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Abstract: Morella spathulata (Myricaceae family) is a common plant from Madagascar and is present
on the IUCN Red List of threatened species classified at the ’least concern’ level, used by the
local population to treat numerous illnesses and pain. Despite its frequent use, comprehensive
phytochemical and pharmacological research on the species is limited. This study evaluated the
antioxidant, analgesic, and anti-inflammatory properties, as well as the toxicity of methanol extracts
from the leaves (MS_L) and bark (MS_B) of M. spathulata. The research involved the analysis of
nutritional traits such as sugars, organic acids, vitamin C, polyphenolic content (TPC) and the main
phytochemicals by HPLC analysis. Antioxidant capacity was assessed through DPPH and FRAP
assays. Analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing
and carrageenan-induced paw oedema tests in mice. The results showed a high content of phenolic
and bioactive components in the leaf and bark extracts, associated with antioxidant, analgesic and
anti-inflammatory properties. The interaction of key compounds such as ferulic acid and ellagic acid
with proteins involved in pH regulation and immune modulation provides clues to the mechanisms
underlying the therapeutic effects. However, conservation efforts are crucial due to habitat loss and
illegal logging, and further studies are needed to fully explore the plant’s therapeutic potential.

Keywords: Morella spathulata; antioxidant; traditional medicine; analgesic activity; anti-inflammatory
effects; phytochemicals

1. Introduction

The application of medicinal plants in the traditional African healthcare system is one
of the oldest and most diverse therapeutic approaches. Throughout history, traditional
medicine has consistently served as an alternative solution for various illnesses [1]. More
than 90% of the world’s population uses traditional medicines based on natural products
as primary health care. Among the actual pharmaceutical products and drugs, almost 73%
are derived from natural products, including active substances extracted from plants [2].
Especially in developing countries, such as Madagascar, where access to modern medical
resources is often limited or financially expensive, the use of health-promoting remedies
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derived from natural resources is very important [3]. In addition, the deep-rooted cultural
familiarity, traditionalism, and perceived safety of traditional medicine are influential,
making it the preferred choice among the local population [4,5].

Madagascar has an interesting natural heritage of medicinal plants, which contribute
to its rich pharmacopoeia, thanks to its wide range of plant species. The highly abundant
species is a result of Madagascar’s detachment from Africa approximately 170 million
years ago, and then by the Indian subcontinent nearly 88 million years ago, making it the
largest reserve of endemism and biodiversity on the planet [4,6]. This botanical diversity is
a valuable resource for traditional and modern medicine. In Malagasy traditional medicine,
several plants are used to cure gastrointestinal disorders such as diarrhea and intestinal
parasites [4]. Furthermore, this conventional practice is also applied to the prevention of
respiratory infections like bronchitis and colds, which are common in rural areas of the
country [7]. This traditional practice becomes increasingly important in the context of
rising drug costs and resistance to diseases, including malaria, bacterial infections, and
sexually transmitted diseases. As a result, there is a new focus on exploring traditional
medicine as a promising strategy for the discovery of new chemical compounds against
these health challenges [8]. However, the spontaneous collection of medicinal plants in
forests causes a negative impact on the local ecosystem, resulting in a significant reduc-
tion in biodiversity [9]. Nonetheless, the controlled propagation of these plant species
presents a promising solution to replace the random collection of plants [10]. Propagation
and dedicated cultivation can reduce overharvesting and ensure high-quality material
production, emphasizing the importance of characterizing the Malagasy plant biodiversity
by phytochemical and pharmacological analysis.

Morella spathulata (Mirb.) Verdc. and Polhill (Myricaceae family), also known as
Myrica spathulata Mirb, is widespread across eastern Madagascar, from north to south
provinces [11]. It is also present in Mozambique (in the Sofala region, approximately
90 km north of Beira) and Tanzania (Pemba), up to 1000 m above sea level [12], even if the
botanical classification in this region is still unclear. M. spathulata is a shrub to small tree
up to 12 m high. It occurs in grasslands with marginal or high-water tables on peaty soils,
riverbanks, and sandy coast plains, frequently associated with Erica spp. [13,14]. The leaves
are oblanceolate to strictly oblong-elliptical, closely obovate or obovate-spatulate, 2.5 to 9 cm
long and 1.5 to 3.5 cm wide, rounded or sometimes notched at the apex, attenuate-decurrent
at the base, leathery, smooth, and often shiny above, with small thick, consistent red-brown
scales below, with 10 to 20 lateral veins on all side, rather inconspicuous below. The
inflorescences are glandular, oval, and obtuse, varying in length from 1.5 to 3 cm. The fruits
are ovoid and globose, 4 to 5 mm in diameter [15]. This species represents an example of
the exploitation of natural resources and loss of biodiversity. Indeed, although M. spathulata
is distributed and present in protected areas, it is threatened by illegal logging, agriculture,
and the slash-and-burn practice. Currently listed as ‘least concern’, its importance in
traditional medicine is significant [16]. The leaves and barks of this species are prepared
as infusion or decoction for various medicinal purposes on the east coast of Madagascar,
including a mouthwash to relieve toothache, pain, and inflammation occurring during the
sickle cell patient crisis [12]; the leaves were chewed and applied to wounds. Despite its
medicinal virtues, this species has not yet been subjected to comprehensive phytochemical
or pharmacological investigations. Therefore, the objective of this survey is to examine the
antioxidant, analgesic, and anti-inflammatory activities, and acute toxicity, along with the
phytochemical and nutritional traits of M. spathulata aerial parts extracts.

