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Abstract: The y-aminobutyric acid (GABA) is a widely distributed neurotransmitter in living organ-
isms, known for its inhibitory role in animals. GABA exerts calming effects on the mind, lowers blood
pressure in animals, and enhances stress resistance during the growth and development of plants.
Enhancing GABA content in plants has become a focal point of current research. In plants, GABA
is synthesized through two metabolic pathways, the GABA shunt and the polyamine degradation
pathway, with the GABA shunt being the primary route. Extensive studies have investigated the
regulatory mechanisms governing GABA synthesis. At the genetic level, GABA production and
degradation can be modulated by gene overexpression, signaling molecule-induced expression, tran-
scription factor regulation, and RNA interference. Additionally, at the level of transporter proteins,
increased activity of GABA transporters and proline transporters enhances the transport of glutamate
and GABA. The activity of glutamate decarboxylase, a key enzyme in GABA synthesis, along with
various external factors, also influences GABA synthesis. This paper summarizes the biological func-
tions, metabolic pathways, and regulatory mechanisms of GABA, providing a theoretical foundation
for further research on GABA in plants.

Keywords: y-aminobutyric acid; GABA shunt; polyamine degradation pathway; glutamic acid decarboxylase;
abiotic stress

1. Introduction
1.1. Physical and Chemical Properties

y-aminobutyric acid (GABA) is a four-carbon non-protein amino acid with the molecular
formula NH,(CH,)3COOH, which was first discovered in potato tubers over 70 years ago [1,2].
GABA is a white, flaky, or needle-like crystal that is slightly soluble in hot ethanol, insoluble in
most common organic solvents, and highly soluble in water. It is deliquescent and dissociates in
aqueous solutions, typically existing as a zwitterion. GABA has a molecular weight of 103.12,
an isoelectric point (pI) of 7.19, and a decomposition temperature of 202 °C. It is widely
distributed in plants and animals, occurring in the seeds, rhizomes, and tissue fluids of legumes
and herbs, while in animals, it is almost exclusively found in nervous tissue.

1.2. Biological Functions of GABA in Plants

GABA can act as a signaling molecule directly involved in the regulation of biotic
and abiotic stresses. GABA triggers a defense response in plants when they experience
biotic stress, particularly from insect attacks. Research has shown a positive correlation
between increased GABA levels and enhanced resistance to such stress. For instance,
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plants with higher GABA content have demonstrated greater resistance than their wild-
type counterparts [3]. Moreover, GABA inhibits neuronal transmission in insects, thereby
serving as a defensive mechanism [4]. Additionally, GABA accumulation has been found
to mitigate the toxic effects of certain compounds produced during insect feeding [5].
These findings indicate that GABA is crucial in reducing plant damage caused by biotic
stress. GABA is a signaling molecule in plants able to enhance plant adaptation to abiotic
stresses. A number of studies have shown that GABA can enhance plant resistance to
hypoxia [6], salinity, drought [7], high temperature [8], and heavy metal stress [9]. In
addition, specific concentrations of GABA can regulate the antioxidant system of plant
growth, thus reducing oxidative damage in plants [10], GABA and proline in barley
and tobacco leaves can increase their salt tolerance [11], GABA may be as a non-toxic
permeability clear free radicals (ROS) produced under salt stress [12], which is consistent
with the previous conclusion that GABA can inhibit the production of hydrogen peroxide
under salt stress [13], GABA treatment, the germination rate of wheat and maize under salt
stress is significantly increased [14]. In addition, experiments on morning glory pepper
seeds under salt stress revealed that treatment with 6.0 pmol/L GABA improved both
germination ability and salt tolerance [15]. In another study on rice seedlings, GABA
treatment resulted in increasing plant height and leaf area, enhancing root strength and
salt tolerance [16]. Additionally, different concentrations of GABA have been shown to
alleviate the negative effects of drought stress on maize [17]. Research on durum wheat
has further indicated that under drought conditions, GABA shunt metabolism is activated,
which helps maintain carbon and nitrogen balance, regulate amino acid metabolism, and
support plant growth [18].

In addition to its direct involvement as a signaling molecule in the regulation of the
physiological state of plants, GABA can also interact with various plant hormones such as
ABA, GA, auxin, CTK, and ethylene to help plants cope with abiotic stress [19]. For example,
under salt stress, GABA application to Caragana intermedia and Poplar can promote the
production of ABA and hydrogen peroxide while also regulating the production of ACS,
ACO and ethylene [13]. Under drought stress, GABA can not only affect ALMT 9 channels
but also promote the synthesis of PAs and inhibit the catabolism of PAs, which can greatly
increase the content of different types of PAs in response to drought [20]. Conversely,
addition of ABA and auxin under adversity could also increase GABA production [21]. In
the face of stress and stress-related response and metabolism, The crosstalk between auxin
and other phytohormones can all cause signaling interference from GABA, Overall, GABA
and multiple phytohormones are mutually influencing the interacting [22], GABA increases
the ethylene content by increasing the expression of genes such as ACC synthetase and
ACC oxidase (ACO), Whereas, when the plant CK is deficient, The amount of LEA genes
and glyoxylate reductase (GLYR) also decreases (GLYR is the enzyme involved in GABA
catabolism) [23].

