living in Sultan Marsh (Kayseri, Turkey). Chemosphere 2004, 56, 685–696. [Google Scholar] [CrossRef]
- Bonanno, G.; Cirelli, G.L. Comparative Analysis of Element Concentrations and Translocation in Three Wetland Congener Plants: Typha Domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol. Environ. Saf. 2017, 143, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, S.A. Identifying Pollen Grains of Typha latifolia, Typha angustifolia, and Typha X glauca. Can. J. Bot. 2003, 81, 985–990. [Google Scholar] [CrossRef]
- Varpe, S.S.; Juvekar, A.R.; Bidikar, M.P.; Juvekar, P.R. Evaluation of Anti-Inflammatory Activity of Typha angustifolia Pollen Grains Extracts in Experimental Animals. Indian J. Pharmacol. 2012, 44, 788. [Google Scholar] [CrossRef]
- Department of Traditional Chinese Medicine, Ministry of Health and Welfare. Taiwan Herbal Pharmacopeia 4th Edition English Version [英文版臺灣中藥典第四版]; Department of Traditional Chinese Medicine, Ministry of Health and Welfare: Taipei, Taiwan, 2021. [Google Scholar]
- Gao, M.; Lan, J.; Bao, B.; Yao, W.; Cao, Y.; Shan, M.; Cheng, F.; Chen, P.; Zhang, L. Effects of Carbonized Process on Quality Control, Chemical Composition and Pharmacology of Typhae Pollen: A Review. J. Ethnopharmacol. 2021, 270, 113774. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Shi, S.; Gao, W.; Wu, J.; Gong, H.; Zhao, Y.; Chen, W.; Wang, H.; Wang, S. Structure Characterization of Pectin from the Pollen of Typha angustifolia L. and the Inhibition Activity of Lipid Accumulation in Oleic Acid Induced L02 Cells. Carbohydr. Polym. 2023, 303, 120452. [Google Scholar] [CrossRef]
- Ke, J.H.; An, R.B.; Cui, E.J.; Zheng, C.J. Chemical Constituents of the Pollen of Typha angustifolia L. Biochem. Syst. Ecol. 2022, 104, 104460. [Google Scholar] [CrossRef]
- Qin, F.; Sun, H.X. Immunosuppressive Activity of Pollen Typhae Ethanol Extract on the Immune Responses in Mice. J. Ethnopharmacol. 2005, 102, 424–429. [Google Scholar] [CrossRef]
- Chen, P.; Liu, S.; Dai, G.; Xie, L.; Xu, J.; Zhou, L.; Ju, W.; Ding, A. Determination of Typhaneoside in Rat Plasma by Liquid Chromatography–Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2012, 70, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, C.; Xu, D.; Huang, G.; Xu, Y.; Wang, Z.; Fang, S.; Chen, Y.; Gu, Y. The Antiatherogenic Effects of Components Isolated from Pollen Typhae. Thromb. Res. 1990, 57, 957–966. [Google Scholar] [CrossRef]
- NParks | Typha angustifolia. Available online: https://www.nparks.gov.sg/florafaunaweb/flora/2/5/2536 (accessed on 17 August 2024).