2. Results and Discussion
2.1. Total Polyphenolic Contents (TPC)

Plant phenols are a notable category of compounds known for their role as primary
antioxidants or free radical terminators. Indeed, assessing their cumulative amount is a
valuable tool for discerning plants and extracts with potential commercial prospects [17].
Furthermore, in several studies, as well as in the present work, the spectrophotometric
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method for TPC evaluation has been used in association with chromatographic analysis
to strengthen and validate the results, establishing its credibility as a complementary
technique [18,19]. In this study, TPC for Morella spathulata extracts ranged from 8913.58 ±
1940.88 mg GAE/100 g DW in leaves to 10,177.81 ± 1241.09 mg GAE/100 g DW in bark.
These values are very high if compared to other species, such as Morella parvifolia (Benth.)
Parra-Os., native to South America; in a study conducted by Puertas-Mejía, M. A. et al. [20],
they identified a TPC value of 51.41 ± 0.44 mg GAE/100 g DW in the leaves of M. parvifolia.
The bark also showed a high value of TPC (10,177.81 ± 1241.09 mg GAE/100 g DW), which
may be related to the high accumulation of polyphenolic components in bark tissues during
the lignification processes, as confirmed by many studies [21,22].

2.2. Phytochemical Fingerprint

In this paper, 24 bioactive components and nutrients were chosen for their relevance
in human health [23]. These compounds were used as markers to determine the HPLC
fingerprint (Table 1). In general, the number of identified bioactive compounds was higher
in the leaves than in the bark (eight vs. seven). Unlike spectrophotometric techniques, liquid
chromatography offers the possibility of quantifying specific polyphenolic targets. Several
markers, known for their high biological activity, were selected, and their higher presence
in leaves could be due to the leaf structural differences compared to bark, which may
present a lower concentration of these compounds. The value of bioactive substances with
high antioxidant capacity in leaves and bark was examined by grouping and comparing
the amount of the selected phytochemicals: polyphenolic components (flavonols, benzoic
acids, cinnamic acids, and catechins) and vitamin C (dehydroascorbic and ascorbic acids)
(Figure 1). Regarding cinnamic acids, leaf extract was the most significant contributor, with
a mean value of 67.16%, as opposed to the bark, with a value of 49.67%. Flavonols, in leaves
and bark extract contributed to the antioxidant compounds almost equally (with values of
2.63% and 2.50%, respectively). Benzoic acids were most abundant in bark extract (22.11%)
rather than in leaves (19.05%). Vitamin C showed the highest value in leaf extract with a
value of 14.49%.

Table 1. Phytochemical fingerprint of the analyzed samples.

Class Bioactive Marker MS_L MS_B Identified Compounds:
Chemical Structures

Mean value ± SD Mean value ± SD
(mg/100 g DW) (mg/100 g DW)

Cinnamic acids caffeic acid n.d. n.q.
chlorogenic acid n.d. n.d.

coumaric acid n.q. n.d.

ferulic acid 67.16 ± 0.73 a 49.67 ± 2.09 b
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Table 1. Cont.

Class Bioactive Marker MS_L MS_B Identified Compounds:
Chemical Structures

rutin 2.63 ± 1.66 n.d.
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More in detail, within the class of cinnamic acids, the only compound quantified was
ferulic acid, with a value of 67.16 ± 0.73 mg/100 g DW in the leaves and 49.67 ± 2.09 mg/
100 g DW in the bark. Ferulic acid is known for its antimicrobial and antioxidant prop-
erties [24,25]. These properties may support its potential use in traditional medicine,
especially considering the important quantities found. In the class of flavonols, only iso-
quercitrin was quantified in the bark (2.5 ± 0.46 mg/100 g DW) and only rutin was detected
in the leaves with a value of 2.63 ± 1.66 mg/100 g DW. Among the class of benzoic acids,
only ellagic acid was quantified with a value of 19.08 ± 1.5 mg/100 g DW in the leaf and
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22.11 ± 2.26 mg/100 g DW in the bark. Plants produce ellagic acid by the hydrolysis of
tannins [26]. Tannins concentration is generally greater in the bark compared to other
parts of the plant [27], which likely accounts for the higher levels of ellagic acid that have
been quantified in the bark. The ellagic acid content found in the leaves was similar to
other methanolic extracts of endemic Malagasy plants (e.g., Tina striata with a value of
19.33 ± 2.96 mg/100 g DW [28], and Phyllarthron bojeranum with a value of 18.16 ± 6.5 mg/
100 g DW [29]. The same is also true for the bark value (22.11 ± 2.26 mg/100 g DW), which
can be compared to that reported in Schefflera bojeri (24.46 ± 10.54 mg/100 g DW) [30].
Ellagic acid plays a key role in anti-atherogenic, anti-inflammatory, and neuroprotective
actions. In addition to its function as a liver and skin protector and as an anti-cancer agent,
it influences cellular processes and DNA damage protection and has anti-inflammatory
properties [31]. Furthermore, a positive correlation (R = 0.998; p < 0.05) was noted between
ellagic and ferulic acids, suggesting a potential interaction between these two compounds in
M. spathulata. This correlation indicates the complex biochemical relationships throughout
the plant, which might affect their synergistic effects or shared metabolic pathways.