GABA also functions as a signaling molecule in plants, where it plays a key role in
regulating stomatal movement. It has been observed that GABA inhibits ion channels
in stomatal guard cells, thereby controlling stomatal opening, water loss, and drought
tolerance [24]. In studies involving tomato plants, GABA was found to reduce stomatal
conductance and diameter, promoting stomatal closure [25]. In Arabidopsis, guard cells
produce GABA when reduced water, and GABA suppresses stomatal opening, a negative
regulation of [26]. In addition to Arabidopsis and other plants also have this regulation, the
reason is mainly with water, GABA increased, this signal through anion channel ALMT 9
transduction, and anion channel ALMT?9 is the process of the main route [27], to reduce the
stomatal opening, also reduce the transpiration water loss, improve the water use efficiency
(WUE), enhance the drought resistance. Interestingly, GABA helped plants resist stress
under both single and compound stress, but the relative GAD expression of compound
stress was not consistent with stomatal movement compared to single stress. Balfagon et al.,
exposed to high light intensity (HL), heat stress (HS) and its combination (HL + HS), found
increased transpiration and stomatal conductivity, which may be related to reduced water
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loss, lower leaf temperature and the limited photosynthesis rate of Arabidopsis itself [28].
Further research suggests that GABA may also be involved in intercellular signaling
within stomata [29]. Additionally, GABA signaling is thought to regulate ion fluxes across
the protective membranes of stomata, although this requires further investigation [30].
These findings underline the importance of GABA as a signaling molecule in stomatal
regulation [31].

Furthermore, GABA has been shown to influence seed germination, enhancing ger-
mination rates under certain concentrations. Experiments with licorice seeds treated with
varying concentrations of GABA demonstrated that a specific GABA concentration in-
creased the content of seed respiratory metabolites and promoted the tricarboxylic acid
cycle, both of which are beneficial for seed germination [32]. Similarly, treatment of soy-
bean seeds with GABA led to an increase in germination potential and vigor index, likely
due to a reduction in abscisic acid (ABA) content, an increase in ethylene levels, and the
promotion of seed germination regulation by endogenous hormones [33]. Another study
found that wheat seeds germinated more quickly under certain treatments, likely due to
enhanced GABA shunt metabolism [34], indicating that the careful application of GABA
can effectively promote seed germination.

2. Transporters of GABA

A variety of GABA transporters have been found on plant cell membranes and or-
ganelles. These transporters mainly include aluminum-activated malate transporters
(ALMTs), GABA transporters (GATs), cationic amino acid transporters (CATs), AAP3, ProTs
and bidirectional amino acid transporters (BATs). Transporters located in the cell mem-
brane are ALMTs, GATs, AAP3 and ProTs, in addition, ALMTs appear to be recognized as
a specific GABA receptor on the surface of plant cell membranes [35]. Transporters located
in the organelle membrane are CATs and BATs. GABA is controlled by shuttling across
cell membranes and organelles, entering and exiting cells for metabolism [36-38]. The
following is an introduction to the functions and mechanisms of these transporters.

2.1. Transporters on Cell Membranes
2.1.1. ALMTs

Aluminum-activated malate transporters (ALMTs) are bidirectional transmembrane
anion transporters [39], 12 ALMT family genes have been found in plants [40], and ALMT1
has been found in rice, wheat, rape, Arabidopsis and other plants. In 2018, Ramesh found
that ALMT1 on plant cell membranes can efficiently transport GABA [39], and in addi-
tion, ALMTs respond to various signals, are activated by anions, and negatively regulate
GABA [35].The specific transport mechanism of ALMTs is as follows: Previous studies on
GABA and malate have shown that anions can activate ALMT1 [41], and H*-ATPase can
input and export amino acids to cells through the protons produced by the plasma mem-
brane, resulting in a potential difference between inside and outside the membrane. When
the intracellular pH is low, aluminum ions promote efflux of GABA through ALMT1. When
the extracellular are acidified, GABA was transfered into inside of cell through ALMT1.
These studies have shown that pH can affect the potential difference between inside and
outside the membrane, and then affect the direction of ALMT1’s transport of GABA [42—44].
At present, ALMT family genes have been cloned and identified successively, and their
protein sequences and transport mechanisms have been analyzed, and ALMT1 is still the
most studied. It is generally confirmed that when GABA content increases, the activity
of ALMT decreases, that is, GABA negatively regulates the activity of ALMT [42]. Yu
Long’s study proved that GABA inhibits the transport of anions in wheat by changing the
active structure of ALMT1, and this conformational change is similar to the conformational
transformation of aspartate aminotransferase (AAT) [45]. At present, there are few studies
on regulating the activity of ALMTs to regulate the transport of GABA, and most of them
remain in the exploration of the transport mechanism. However, the interaction between
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GABA and ALMT can be used as a signal molecule within the implant to regulate the
transmembrane transport of GABA.