- Hsueh, C.C.; Wu, C.C.; Chen, B.Y. Polyphenolic Compounds as Electron Shuttles for Sustainable Energy Utilization. Biotechnol. Biofuels 2019, 12, 1–26. [Google Scholar] [CrossRef]
- Martina, B.E.E.; Koraka, P.; Osterhaus, A.D.M.E. Dengue Virus Pathogenesis: An Integrated View. Clin. Microbiol. Rev. 2009, 22, 564–581. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.B.; Vrati, S.; Kalia, M. Pathobiology of Japanese Encephalitis Virus Infection. Mol. Aspects Med. 2021, 81, 100994. [Google Scholar] [CrossRef]
- Misra, U.K.; Kalita, J. Overview: Japanese Encephalitis. Prog. Neurobiol. 2010, 91, 108–120. [Google Scholar] [CrossRef]
- Alter, M.J. Epidemiology of Hepatitis C Virus Infection. World J. Gastroenterol. WJG 2007, 13, 2436. [Google Scholar] [CrossRef]
- Alter, M.J. Hepatitis C Virus Infection in the United States. J. Hepatol. 1999, 31, 88–91. [Google Scholar] [CrossRef]
- Lang, C.A.; Conrad, S.; Garrett, L.; Battistutta, D.; Cooksley, W.G.E.; Dunne, M.P.; Macdonald, G.A. Symptom Prevalence and Clustering of Symptoms in People Living with Chronic Hepatitis C Infection. J. Pain. Symptom Manag. 2006, 31, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Yang, N.; Duan, J.A.; Wu, D.; Guo, J.M.; Tang, Y.; Qian, D.; Zhu, Z. Simultaneous Determination of Eleven Major Flavonoids in the Pollen of Typha angustifolia by HPLC-PDA-MS. Phytochem. Anal. 2011, 22, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Cao, Y.; Bao, B.; Zhang, L.; Ding, A. Antioxidant Capacity of Typha angustifolia Extracts and Two Active Flavonoids. Pharm. Biol. 2017, 55, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Rejano, C.J.F.; Chen, B.Y.; Sobremisana, G.S.; Tayo, L.L.; Wang, K.T.; Tsai, P.W. Electrochemical Analysis via Microbial Fuel Cells Reveals Electron-Stimulating Characteristics, Immunomodulation and Antiviral Properties of Ji Qin Yin. J. Taiwan. Inst. Chem. Eng. 2023, 152, 105193. [Google Scholar] [CrossRef]
- Amiot, M.J.; Latgé, C.; Plumey, L.; Raynal, S. Intake Estimation of Phytochemicals in a French Well-Balanced Diet. Nutrients 2021, 13, 3628. [Google Scholar] [CrossRef]
- García-Aguilar, A.; Palomino, O.; Benito, M.; Guillén, C. Dietary Polyphenols in Metabolic and Neurodegenerative Diseases: Molecular Targets in Autophagy and Biological Effects. Antioxidants 2021, 10, 142. [Google Scholar] [CrossRef]
- Olszowy, M. What Is Responsible for Antioxidant Properties of Polyphenolic Compounds from Plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Agidew, M.G. Phytochemical Analysis of Some Selected Traditional Medicinal Plants in Ethiopia. Bull. Natl. Res. Cent. 2022, 46, 1–22. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral Activities of Flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef]
- Hardman, R.J.; Formica, M. The Mediterranean Style Diet and Cognition; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128186497. [Google Scholar]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and Their Potential Role to Fight Viral Diseases: An Overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef] [PubMed]
- Bellavite, P.; Donzelli, A. Hesperidin and SARS-CoV-2: New Light on the Healthy Functions of Citrus Fruit. Antioxidants 2020, 9, 742. [Google Scholar] [CrossRef]