To further investigate the correlation found between ellagic acid and ferulic acid, the
identification of their molecular targets and pharmacokinetic profiles was carried out using
the Swiss Target Prediction platform (http://www.swisstargetprediction.ch/, accessed on
8 April 2024), as previously reported in Fawzi M. et al. [32]. Based on the platform, it was
predicted that the targets of ferulic acid are carbonic anhydrases (CA2), a key enzyme for
acid–base balance and carbon dioxide transport [33]. CA2, present in tissues such as the
liver, also plays a crucial role in pH regulation [34]. The activity of CA2 has an impact on
conditions related to acid–base imbalance, and its interaction with ferulic acid may suggest
potential anti-inflammatory effects [35]. In comparison, ellagic acid was found linked to
the G protein-coupled receptor 35 (GPR35). It is present in various organs, among them
the digestive tract and immune cells [36], and the interaction of ellagic acid with GPR35
may influence immune regulation and inflammation, contributing to anti-inflammatory
and neuroprotective properties. Moreover, the role of GPR35 in gastrointestinal health also
suggests a potential impact on digestive functions [37,38]. Catechins have not been detected.
Many studies confirmed that catechins are highly unstable in sunlight conditions [39,40].
In this case, plant materials of M. spathulata were dried in sunlight according to local
traditions, which may have influenced the degradation of catechins. About vitamin C,
ascorbic and dehydroascorbic acids were evaluated. In this study on Morella spathulata, only
ascorbic acid was found in the leaves with a value of 14.49 ± 0.19 mg/100 g DW. Vitamin
C content varies depending on species and environmental conditions and among different
meristematic tissues and organs, generally being high in flowers, leaves, and young fruits
and low in non-photosynthetic tissues such as stems, roots, and bark [41,42]. For this
reason, vitamin C may have been only identified in the leaves and not in the bark. Vitamin
C functions as an antioxidant safeguarding the body from oxidative stress and preserving
the immune system [43]. Additionally, it has the capability of neutralizing radicals and
damaged lipids and DNA in the blood, which can lead to disease [44].

Organic acids and sugars are reported in Table 2. Both in plant materials of M. spathu-
lata, quinic acid was identified; a value of 48.57 ± 0.68 g/100 g DW was detected in the
leaves and 21.50 ± 0.75 g/100 g DW in the bark. In vitro and in vivo pharmacological
studies have demonstrated that quinic acid possesses several biological activities, includ-
ing antioxidant, antitumor, antimicrobial, antiviral, and analgesic properties [45]. The
antioxidant activity of this molecule was also confirmed by the correlation (R = 0.999;
p < 0.05) with antioxidant capacity (AOC). In addition, it stimulates insulin secretion by
releasing intracellular Ca2+ and increasing the NAD(P)H/NAD(P)+ ratio, contributing to
anti-diabetic effects [46]. Instead, citric acid was identified in the bark extract with a value
of 3.55 ± 0.46 g/100 g DW. Citric acid is an excellent harmless disinfectant against various
viruses [47]. Its presence may validate the use of M. spathulata in traditional medicine as
a wound disinfectant. In addition, citric acid was indicated as a potent antioxidant [48],

http://www.swisstargetprediction.ch/
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confirmed by the positive correlation (R = 0.997) with the values of free radical scavenging
activity (DPPH).

Table 2. Organic acids and sugars of the analyzed samples.

Class. Bioactive Marker MS_L MS_B Identified Compounds:
Chemical Structures

Mean value ± SD Mean value ± SD
(g/100 g DW) (g/100 g DW)

Organic acids citric acid n.d. 3.55 ± 0.46
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M. spathulata showed the highest sugar content in the leaves and bark for glucose
(24.81 ± 0.76 g/100 g DW and 31.44 ± 1.22 g/100 g DW, respectively). Compared to other
Malagasy plants studied, which had glucose values below 1 g/100 g DW [28], a signif-
icantly higher glucose content was observed here. The high glucose content quantified
in this plant could be beneficial for diabetics in hypoglycemic situations, representing a
source of sugar to consume when necessary. Furthermore, according to the Swiss Target
Prediction platform (http://www.swisstargetprediction.ch/, accessed on 8 April 2024), the
glucose molecule was identified to target the protein Cholinergic Receptor Nicotinic Alpha
7 Subunit (CHRNA7), a receptor crucial for the anti-inflammatory cholinergic pathway
associated with autoimmune disorders [49]. It also contributes to cell proliferation and
angiogenesis in lung and pancreatic cancers and serves as a key component of the cholin-
ergic nervous system in the brain [50,51]. Fructose was detected in similar levels both in
leaf and bark extracts, with values of 1.26 ± 0.04 g/100 g DW and 1.75 ± 0.03 g/100 g DW,