2.1.2. GATs

GATs is a class of membrane transmembrane transporter protein, GAT gene belongs to
AAAP gene family, and four GAT homologous genes (GAT1, GAT2, GAT3, GAT4) have been
found in plants [36,46]. At present, GAT1, which is located on the cell membrane, can transport
GABA across the membrane and flow between the apoplast and the cytoplasm. Both GAT1 and
ALTM1 are transmembrane transporters of GABA, but it is worth noting that Al** blocks the
influx of GABA from apoplast to the cytoplasm via ALMT1, but it has no effect on GAT1 [42].
Up to now, GAT1 has been cloned in potato, Arabidopsis, rice and other crops, and related studies
have been carried out in Arabidopsis. AtGAT1 in Arabidopsis thaliana transports GABA across
membranes through proton coupling, which is mainly driven by the proton electrochemical
potential gradient and the high affinity of AtGAT1 for GABA [46].

2.1.3. AAP3 and ProTs

At present, two GABA transporters (AAP3 and ProT2) on the cell membrane have been
identified by heterologous recombination in yeast, but the affinity of these two proteins
to GABA is relatively low [47-49]. Regarding the transport function of OsProTs family
proteins in rice, it has been reported that proline transporters not only have a transport
function for Pro, but also have a transport function for GABA. OsProT2 is heterologous
expressed in Xenopus oocytes. It is found that OsProT2 is a proton cotransporter and
has specific transport function for L-Pro, but whether it transports GABA remains to be
studied [50,51]. In Saccharomyces cerevisize mutants with amino acid transport defects,
OsProT1 and OsProT3 can specifically absorb Pro and GABA, and OsProT3 has a stronger
transport capacity for Pro than OsProT1, while OsProT2 has no transport properties for
various amino acids. This may be due to the inability of OsProT?2 to localize to the plasma
membrane in yeast [52]. In summary, ProTs and AAP3 can transport GABA, but the affinity
is not strong, and its related causes and regulatory factors need to be further studied.

2.2. Transporters on Organelle Membranes
2.2.1. CAT9

CATs is a cationic transporter located on the vacuole membrane and belongs to the APC
gene family [53-55]. At present, nine CAT genes have been found in plants, among which
the transporter encoded by CAT9 is mainly responsible for the bidirectional transport of
GABA between vacuole and cytoplasm. At present, CAT9 has been found in tomato, potato,
Arabidopsis, rice and other crops [53,55], and the transport dynamic mechanism of CAT9
has been verified in tomato. SICAT9 transport in tomato mainly has two driving forces:
one is the proton driving force of chloroplast proton pump, and the other is the chemical
potential difference caused by the concentration gradient of substrate [56]. Interestingly,
in addition to GABA, SICAT9 also transports protein amino acids such as glutamic acid
and aspartic acid, but the transport conditions are relatively strict. Glutamic acid is the
substrate for GABA synthesis, and aspartic acid can also be converted into glutamic acid, so
it is speculated that SICAT9 co-regulates GABA transformation with these amino acids [57].
Studying the co-transport mechanism and regulatory factors of CAT9 will be a promising
direction, which can effectively regulate GABA transport. Relevant studies have shown
that some external factors may affect the expression of CATs, such as supplemental nitrogen
sources and stress. For example, when tea leaves are fed with different nitrogen sources
or under stress conditions, the expression of CsCATs will be inhibited or induced, thus
inhibiting or promoting the transport of GABA. The content of glutamate will increase
under nitrogen treatment or stress conditions, which will also promote the synthesis of
GABA [58]. AtCAT9 in Arabidopsis thaliana can directly or indirectly balance intracellular
amino acid concentration in the absence of leaf nitrogen [59]. In addition, the expression
level of CATs is also different in different parts, and the expression level of AtCAT9 in
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Arabidopsis thaliana is relatively high in root, stem, leaf and flower tissues, indicating that
GABA transport is relatively active in these parts [59].