- Elsayed Azab, A.; Adwas, A.A.; Ibrahim Elsayed, A.S.; Adwas, A.A.; Quwaydir, F.A. Oxidative Stress and Antioxidant Mechanisms in Human Body. J. Appl. Biotechnol. Bioeng. 2019, 6, 43–47. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of Antioxidant Potential of Plants and Its Relevance to Therapeutic Applications. Int. J. Biol. Sci. 2015, 11, 982. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J. Flavonols and Cardiovascular Disease. Mol. Aspects Med. 2010, 31, 478–494. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef]
- Bergamini, C.M.; Alexander, C.; Parsaee, A.; Vasefi, M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer’s Disease. Biology 2023, 12, 1453. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Velidakis, N.; Khattab, E.; Valsami, G.; Korakianitis, I.; Kadoglou, N.P.E. Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals 2022, 15, 1019. [Google Scholar] [CrossRef] [PubMed]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Teng, B.S.; Lu, Y.H.; Wang, Z.T.; Tao, X.Y.; Wei, D.Z. In Vitro Anti-Tumor Activity of Isorhamnetin Isolated from Hippophae rhamnoides L. against BEL-7402 Cells. Pharmacol. Res. 2006, 54, 186–194. [Google Scholar] [CrossRef]
- Kalai, F.Z.; Boulaaba, M.; Ferdousi, F.; Isoda, H. Effects of Isorhamnetin on Diabetes and Its Associated Complications: A Review of In Vitro and In Vivo Studies and a Post Hoc Transcriptome Analysis of Involved Molecular Pathways. Int. J. Mol. Sci. 2022, 23, 704. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, M.S.; Abdel-Baky, A.M.; Bayoumi, S.A.L.; Backheet, E.Y. Antioxidant and Antidiabetic Flavonoids from the Leaves of Dypsis pembana (H.E.Moore) Beentje & J.Dransf., Arecaceae: In Vitro and Molecular Docking Studies. BMC Complement. Med. Ther. 2023, 23, 1–10. [Google Scholar] [CrossRef]
- Gomaa, H.H.; Amin, D.Y.; Ahmed, A.R.; Ismail, N.A.; El Dougdoug, K.A.; Abd-Elhalim, B.T. Antimicrobial, Antibiofilm, and Antiviral Investigations Using Egyptian Phoenix dactylifera L. Pits Extract. AMB Express 2024, 14, 44. [Google Scholar] [CrossRef]
- Farouk, S.M.; Abu-Hussien, S.H.; Abd-Elhalim, B.T.; Mohamed, R.M.; Arabe, N.M.; Hussain, A.A.T.; Mostafa, M.E.; Hemdan, B.; El-Sayed, S.M.; Bakry, A.; et al. Biosynthesis and Characterization of Silver Nanoparticles from Punica granatum (Pomegranate) Peel Waste and Its Application to Inhibit Foodborne Pathogens. Sci. Rep. 2023, 13, 19469. [Google Scholar] [CrossRef]
- Muley, B.P.; Khadabadi, S.S.; Banarase, N.B. Phytochemical Constituents and Pharmacological Activities of Calendula officinalis Linn (Asteraceae): A Review. Trop. J. Pharm. Res. 2009, 8, 455–465. [Google Scholar] [CrossRef]
- Moraes, M.L.L.; da Silva, H.D.T.; Blanes, L.; Dobb, P.; Tavares, M.F.M. Optimization of Chemometric Approaches for the Extraction of Isorhamnetin-3-O-Rutinoside from Calendula officinalis L. J. Pharm. Biomed. Anal. 2016, 125, 408–414. [Google Scholar] [CrossRef]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Karim, N.; Jia, Z.; Zheng, X.; Cui, S.; Chen, W. A Recent Review of Citrus Flavanone Naringenin on Metabolic Diseases and Its Potential Sources for High Yield-Production. Trends Food Sci. Technol. 2018, 79, 35–54. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Miao, D.; Xu, T.; Wang, L.; Liu, C.; Gao, Y.; Yu, L.; Shen, C. Hepatoprotective Effect of Typhaneoside on Non-Alcoholic Fatty Liver Disease via Farnesoid X Receptor in Vivo and in Vitro. Biomed. Pharmacother. 2023, 164, 114957. [Google Scholar] [CrossRef]
- Chen, B.Y.; Liao, J.H.; Hsu, A.W.; Tsai, P.W.; Hsueh, C.C. Exploring Optimal Supplement Strategy of Medicinal Herbs and Tea Extracts for Bioelectricity Generation in Microbial Fuel Cells. Bioresour. Technol. 2018, 256, 95–101. [Google Scholar] [CrossRef]