http://www.swisstargetprediction.ch/
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respectively. It is interesting to note that fructose can act as an antioxidant due to its reduc-
ing capacity [52]. Sucrose was only detected in leaf extract with a value of 6.04 ± 0.54 g/
100 g DW, as it is one of the main products of photosynthesis in leaves [53]. In general, con-
trary to other Malagasy flora, which are generally characterized by a lower carbohydrate
content, M. spathulata could be a promising food resource, especially in countries with high
malnutrition rates, due to its considerable sugar levels.

2.3. In Vitro Antioxidant Capacity (DPPH and FRAP)

In M. spathulata bark and leaves, the antioxidant properties were evaluated by two
different tests: the free radical scavenging activity test (DPPH) and the ferric reducing
antioxidant power test (FRAP). All the results of the antioxidant capacity are shown in
Table 3. The DPPH is a rapid and simple method to test antioxidant activity based on
the ability of some molecules to perform their capacity of being radical scavengers and
hydrogen donors. In this case, the scavenging potential of extracts is based on the DPPH
solution discoloration from purple (free radical stable in methanol) to yellow (DPPH
reduced by radical scavenger) [54].

Table 3. FRAP, and IC50 values of MS_L and MS_B by DPPH assay.

Sample FRAP (mmol
Fe2+/kg DW) Yield (%) Equation r2 DPPH Assay:

IC50 (µg/mL)

MS_L 227.89 ± 12.53 a 3.90 y = 2.0955x − 6.1227 0.9994 26.78 ± 0.42 a

MS_B 376.18 ± 115.69 a 9.84 y = 2.0098x − 9.7684 0.9999 29.74 ± 0.16 a

Gallic acid - - y = 2.7242x − 9.3331 0.9989 21.78 ± 0.11

MS_L: M. spathulata leaf extract; MS_B: M. spathulata bark extract; DW: dried weight. Each value represents the
mean ± SD (standard deviation) (N = 3), a: p < 0.05 vs. gallic acid.

As shown in Table 3, maceration yielded 9.84% of MS_B and 3.90% of MS_L. The IC50
values were 26.78 ± 0.42 mg/mL for MS_L and 29.74 ± 0.16 mg/mL for MS_B. These
values were close to those of gallic acid (IC50 = 21.78 ± 0.11 mg/mL), which represented
the positive control used. MS_L and MS_B were more active compared to other Malagasy
medicinal plants as reported in previous studies. For example, the aerial parts of Vaccinium
secundiflorum were characterized by an IC50 value of 76.07 ± 1.08 mg/mL [55], while the
extracts of Uapaca bojeri showed lower IC50 values (47.36 ± 3.00 and 33.32 ± 0.69 mg/mL,
respectively, for leaves and bark) [54]. The Lygodium lanceolathum and Imperata cylindrica
aerial parts presented IC50 of 107.05 ± 3.41 mg/mL and IC50 of 192.07 ± 0.78 µg/mL,
respectively [56,57]. The DPPH values on M. spathulata antioxidant capacity were also
confirmed by FRAP results. The FRAP values were 227.89 ± 12.53 mmol Fe2+/kg of DW for
the leaves and 376.18 ± 115.69 mmol Fe2+/kg of DW for the bark. Such values are higher
than those found in another Malagasy medicinal plant, Uapaca bojeri, where the leaves and
bark had values of 69.20 ± 1.41 mmol Fe2+/kg of DW and 70.17 ± 9.53 mmol Fe2+/kg of
DW, respectively [54]. These results confirmed the importance of M. spathulata in popular
tradition as a source of potentially beneficial treatments and underlined the necessity of
conserving this plant resource.

2.4. Anti-Inflammatory and Analgesic Activity
2.4.1. Carrageenan-Induced Paw Oedema

Reducing oedema rates exerted by MS_L and MS_B are reported in Table 4. The M.
spathulata extracts showed significant (p < 0.05) oedema reductions, at all tested doses (100,
200 and 400 mg/kg b.w.) at every time of measurement (30, 60, 120, 180 and 240 min) in
comparison with the negative control (vehicle) as is similar to indomethacin at the dosage
of 10 mg/kg b.w. This oedema reduction also occurs in a dose-dependent way at 2 and
3 h (p < 0.001 with ANOVA) after the induction of inflammation when mice were treated
with both extracts. MS_L and MS_B (200 and 400 mg/kg, p < 0.05, respectively) showed
higher inhibition of paw oedema 2 and 3 h of post-carrageenan induction. Carrageenan
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is largely utilized as a phlogistic agent to lead to acute inflammation, so the carrageenan-
induced paw oedema model is often employed as the method for testing non-steroidal anti-
inflammatory (NSAID) agents [58,59]. This protocol is biphasic. The initial phase (1 to 1.5 h)
is characterized by non-phagocytic oedema, succeeded by a secondary phase with increased
oedema development occurring over the remaining five hours. Different mediators are
involved in the various phases of carrageenan-induced oedema. The early stage (up to
the first 1.5 h) is dominated by the release of histamine, serotonin, 5-hydroxytryptamine,
and PAF (platelet-activating factor). Kinin is released from 1.5 to 2.5 h in the last phase,
inflammation will persist to the fifth hour by lipid-derived eicosanoids (prostaglandin,
leukotriene, eicosatetraenoic acid 5-hydroperoxide and others) [60,61].