2.2.2. BAT1

BAT is a bidirectional transmembrane protein on mitochondrial membrane. Seven homol-
ogous genes have been identified in plants, belonging to the APC gene family [60,61], in which
the transporter encoded by BAT1 can transport amino acids. AtGABP in Arabidopsis thaliana is
a splice variant of AtBAT1 that can transport GABA [62]. Unlike AAP3 and ProT2, AtGABP
cannot transport proline, and the co-expression of AtGABP gene is highly correlated with the
expression of SSADH gene. It can be speculated that AtGABP is associated with some reactions
of GABA metabolism, and may jointly participate in the regulation of GABA shingling and
TCA cycle [62]. It is worth noting that AtBAT1 in Arabidopsis can transport a variety of amino
acids such as arginine and lysine, but has no transport activity for GABA [37]. At present, there
is relatively little research on BAT genes, and the transport mechanism of BAT transporter and
its splicing variant GABP will be a hot direction.

3. Metabolism of GABA in Plants

There are two primary pathways for GABA synthesis in plants: the GABA shunt and
the polyamine degradation pathway. The GABA shunt is the predominant pathway for
GABA synthesis in most plants, while the polyamine degradation pathway remains less
explored. GABA synthesis has been extensively studied in plants such as tomatoes [63],
rice [64], watermelon [65], quinoa [66], wheat [67], and corn [68] but research on barley
remains limited.

3.1. GABA Shunt

The GABA shunt, also known as the GABA bypass, is the major pathway for GABA
synthesis in most higher plants [69]. In the cytoplasm, where there is a high concentration
of H* ions, glutamic acid (Glu) undergoes an irreversible reaction catalyzed by the enzyme
cytosolic glutamate decarboxylase (GAD), leading to the production of GABA.

There are two main pathways for glutamate synthesis in plants (Figure 1). The first
pathway involves glucose undergoing glycolysis, Under the catalysis of pyruvate dehy-
drogenase system, pyruvate generates acetyl-Coenzyme A in the mitochondrial matrix,
and then enters the tricarboxylic acid cycle (Kreb’s cycle, also known as TCA). The citrate
in TCA passes under the catalysis of a series of enzymes to generate the intermediate
product a-ketoglutaric acid. This «-ketoglutaric acid can then be catalyzed by glutamate
dehydrogenase (GDH). Glutamate dehydrogenase (GDH) can be divided into three types ac-
cording to their coenzymes: NADH-dependent, NADPH-dependent and NADH/NADPH-
dependent [70], NADH-dependent GDH is usually involved in glutamate catabolism,
while NADPH-dependent GDH requires nitrogen assimilation, and dual-dependent GDH
is usually in mammals [71]. The second pathway involves the plant’s response to an excess
of free ammonia within the cell, which can be toxic. In this case, glutamine synthetase (GS)
catalyzes the reaction of free ammonia with glutamate to form glutamine. This glutamine
is then catalyzed by glutamate synthetase (GOGAT) in the presence of a-ketoglutarate,
regenerating two molecules of glutamate. Glutamate synthase (GOGAT) in plants can
also be divided into two types of coenzyme: Fd-GOGAT and NADH-GOGAT, the former
mainly exists in green tissues such as chloroplast and plastid, while the latter mainly exists
in non-green tissues such as nodules and stems, participating in nitrogen fixation, and the
specific site of the reaction is in the mitochondria [72].The GS/GOGAT cycle is the primary
pathway for the assimilation of ammonia and the synthesis of amino acids in plants [73].
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Figure 1. Metabolism of GABA in plants, PDH: Pyruvate Dehydrogenase, Acetyl-CoA: Acetyl Coenzyme A,
CA: Citric Acid, OAA: Oxaloacetic Acid, x-KG: «-Ketoglutaric Acid, SA: Succinic Acid, SSA: Succinate
Semialdehyde, NADPH: Nicotinamide Adenine Dinucleotide Phosphate, NAD*: Nicotinamide Ade-
nine Dinucleotide, SSADH: Succinate Semialdehyde Dehydrogenase, Glu: Glutamic Acid, Gln: Glu-
tamine, GS: Glutamine Synthase, GOGAT: Glutamate Synthetase, GDH: Glutamate Dehydrogenase,
GSH: Glutathione, Orn: Ornithine, Arg: Arginine, ODC: Ornithine Decarboxylase, AMADH: Amino
Acid Dehydrogenase, Put: Putrescine, Spm: Spermine, Spd: Spermidine, PAO: Polyamineoxidase,
DAO: Diamine Oxidase, CaM: Calmodulin, GAD: Glutamate Decarboxylase, GABA: y-aminobutyric
Acid, BAT1: GABA Bidirectional Transmembrane Protein, GABA-TK: GABA-transaminase,
4-ABAL: 4-aminobutanal, 1,3-DAP: 1,3-diaminopropane.