- Tsai, P.W.; Hsieh, C.Y.; Ting, J.U.; Rogio, K.G.G.; Lee, C.J.; De Castro-Cruz, K.A.; Ciou, Y.R.; Lien, T.K.; Yang, L.L.; Hsueh, C.C.; et al. Unraveling the Bioenergy Production and Electron Transport Characteristics of Processed Rheum. palmatum L. for Antiviral Drug Development. Ind. Crops Prod. 2023, 195, 116488. [Google Scholar] [CrossRef]
- Liu, M.; Chen, F.; Liu, T.; Chen, F.; Liu, S.; Yang, J. The Role of Oxidative Stress in Influenza Virus Infection. Microbes Infect. 2017, 19, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Marinho, P.E.S.; Kroon, E.G. Flaviviruses as Agents of Childhood Central Nervous System Infections in Brazil. New Microbes New Infect. 2019, 31, 100572. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Tahir, M.J.; Ameer, M.A.; Nawaz, R.A.; Asghar, M.S.; Ahmed, A. Self-Medication Dilemma in Dengue Fever. Public Health Pract. 2022, 4, 100298. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Phenolic Content (mg GAE per g CE) | Total Flavonoid Content (mg RE per g CE) | Total Condensed Tannin Content (mg CE per g CaE) |
---|---|---|---|
TA-W | 32.6019 ± 0.0404 | 31.4541 ± 0.0208 | 15.8784 ± 0.0361 |
TA-E | 24.4638 ± 0.0289 | 27.3874 ± 0.0361 | 44.2746 ± 0.1122 |
Standard curve | y = 5.367x − 0.0014 (R2 = 0.9992) | y = 27.533x + 0.0459 (R2 = 0.9999) | y = 7.2500x + 0.3034 (R2 = 0.9944) |
Samples | DPPH IC50 (mg per mL) | FRAP (mg TE per g CE) |
---|---|---|
TA-W | 0.8784 ± 0.0117 | 35.2568 ± 0.0145 |
TA-E | 2.4073 ± 0.1091 | 25.9639 ± 0.0167 |
Ascorbic acid | 0.0199 ± 0.0004 | - |
Standard curve | y = 2731.35x − 4.3973 (R2 = 0.9981) | y = 2.2024x + 0.1548 (R2 = 0.9919) |
Samples | Power Density (mW/m2) | Amplification Factor |
---|---|---|
Blank 1 | 8.39 ± 0.36 | 1 |
TA-W 500 mg/L | 10.72 ± 0.59 | 1.27 ± 0.12 |
TA-W 1000 mg/L | 10.78 ± 0.56 | 1.28 ± 0.12 |
TA-W 2000 mg/L | 11.11 ± 0.52 | 1.32 ± 0.12 |
TA-E 500 mg/L | 9.80 ± 0.40 | 1.17 ± 0.10 |
TA-E 1000 mg/L | 10.90 ± 0.83 | 1.30 ± 0.15 |
TA-E 2000 mg/L | 11.71 ± 0.34 | 1.39 ± 0.10 |
Blank 2 | 10.41 ± 0.40 | 1.24 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abadilla, J.M.S.; Chen, B.-Y.; Ganzon, M.A.D.; Caparanga, A.R.; Pamintuan, K.R.S.; Tayo, L.L.; Hsueh, C.-C.; Hsieh, C.-Y.; Yang, L.-L.; Tsai, P.-W. Pharmacological Potential and Electrochemical Characteristics of Typha angustifolia Pollen. Plants 2024, 13, 2857. https://doi.org/10.3390/plants13202857
Abadilla JMS, Chen B-Y, Ganzon MAD, Caparanga AR, Pamintuan KRS, Tayo LL, Hsueh C-C, Hsieh C-Y, Yang L-L, Tsai P-W. Pharmacological Potential and Electrochemical Characteristics of Typha angustifolia Pollen. Plants. 2024; 13(20):2857. https://doi.org/10.3390/plants13202857
Chicago/Turabian StyleAbadilla, Janielle Mari S., Bor-Yann Chen, Mike Anthony D. Ganzon, Alvin R. Caparanga, Kristopher Ray S. Pamintuan, Lemmuel L. Tayo, Chung-Chuan Hsueh, Cheng-Yang Hsieh, Ling-Ling Yang, and Po-Wei Tsai. 2024. "Pharmacological Potential and Electrochemical Characteristics of Typha angustifolia Pollen" Plants 13, no. 20: 2857. https://doi.org/10.3390/plants13202857
APA StyleAbadilla, J. M. S., Chen, B. -Y., Ganzon, M. A. D., Caparanga, A. R., Pamintuan, K. R. S., Tayo, L. L., Hsueh, C. -C., Hsieh, C. -Y., Yang, L. -L., & Tsai, P. -W. (2024). Pharmacological Potential and Electrochemical Characteristics of Typha angustifolia Pollen. Plants, 13(20), 2857. https://doi.org/10.3390/plants13202857