Table 4. Effects of MS_L and MS_B on carrageenan-induced mouse paw oedema (n = 5).

Sample Dose (mg/kg)
Inhibition of inflammation (%)

30 min 60 min 120 min 180 min 240 min

Vehicle 0 4.28 ± 1.87 9.47 ± 2.52 18.72 ± 2.26 19.99 ± 5.45 32.95 ± 2.77

MS_L
100 11.03 ± 3.21 a 22.59 ± 2.50 b 39.64 ± 3.15 b 62.32 ± 4.44 b 85.74 ± 2.49 b,c

200 16.85 ± 5.51 b 32.76 ± 6.23 b,c 65.33 ± 6.95 b,c 75.71 ± 7.74 b,c 88.68 ± 5.77 b,c

400 11.89 ± 1.53 a 29.58 ± 6.84 b 52.44 ± 7.04 b 80.12 ± 6.42 b,c 94.25 ± 1.78 b,c

MS_B
100 6.40 ± 1.15 a 17.43 ± 2.74 b 29.77 ± 2.13 b,c 43.49 ± 3.43 b 49.88 ± 6.64 b,c

200 12.95 ± 4.05 b 30.21 ± 5.29 b 59.70 ± 3.79 b 74.57 ± 5.19 b,c 91.41 ± 3.57 b,c

400 12.66 ± 2.83 b 31.58 ± 6.95 b 57.10 ± 8.76 b 85.65 ± 5.83 b,c 96.53 ± 1.90 b,c

Indomethacin 10 13.77 ± 3.89 b 24.02 ± 8.60 b 40.26 ± 7.87 b 57.59 ± 4.14 b 71.89 ± 1.84 b

Values are expressed as mean ± s.e.m of five independent experiments. a: p < 0.05 vs. vehicle. b: p < 0.01 vs.
vehicle. c: p < 0.05 vs. indomethacin.

M. spathulata extracts were active in both phases of inflammation, but the activities
were more pronounced in the late phase. The highest activity was observed at a dose of
400 mg/kg, with inhibition percentages of 94.25% for MS_L and 96.53% for MS_B at 240 min.
Indomethacin (10 mg/kg), a cyclooxygenase inhibitor, can mitigate the carrageenan reaction
in the second stage of inflammation (71.89%, 240 min), mainly through prostaglandin
mediation [62]. The anti-inflammatory effects of extracts, such as indomethacin, were
noted especially in the second stage of inflammation. This might imply that the anti-
inflammatory effect is caused by the inhibition of prostaglandin release. Nevertheless,
the initial anti-inflammatory effects of MS_L (29.58% at 400 mg/kg) and MS_B (31.58% at
400 mg/kg) against carrageenan-induced inflammation, resulting from the release of
histamine, serotonin and kinin-like substances in the initial period (1 h) may not be excluded.
The anti-inflammatory property of this plant might be due to the content of polyphenols
detected in the plant; indeed, this study revealed a positive correlation (R = 0.998; p < 0.05)
between TPC and anti-inflammatory activity. Moreover, quinic acid, representing 26% and
16% of the total identified compounds in MS_L and MS_B, respectively, and its derivatives
have been reported for their anti-inflammatory activities [63]. The mechanism by which
quinic acid exerts its anti-inflammatory activity is uncertain, but it appears to be linked to
the inhibition of the proinflammatory nuclear factor kappa B (NF-κB) [64,65] contributing
to the anti-inflammatory properties of the extracts.

2.4.2. Acetic Acid-Induced Writhing

The writhing method was used to evaluate the analgesic activity of M. spathulata. This
method is broadly used in analgesic studies due to its sensitivity and capacity to detect
molecules with both sides of the brain affected [66,67]. The activity exerted by MS_L and
MS_B were reported in Table 5. MS_L and MS_B showed a strong analgesic effect on acetic
acid-induced twisting response during stretching abdominals and in a dose-dependent
manner (p < 0.001 with ANOVA, respectively). The maximal inhibition was exerted by both
extracts at the dose of 400 mg/kg (77.21% and 71.32%, respectively for MS_L and MS_B),
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analogous to that of paracetamol at 100 mg/kg (83%, p > 0.05, respectively) showing the po-
tent analgesic activity of the aerial parts of this species. Acetic acid injection provokes pain
by releasing histamine, serotonin, bradykinin, P, and prostaglandins (PGE2a, PGF2a) [68].
These compounds stimulate peripheral nociceptive neurons, increase vascular permeability,
and cause pain visceral with the contraction of the abdominal muscles associated with
limb elongation and body lengthening [69,70]. The dose-dependent analgesic activity
means an increase in the relative content of secondary metabolites in the tested extract,
particularly for quinic acid and its derivatives which have been reported for their analgesic
activities [59]. The pharmacological mechanism of action could be linked to the synthesis
inhibition and liberation of various internal mediators of inflammation and nociceptive,
via the increased concentration of the principal compounds found in each extract.