After GABA formation by glutamate under the glutamate decarboxylase, the generated
GABA is transferred from the cytosol to the mitochondria through the BAT1. GABA and
a-ketoglutarate are catalyzed to glutamate (Glu) and succinate semialdehyde (SSA) by
GABA transaminase (GABA-TK). Succinate semialdehyde is catalyzed to succinate by
succinate semialdehyde dehydrogenase (SSADH), and succinate eventually entering the
TCA cycle to be degraded (Tricarboxylic acid, TCA) [21].

3.2. Polyamine Degradation Pathway

The polyamine degradation pathway, also known as the putrescine degradation path-
way, is primarily responsible for GABA synthesis in legumes, with less activity observed
in grasses [74]. Additionally, it has been found that this pathway contributes to GABA
synthesis in plants under stress conditions [75]. Polyamines (PAs) in plants include pu-
trescine (Put), spermine (Spm), and spermidine (Spd). Putrescine is mainly generated



Plants 2024, 13, 2891

7 of 16

through the decarboxylation of ornithine, although it can also result from spermidine
decarboxylation. Once formed, putrescine is further catalyzed by diamine oxidase (DAO)
to produce 4-aminobutanal, which is then transformed into GABA by aminobutyraldehyde
dehydrogenase (AMADH). The synthesized GABA can enter the tricarboxylic acid cycle
(TCA cycle) through the catalytic actions of GABA transaminase (GABA-T) and succinic
semialdehyde dehydrogenase (SSADH) [76]. Putrescine can also be converted into sper-
midine and spermine through reactions catalyzed by spermidine synthase and spermine
synthase respectively. Spermidine, in turn, can be catalyzed by polyamine oxidase (PAO)
to produce 4-aminobutyraldehyde, which further produces GABA [74].

4. GABA Regulation

Based on the synthesis and metabolic pathways of GABA, its regulation can be catego-
rized into three main aspects: gene-level regulation (Figure 2A), regulation of key enzyme
activities (Figure 2A), and regulation by external factors (Figure 2B).

(A)

(Grea |
(3 _GABATRNAI -
~ MA- SSADH

1S “GaBA
= L )

Figure 2. (A) Regulation of GABA at the gene and protein levels; (B) Regulation of GABA by physical
factors. GABA: y-aminobutyric acid, GAT: Transferase of glutaminase, GATs: Transferase of glutami-
nase family, ProTs: Proline transferase family, Temp: Temperature, GABA-T: gamma-aminobutyric acid
transferase, Pro: proline GS: Transferase of glutaminase, SSADH: succinate semi-aldehyde dehydrogenase,



Plants 2024, 13, 2891

8 of 16

GABA-T IFN: GABA-T interferon, MA-iSSADH: SSADH gene RNA interference Strain, M™*: Metal ion,
CaM: calmodulin, Ca?*: Calcium ion, GAD: glutamate decarboxylase, PH: pH, CoE: Coenzyme
CF: Cogroup, ETH: ethylene, MYB: A kind of transcription factor in plants.

4.1. Gene Level Regulation

GAD (glutamate decarboxylase) genes have been identified in a variety of plants
(Table 1). Alterations in the structure of some genes, as well as the regulation of transcription
factors, influence GABA production. In Arabidopsis, there are five GAD family genes: GAD],
GAD2, GAD3, GAD4, and GADS [77]. These genes exhibit differential expression across
various parts of the plant. For instance, GAD1 is highly expressed in roots, GAD2 shows
very high expression in seedlings after two weeks and in carpels, buds, wreaths, roots, and
stems, while GAD4 is predominantly expressed in pollen tubes. GAD3 and GADS5 have
lower expression levels in the same tissues [78-80]. A common feature of these GAD family
genes is the presence of CAAT-box, TATA-box, and MYC elements in their promoters and
they could be binded by transcription factors to regulate the expression of GAD genes [81].
Myelocytomatosis oncogenes (MYC) transcription factors (TFs) belong to the bHLH (basic
helix-loop-helix) family, which play a central role in plant growth, development, adaptation
to biotic and abiotic stress, as well as secondary metabolism [82-85]. At present, They have
been mainly studied in rice, wheat and Arabidopsis [86].

Table 1. Number of GAD genes in different plants.