Table 5. Effect of MS_L and MS_B on nociceptive responses in the acetic acid-induced writhing test.

Sample Dose (mg/kg) Writhing Number Pain Inhibition (%)

Vehicle - 13.60 ± 4.46 -

MS_L
100 8.10 ± 2.33 a,c 40.44
200 4.20 ± 2.93 b 69.12
400 3.10 ± 0.96 b 77.21

MS_B
100 10.10 ± 1.39 c 25.74
200 6.00 ± 1.17 a,c 55.88
400 3.90 ± 0.65 b 71.32

Paracetamol 100 2.60 ± 1.56 b 83.03
Values were expressed as mean ± s.e.m of the writhing number of five independent experiments. a: p < 0.05 vs.
vehicle. b: p < 0.01 vs. vehicle. c: p < 0.05 vs. paracetamol.

2.5. Acute Toxicity

In the acute toxicity tests of MS_L and MS_B, no evidence of toxicity was observed in
mice at doses between 250 and 2000 mg/kg b.w., in skin and fur, respiratory system, food
consumption, defecation, and other behaviors, according to OECD [71]. During the three
days of monitoring, no unusual behavior or mortality was detected in all treated mice with
both extracts. Therefore, the LD50 values might be higher than the dose of 2000 mg/kg
for MS_L and MS_B. In accordance with the OECD 423 guideline method [71], MS_L and
MS_B could be considered as non-toxic supporting the traditional use of M. spathulata. The
non-toxicity of the plants and their extracts has been confirmed in a number of research
studies by OECD protocols [55,72,73].

3. Materials and Methods
3.1. Plant Material

The bark and leaves of M. spathulata were collected in the oriental littoral forest
(18◦24′27′′ S, 49◦09′20′′ E, 76 m above sea level) near the Ambodikininina Fokotany in
Ampasimadinika Commune of the Toamasina II District, 12 km from the Toamasina City.
The voucher specimen was deposited at the Institut Malgache de Recherches Appliquées
(IMRA) after the identification performed by Dr Benja Rakotonirina. After the collection,
leaves and bark were separated before being dried in a fresh and aerated environment, out
of the sunlight and away from the soil. Pharmacological analyses were conducted at IMRA,
while phytochemical analyses were performed at the University of Turin (Department of
Agricultural, Forestry and Food Sciences—DISAFA) in Italy.

3.2. Extracts Preparation

Plant powders consisting of leaves or barks (100 g) were extracted in 250 mL of a
mixture of MeOH/water (95/5; v/v) for 24 h at ambient temperature with frequent stirring.
The extraction procedure was performed three times. Filtrates were then combined and



Plants 2024, 13, 2899 10 of 16

dried at 40 ◦C in a Rotavapor (Büchi R114, Essen, Germany) at reduced pressure allowing
leaf methanol extract (MS_L) and bark methanol extract (MS_B) of M. spathulata.

3.3. Animals

The tests were conducted on male and female Swiss albino mice aged between 4 and
5 months with an average weight of 25 ± 5 g. Animals at the IMRA animal house were
raised under controlled conditions according to Directive 2010/63/EU of the European
Parliament and the Council on the Protection of Animals in Scientific Studies. They were
kept in a 12 h dark/12 h light cycle at 25 ± 2 ◦C and 65 ± 5% relative humidity and were
fed a standard diet (1420, Livestock Feed Ltd., Port Louis, Mauritius). Prior to the study,
the animals fasted overnight. All procedures were approved by the local ethics committee
(No. 03/CEA-IMRA/2019).

3.4. Analgesic Writhing Test in Mice

The antinociceptive activities of MS_L and MS_B were evaluated following the
writhing test method defined by Koster et al. [74]. Eight groups of five fasted mice
were used:

• Group I: negative control or vehicle where mice were treated orally with normal saline
solution (0.9%).

• Group II: positive control where mice were treated orally with paracetamol at a dose
of 100 mg/kg body weight (b.w.).

• Groups III–V: mice were treated orally with MS_L at a dose of 100, 200, and 400 mg/kg
b.w., respectively.

• Groups VI–VIII: mice were treated orally with MS_B at different doses (100, 200, and
400 mg/kg b.w., respectively).

A 100 µL solution of 1.5% acetic acid in 0.9% saline was injected intraperitoneally 1 h
after sample administration to induce specific writhing. The writhing number in a period
of 5–30 min after the injection of acetic acid was considered. The writhing number of the
negative control for each extract was used to calculate the inhibition percentage.

3.5. Carrageenan-Induced Mice Paw Oedema Assay

The MS_L and MS_B anti-inflammatory properties were performed with slight modifi-
cations using the carrageenan-induced mice paw oedema reported by Morris’s method [75].
This method consists of inhibiting carrageenan-induced oedema in the posterior leg of mice
using a plethysmometer (Ugo Basile 7140, Varese, Italy). Five mice composed each group
of fasted animals. In total, eight groups were considered:

• Group I: negative control or vehicle where mice were treated orally with normal saline
solution.

• Group II: mice were treated with a dose of 10 mg/kg per indomethacin (positive
control).

• Groups III–V: mice were orally treated with MS_L with a dose of 100, 200, and
400 mg/kg (b.w.), respectively.

• Groups VI–VIII: mice were treated orally with MS_B at the same doses as groups III-V.

A 100 µL solution of 2% carrageenan in 0.9% saline was injected into the right posterior
paw of each mouse 1 h after sample application. Paw volume was measured before the
injection and then at 30, 60, 120, and 180 min.

3.6. Acute Toxicity Assay

MS_L and MS_B oral acute toxicity was assessed following guideline 423 described
by the Organization for Economic Co-operation and Development (OECD, 2002) [71]; this
method was slightly modified on mice. Fasted animals were divided into nine groups
of five:
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• Group I: negative control or vehicle where mice were prepared with normal saline
solution.

• Group II–V: mice were orally treated with MS_L with a dose of 250, 500, 1000, and
2000 mg/kg (b.w.), respectively.

• Group VI–IX: mice were orally treated with MS_B with a dose of 250, 500, 1000, and
2000 mg/kg (b.w.)¸ respectively.

Each toxic effect was monitored for 6 h on the treated animals. These effects on the
animals were then evaluated for the next 3 days. Changes in some body functions (e.g.,
food and water intake, urination, tremors, temperature, respiration, constipation, eye, and
skin color), together with behavior, were studied.

3.7. Total Polyphenolic Content (TPC)

The Folin–Ciocalteu reagent was employed to evaluate the TPC in the leaves and
barks of M. spathulata [76]. Five g of leaf or bark powders were macerated for 24 h in the
dark with 75 mL of a mixture of methanol-water (95/5; v/v) acidified with hydrochloric
acid. The mixture was filtered through Whatman filter paper, 185 mm Ø. Ten µL of filtrates
were added to 190 µL of extraction solvent, 1000 µL of Folin–Ciocalteu reagent (diluted
1:10), and 800 µL sodium carbonate (7.5%). The last mixture was left in the dark for
30 min, and the absorbance was read using a UV–visible spectrophotometer (1600-PC,
VWR International, Radnor, PA, USA) at 760 nm wavelength. Gallic acid standard solution
was prepared at 0.02–0.10 mg/mL, according to Donno et al. [77] and the results were
reported as gallic acid equivalents (GAE) per 100 g of dry weight (DW).

3.8. Anti-Radical DPPH Assay

MS_L and MS_B free radical scavenging capacity was measured by using the spec-
trophotometric radical DPPH method adapted from Sreejayan and Rao [78]. Shortly,
25 µL of the sample methanol solution with a concentration ranging from 2 to 100 µg/mL
was added to 175 µL of DPPH methanol solution (0.25 mmol/L) in a 96-well microplate.
The mixtures were incubated at room temperature (21 ± 1 ◦C) for 30 min. The absorbance
was measured at 517 nm with a spectrophotometer Varioskan, (Thermo Fisher Scientific,
Waltham, MA, USA). The methanol solution was used as a reference, while the methanol so-
lution of DPPH was employed as a negative control. The antioxidant reference compound
used was gallic acid (2.5–40 µg/mL). The results were reported as the mean inhibitory
concentration (IC), which was calculated using the equation IC (%) = 100 × (A0 − A1)/A0.
A0 and A1 represent the absorbance of the negative control and the sample, respectively.
The IC50 was determined using a linear regression equation of the inhibition percentage
and sample concentration of the extract or gallic acid, and the ordinate was the percentage
of scavenging capacity from three replicates.

3.9. Ferric Reducing Antioxidant Power (FRAP) Assay

The antioxidant capacities of the leaves and the barks of M. spathulata were evalu-
ated using the FRAP method developed by Benzie and Strain [79]. This procedure is
characterized by the ferric reduction (Fe3+) to ferrous ions (Fe2+) in a solution containing
2,4,6-tripyridyl-S-triazine (TPTZ). Five g of leaf or bark powders were soaked for 24 h
in dark with 75 mL of a mixture of methanol–water (95/5; v/v) acidified with HCL. The
mixture was filtered through Whatman filter paper, 185 mm Ø. Ten µL of filtrates were
added to 20 µL of extraction solvent, 900 µL of FRAP reagent (0.3 M acetate buffer pH
3.6/TPTZ 10 mM in 40 mM HCl/20 mM ferric chloride; 84/8/8; v/v/v), 90 µL of pure
water. Finally, it was placed at 37 ◦C in a thermostatic bath for 30 min. Blank was prepared
by replacing the sample with the extraction solvent. The absorbance was quantified at
a wavelength of 595 nm by using a UV–vis spectrophotometer (model 1600—PC, VWR
International, Radnor, PA, USA) [80]. FeSO4·7H2O standard solution was prepared at
100–1000 µmol/mL, and the results were expressed in millimoles of iron ions (Fe2+) per
kilogram of dried weight.
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3.10. HPLC Fingerprint Analysis
3.10.1. Sample Preparation