Authors of the

Assortment Numbers of GADs Years of Publication
Reference

Arabidopsis 5 Shelp, B.J., et al. 2017 [77]
Citrullus lanatus 3 Li, M., et al. 2023 [65]
Oryza sativa Janica 5 Zhou, L. 2015 [64]
Solanum lycopersicum 5 Sun, X., et al. 2022 [63]
Chenopodium quinoa wild 8 Li, L. 2022 [66]
Zea mays L. 5 Wang, Y. 2023 [68]

In addition, MYB transcription factors were involved in regulating various stresses in
plant life cycle, and OsMYB55 belongs to one of the MYB transcription factors, which can
promote amino acid metabolism during plant growth under high temperature to improve
rice yield [87]. In rice, the transcription factor OsMYB55 binds to the promoter regions
of target genes, directly activating the expression of several genes, including glutamine
synthetase (OsGS1, OsGS2), glutamine amidotransferase (GAT1), and glutamate decarboxy-
lase 3 (GAD3) [87]. Overexpression of OsMYB55 in rice lines resulted in increased GABA
content in leaves, especially under high-temperature conditions, with a more obvious effect
in transgenic plants compared to wild-type plants. Additionally, total amino acid content
increased following the overexpression of OsMYB55. Transcriptome analysis identified
OsGS2, GAT1, and GAD3 as potential targets of OsMYB55. This transcription factor has
been shown to bind to the promoters of these genes to activate them [87].

In bananas, exogenous ethylene was found to significantly induce the expression of
MaGAD1, with regulation primarily occurring at the transcriptional level. Research in
Arabidopsis revealed that MaGAD1 enhances the exogenous ethylene sensing capacity of the
upstream components of the ethylene signaling pathway, particularly through the regula-
tion of ACS4, a member of the ACC synthase family involved in ethylene biosynthesis [88].
This regulation impacts the endogenous ethylene biosynthesis pathway in Arabidopsis. In
poplar, members of the GAD gene family may be induced by anaerobiosis, low temper-
ature, and drought, as their regulatory elements correspond to these conditions. Poplar
also contains two GABA-T family genes with elements related to light response, anaerobic
induction, and abscisic acid. Additionally, PopGABA-T1 includes elements associated with
meristem organization and cyclic regulation. Poplar has two SSADH gene families, both of
which include elements related to light and gibberellin responses, and PopSSADH]1 also has
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elements involved in anaerobic induction, defense, and stress response [89]. By regulating
these elements and the local environment of the plant, we can regulate GABA metabolism
and promote the synthesis of GABA to increase its content.

Inhibiting the expression of SSADH and GABA-T genes is an effective approach
to increase GABA content in plants by reducing GABA degradation (Figure 2A). For
instance, RNA interference technology has been employed to construct an SSADH gene
RNA interference strain (MA-i SSADH), leading to a significant decrease in SSADH gene
transcript levels compared to the prototrophic strain. In rice, an RNA interference vector
targeting the GABA transaminase 1 (OsGABA-T1) gene was developed and successfully
transformed into the japonica rice variety “Ning Japonica 1” using Agrobacterium-mediated
transformation. This method effectively suppressed the expression of OsGABA-T1 and
its related gene OsGABA-T2 [90]. In conclusion, the expression of GABA-T and SSADH
was inhibited by RNA interference, thus inhibiting GABA degradation and increasing
its content.

4.2. Effect of GAD Enzyme Activity on GABA Synthesis

GABA production in plants and microorganisms primarily occurs through the GABA
shunt, a pathway catalyzed by GAD. It is the key enzyme in this pathway, and its activity
can be enhanced by optimizing various factors, including temperature, pH, Ca?* /CaM, the
coenzyme pyridoxal phosphate (PLP), and metal ions (Figure 2A).

4.2.1. Temperature Regulation of GAD

The optimal temperature for GAD activity varies significantly across different species,
generally ranging from 30 °C to 50 °C in plants and microorganisms [91]. For example,
the optimal temperature for GAD in bananas during ripening is 37 °C, with GAD activity
decreasing by 23% at 25 °C and by 39% at 55 °C [92]. In potatoes, the optimal temperature
for GAD activity is also 37 °C [93]. In lactic acid bacteria, 52 °C is identified as the
optimal temperature for GAD activity [94]. Meanwhile, in pumpkin, the optimal reaction
temperature for GAD is 30-35 °C; however, the enzyme is heat-sensitive and becomes
inactive after short exposure to temperatures above 50 °C [95]. These findings indicate
that the optimal conditions for GAD activity vary widely among species, suggesting that
adjusting the reaction temperature can significantly improve GAD activity.

4.2.2. The pH Regulation of GAD

The optimal pH for GAD activity varies depending on its source. Typically, GAD
from microbial origins operates best within a pH range of 3.8 to 5.5 [96]. For example, the
optimal pH for GAD in E. coli is between 3.8 and 4.5 [97], while in Lactobacillus it is between
4.0 and 5.0 [98], and in Bacillus megaterium, it is 4.5 to 5.0 [99]. For plant-derived GAD,
the optimal pH is generally weakly acidic, mainly between 5.5 and 6.0. For instance, the
optimal pH in soybeans is 5.9. Although soybean GAD can retain some activity between
pH 5.0 and 8.0, its activity decreases sharply at pH levels above 8.0, with an 83% reduction
at pH 9.0 [100]. Similarly, the optimal pH for GAD in corn embryos is 5.7, with a dramatic
decline in activity at pH levels below 4.0 or above 8.0, showing an 80% decrease at pH
9.0 [101]. In rice embryos, the optimal pH for GAD is between 5.5 and 5.8 [102]. These
studies demonstrate that pH significantly influences GAD activity, and adjusting the pH of
the enzyme reaction can enhance GAD activity, thereby increasing GABA content in plants.