Leaf or bark powders (5 g) were extracted in 75 mL of a mixture of methanol–water
(95/5; v/v) with HCL for 24 h in the dark. The mixture was filtered through Whatman
filter paper (185 mm Ø), and the filtrates were recovered and re-filtered with a GHP filter
(45 µm) and kept at 4 ◦C until analysis.

3.10.2. Chromatographic Analysis

The chromatographic analysis of leaf and bark extracts of M. spathulata was carried
out using an Agilent 1100 HPLC system (Santa Clara, CA, USA) equipped with a G1311A
quaternary pump, a manual injection valve and a 20 µL sample loop coupled to an Agilent
GI315D diode array UV/Vis detector. Twenty µL of sample were injected, and the chemical
components of samples were separated through a C18 column Phenomenex Kinetex,
while an NH2 column SphereClone was used only for sugar analysis [80]. A total of
five chromatographic methods described in the Supplementary Materials were used to
quantify the polyphenols, the organic acids, the vitamins, and the sugars. The detection of
bioactive components in samples was based on the comparison of their UV spectra and
retention times to the ones of authentic standards using the same experimental conditions.
Calibration curves were established by tracing the peak area (y) against the concentration
(x) of each standard. The linearity was then measured by the values of the correlation
coefficient (R2) [81]. The result of any sample is the mean of three repetitions, expressed as
mg/100 g of DW, except for organic acids and sugars (g/g DW).

3.11. Statistical Analysis

All samples were set up and analyzed at least in triplicate. The data were expressed
as mean values ± standard deviations or standard error mean values. Results were sta-
tistically evaluated using the student’s t-test and ANOVA test for comparison of means
(SPSS 22.0 software), followed by Tukey’s HSD multiple interval test. Values of p < 0.05
are considered as statistically significant. Pearson’s coefficient (R) was utilized to investi-
gate the correlations between phytochemicals, TPC, and antioxidant activity. All positive
correlations found were then compared and confirmed using the bioinformatics approach
outlined by Gfeller et al. [82], which was used to predict potential targets and pharmacoki-
netics. To identify the putative targets of key compounds, all chemical structures were
prepared and converted into SMILES (Simplified Molecular Input Line Entry System) using
ACD/ChemSketch (version 12.0). The compound SMILES were then put into the Swiss
Target Prediction network (http://www.swisstargetprediction.ch/, accessed on 8 April
2024), and the resulting targets were obtained.

4. Conclusions

This study represents the first investigation of the phytochemical and pharmacological
properties of Morella spathulata, confirming its importance in traditional Malagasy medicine.
Extracts of leaves and bark have demonstrated high contents of total phenolic content
compared with other Malagasy species, and bioactive compounds, as well as antioxidant,
anti-inflammatory, and analgesic properties due to phenols and organic acids, most notably
quinic acid, and benzoic and cinnamic acids, such as ellagic and ferulic acids. The syn-
ergy of these molecules, expressed in their positive correlation, could positively influence
health. Furthermore, the Swiss Target Prediction platform revealed interesting interactions,
indicating that ferulic acid targets carbonic anhydrase (CA2), which plays a crucial role
in pH regulation and has implications for anti-inflammatory effects. Instead, ellagic acid
was found to interact with G protein-coupled receptor 35 (GPR35), suggesting possible
involvement in immune regulation and modulation of inflammation. These results pro-
vide preliminary information on the molecular strategies driving the therapeutic effects
of the plant and highlight its multiple pharmacological properties. By understanding the
molecular targets of bioactive compounds, it may be possible to guide targeted therapies

http://www.swisstargetprediction.ch/
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and preventive strategies. However, it is crucial to recognize the conservation challenges
that this species faces due to illegal logging and habitat loss. Therefore, simultaneous con-
servation efforts are needed to study effective propagation and domestication techniques,
involve local communities in conservation through educational programs, implement selec-
tive harvesting measures, establish protected areas that can mitigate over-exploitation and
ensure the long-term availability of M. spathulata. Indeed, biotechnological solutions, such
as in vitro micropropagation, cell suspension, or callus cultures could offer the possibility
of producing plant material on a large scale or extracting bioactive compounds avoiding
the use or in some cases the abuse of natural resources. These efforts emphasize a dual
commitment to medicinal plant exploration and environmental conservation. Consider-
ing the scarcity of research on this species, this study may help to reduce the gap in the
understanding of its therapeutic potential and provide the basis for future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13202899/s1, Table S1: Chromatographic conditions of
each used method.
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