4.2.3. Pyridoxal Phosphate of GAD

The PLP is a key coenzyme for GAD, enhancing GABA synthesis by promoting the
decarboxylation of glutamate. Research has shown that GAD from barley embryo extracts,
with a Km value of 22 mmol/L for L-glutamate, is activated 3.5-fold in the presence of
pyridoxal phosphate. Further studies revealed that GAD in barley embryos exists in two
molecular weight forms: a low molecular weight form, which is relatively inactive, and a
high molecular weight form, which becomes more active upon storage. The presence of



Plants 2024, 13, 2891

10 of 16

2-mercaptoethanol, a thiol reagent, shifts the distribution of enzyme activity toward the
low molecular weight form. However, once 2-mercaptoethanol is removed, the enzyme
spontaneously binds to the high molecular weight form, increasing its activity. Additionally,
the presence of oxygen in the extraction buffer promotes the formation of the higher
molecular weight form, enhancing enzyme activity. In contrast, GAD from 3-day-old barley
root extracts had a Km value of 3.1 mmol/L for L-glutamate and exhibited a 10% increase
in activity with the addition of pyridoxal phosphate [103]. These findings suggest that
pyridoxal phosphate can significantly boost GAD activity in plants, and supplementing
this coenzyme in enzyme reactions can enhance both GAD activity and GABA production.

4.2.4. Metal Ion Regulation of GAD

GAD activity is also influenced by various metal ions. In maize embryos, metal
ions such as Mg2+, MnZ*, Cu?t, AP, Ag*, and Zn?* do not significantly affect GAD
activity at a concentration of 2 mmol/L. However, Ca?* has a notable impact. When the
Ca?* concentration is below 400 umol/L, there is a significant activation effect, with the
most pronounced increase in GAD activity (31%) observed at 400 umol/L compared to
untreated groups [101]. Similarly, in soybean, Mg?* at 2 mmol /L has little effect, resulting
in only a 3.5% decrease in enzyme activity. KCI causes a slight decrease of about 7%,
while KT and Ag* have a more substantial inhibitory effect, reducing enzyme activity by
approximately 13% [100]. In rice bran, Mg?*, Mn?*, and AI** do not significantly affect
enzyme activity, while KCl has a slight effect. However, KI and Ag* significantly inhibit
enzyme activity [104]. These findings suggest that certain metal ions, particularly Ag*™ and
KI, consistently inhibit GAD activity across various plant species. Reducing the presence of
these ions could help prevent the inhibition of GAD activity and enhance GABA production
in plants.

4.2.5. Ca®*/CaM Regulation

GAD in plants is a calmodulin (CaM)-binding protein and its activity is regulated by
the Ca%*/CaM complex. The calmodulin-binding region is located at the C-terminal end of
GAD, where Ca?* /CaM acts as an activator, significantly increasing GAD activity [105].
Truncating the C-terminus of rice OsGAD2 results in an enzyme with higher activity than
the wild-type at any pH, with over 40-fold higher activity at physiological pH [105]. In
mung beans, calmodulin significantly enhances the relative enzyme activity of GAD at
certain concentrations [106]. Studies in Petunia show that the Ca%* /CaM complex must
bind to the calmodulin-binding domain of GAD to form a complex that promotes GABA
synthesis. Additionally, in a pea and buckwheat enzyme solution, the amount of GABA
synthesis increases as Ca?* concentrations rise from 0 to 0.8 mmol/L, reaching the highest
GABA production at 0.8 mmol/L. Beyond this concentration, from 0.8 to 1.0 mmol/L,
GABA synthesis decreases, possibly due to the inhibitory effects of excessively high Ca?*
levels on GAD activity [107]. These findings indicate that by optimizing the concentration
of Ca?*/CaM during GAD enzyme reactions, it is possible to enhance GAD activity and
subsequently increase GABA production.

5. External Factors Regulating GABA
5.1. Temperature Treatment

Extreme temperature treatment can increase the content of GABA in plants (Figure 2B). Tem-
perature stress in plants is categorized into high-temperature stress and low-temperature
stress. Low-temperature stress includes both cold damage and freeze damage. Freeze
damage occurs when ice forms within plant tissues at temperatures below 0 °C, leading to
the formation of large ice crystals that severely damage the cell membrane system. This
damage allows Ca®*, H*, and other ions to penetrate deeper into the cytoplasm, where they
bind to the Ca?*/CaM binding domain in glutamic acid decarboxylase (GAD). This binding
increases the expression of calmodulin, which activates GAD to catalyze the conversion
of L-glutamate to GABA. The disruption of the cellular membrane system also facilitates
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the exchange of substrates between cells, allowing more L-glutamate to bind with GAD,
resulting in increased GABA accumulation [108]. For example, low-temperature treatment
of germinated maize kernels at —18 °C significantly increased GABA content, peaking
at 1.38 mg/g—2.3 times higher than in untreated kernels. In contrast, maize kernels ex-
posed to 5 °C without frost damage showed the least increase in GABA content, with
only a 0.91-fold increase compared to untreated kernels [109]. High-temperature stress
occurs when ambient temperatures exceed the optimal range for plant growth, leading
to physiological and biochemical disruptions. This stress can be categorized into short-
term heat stress and long-term desiccation. High temperatures cause an accumulation of
reactive oxygen species (ROS) within cells, increased membrane lipid peroxidation, and
electrolyte leakage, all of which impair photosynthesis and alter antioxidant enzyme activ-
ity [110]. Numerous studies have demonstrated that GABA enhances plant stress tolerance
by stabilizing cell membrane structures, regulating cytoplasmic pH, inducing ethylene
production, reducing ROS damage, and promoting the synthesis of biomolecules [111]. For
instance, under prolonged drying treatment at 42 °C, the GABA content in maize seedlings
significantly increased, peaking at 48 h before rapidly declining [112]. Similarly, in tea
plants exposed to day /night temperatures of 42 °C/40 °C, endogenous GABA levels rose
significantly, increasing by 75.56%, 88.99%, and 60.13% at 4, 8, and 24 h, respectively, before
also decreasing [2].

5.2. Other Treatments

It has been found that in the pre-germination period of brown rice, with the help of
ultrasonic treatment, the use of soaking germination can increase the GABA content in brown
rice (Figure 2B). With the prolongation of germination time, GAD activity had a tendency to
increase, then decrease and then increase [113]. Similarly, the combination of soaking buckwheat
in EFW (electric field water) with high-voltage electric field (HVEF) treatment has been shown
to significantly increase GABA accumulation during germination (Figure 2B). At 24 h, the
combined treatment reached a peak GABA content of 198.72 £ 0.75 mg/100 g, showing a
significant difference (p < 0.05) compared to other treatment groups [114]. This suggests that
the combined use of EFW soaking and HVEF treatment is more effective at enhancing GABA
content in sweet buckwheat than either treatment alone. Pulsed electric field (PEF) treatment
is another method that influences membrane permeability, enhancing the interaction between
substrates and enzymes, and thereby promoting GABA synthesis through electroporation
(Figure 2B). The effectiveness of PEF treatment depends on carefully designed factors, including
pulse intensity, pulse duration, and pulse type [115].

6. Summary and Outlook

GABA plays an important role in the resistance to biotic and abiotic stresses. The main
GABA transporters on the cell membrane are ALMTs and GATs, among which ALMTs
is also considered to be GABA receptors. CAT9 is a cationic transporter, which can also
participate in GABA transport. BAT1 is a bidirectional GABA transporter on mitochondria,
and all the above transporters can participate in GABA transport. The metabolism of
GABA in plants primarily occurs through the GABA shunt and the polyamine degradation
pathway. Regulation of key enzymes within these pathways is likely crucial for increasing
GABA content in plants, with the GABA shunt being the dominant metabolic route in most
plants and the primary target for regulation. Enhancing GABA in plants can be approached
in several ways. First, the key enzyme genes involved in GABA synthesis can be regulated
through gene overexpression, transcription factor manipulation, or RNA interference
technology to enhance the expression of GAD or inhibit the expression of GABA-T. Second,
identifying and optimizing the conditions that maximize GAD enzyme activity can further
promote GABA synthesis. Additionally, external factors such as extreme temperature
treatment, ultrasonic treatment, and other innovative methods have been extensively
studied and can be used to regulate GABA levels. Moreover, regulating glutamate synthesis
by targeting key enzymes in nitrogen metabolism, such as GOGAT and GS, may increase
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glutamate content, thereby providing more substrate for the GABA shunt and promoting
GABA synthesis. Although GAD genes are part of multigene families, further research is
required to understand the forms of GAD present in plants, as well as the gene interactions
and localization of the main effector genes within these families. In particular, research on
the GAD gene family in crops like barley, to identify optimal conditions for GAD enzyme
activity, represents a substantial direction for future studies.
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