Differences in the Virulence Between Local Populations of Puccinia striiformis f. sp. tritici in Southwest China
Abstract
:1. Introduction
2. Results
2.1. The Composition of Pst Races and Virulence Types
2.2. Virulence Frequencies
2.3. Virulence Diversity and Population Differentiation
2.4. The Virulence of Pst Populations to Wheat Varieties and Lines at Ningnan and Jiangyou
3. Discussion
4. Materials and Methods
4.1. Field Survey and Isolate Collection
4.2. Disease Nurseries
4.3. Identification of Race and Virulence
4.4. Cluster Analysis and Construction of Phylogenetic Trees
4.5. Race Diversity Measurements
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.Q.; Wellings, C.; Chen, X.M.; Kang, Z.S.; Liu, T.G. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef]
- Chen, X.M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Hovmøller, M.S.; Sørensen, C.K.; Walter, S.; Justesen, A.F. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. phytopathol. 2011, 49, 197217. [Google Scholar] [CrossRef]
- Wellings, C.R. Global status of stripe rust: A review of historical and current threat. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Chen, X.M. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Secur. 2020, 12, 239–251. [Google Scholar] [CrossRef]
- Chen, W.Q.; Xu, S.C.; Wu, L.R. Epidemiology and sustainable management of wheat stripe rust caused by Puccinia striiformis west. in China: A historical retrospect and prospect. Sci. Agric. Sin. 2007, 40, 177–183. (In Chinese) [Google Scholar]
- Duveiller, E.; Singh, R.P.; Nicol, J.M. The challenges of maintaining wheat productivity: Pests, diseases, and potential epidemics. Euphytica 2007, 157, 417–430. [Google Scholar] [CrossRef]
- Prasher, M.; Bhardwaj, S.C.; Jain, S.K.; Datta, D. Pathotypic evolution in Puccinia striiformis in India during 1995–2004. Aust. J. Agric. Res. 2007, 58, 602–604. [Google Scholar] [CrossRef]
- Liu, W.C.; Zhao, Z.H.; Wang, B.T.; Li, Y.; Wang, X.J.; Kang, Z.S. Analysis on the contribution rate of plant protection to the control of wheat stripe rust in China. China Plant Prot. 2022, 42, 5–9+53. (In Chinese) [Google Scholar]
- Johnson, R.; Taylor, A.J. Isolates of Puccinia striiformis collected in England from the wheat varieties maris beacon and joss cambier. Nature 1972, 238, 105–106. [Google Scholar] [CrossRef]
- Beresford, R.M. Stripe rust (Puccinia striiformis), a new disease of wheat in New Zealand. Cereal Rusts Bull. 1982, 10, 35–41. [Google Scholar]
- Wellings, C.R. Puccinia striiformis in Australia: A review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust. J. Agric. Res. 2007, 58, 567–575. [Google Scholar] [CrossRef]
- Liu, W.C.; Wang, B.T.; Zhao, Z.H.; Li, Y.; Kang, Z.S. Historical review and countermeasures of wheat stripe rust epidemics in China. China Plant Prot. 2022, 42, 22–27+41. (In Chinese) [Google Scholar]
- Li, Z.Q.; Zeng, S.M. Wheat Rusts in China; China Agriculture Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Chen, W.Q.; Kang, Z.S.; Ma, Z.H.; Xu, S.C.; Jin, S.L.; Jiang, Y.Y. Integrated Management of Wheat Stripe Rust Caused by Puccinia striiformis f. sp. tritici in China. Sci. Agric. Sin. 2013, 46, 4254–4262. (In Chinese) [Google Scholar]
- Wang, H.G.; Yang, X.B.; Ma, Z.H. Long–distance spore transport of wheat stripe rust pathogen from Sichuan, Yunnan, and Guizhou in southwestern China. Plant Dis. 2010, 94, 873–880. [Google Scholar] [CrossRef]
- Li, M.J.; Zhang, Y.H.; Chen, W.Q.; Duan, X.Y.; Liu, T.G.; Jia, Q.Z.; Cao, S.Q.; Xu, Z. Evidence for Yunnan as the major origin center of the dominant wheat fungal pathogen Puccinia striiformis f. sp. tritici. Australas. Plant Pathol. 2021, 50, 241–252. [Google Scholar] [CrossRef]
- Jiang, B.B.; Wang, C.C.; Guo, C.W.; Lv, X.; Gong, W.F.; Chang, J.; He, H.P.; Feng, J.; Chen, X.M.; Ma, Z.H. Genetic relationships of Puccinia striiformis f. sp. tritici in southwestern and northwestern China. Microbiol. Spectr. 2022, 10, e0153022. [Google Scholar] [CrossRef]
- Zhan, G.M.; Ji, F.; Chen, X.M.; Wang, J.X.; Zhang, D.L.; Zhao, J.; Zeng, Q.D.; Yang, L.J.; Huang, L.L.; Kang, Z.S. Populations of Puccinia striiformis f. sp. tritici in winter spore production regions were spread from southwestern oversummering areas in China. Plant Dis. 2022, 106, 2856–2865. [Google Scholar] [CrossRef]
- Huang, L.; Yang, H.; Xia, C.J.; Li, H.F.; Wang, J.F.; Wang, A.L.; Zhang, M.; Kang, X.H.; Gao, L.; Zhou, Y.; et al. Long–distance transport of Puccinia striiformis f. sp. tritici by upper airflow on the Yunnan–Guizhou Plateau disrupts the balance of agricultural ecology in central China. Plant Dis. 2022, 106, 2940–2947. [Google Scholar] [CrossRef]
- Awais, M.; Ali, S.; Ju, M.; Liu, W.; Zhang, G.S.; Zhang, Z.D.; Li, Z.J.; Ma, X.Y.; Wang, L.; Du, Z.; et al. Countrywide inter–epidemic region migration pattern suggests the role of southwestern population in wheat stripe rust epidemics in China. Environ. Microbiol. 2022, 24, 4684–4701. [Google Scholar] [CrossRef]
- Wang, K.N.; Hong, X.W.; Si, Q.M.; Wang, J.X.; Shen, J.P. Studies on the physiologic specialization of stripe rust of wheat in China. J. Plant Prot. 1963, 2, 23–36. (In Chinese) [Google Scholar]
- Liu, B.; Liu, T.G.; Zhang, Z.Y.; Jia, Q.Z.; Wang, B.T.; Gao, L.; Peng, Y.L.; Jin, S.L.; Chen, W.Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol. Sin. 2017, 47, 681–687. (In Chinese) [Google Scholar]
- Liu, T.G.; Peng, Y.L.; Chen, W.Q.; Zhang, Z.Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Dis. 2010, 94, 1163. [Google Scholar] [CrossRef]
- Zhao, J.; Kang, Z.S. Fighting wheat rusts in China: A look back and into the future. Phytopathol Res. 2023, 5, 6. [Google Scholar] [CrossRef]
- Han, D.J.; Wang, Q.L.; Chen, X.M.; Zeng, Q.D.; Wu, J.H.; Xue, W.B.; Zhan, G.M.; Huang, L.L.; Kang, Z.S. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis. 2015, 99, 754–760. [Google Scholar] [CrossRef]
- Li, Q.; Li, G.B.; Yue, W.Y.; Du, J.Y.; Yang, L.J.; Kang, Z.S.; Jing, J.X.; Wang, B.T. Pathogenicity changes of wheat stripe rust fungus and disease resistance of wheat cultivars (lines) in Shaanxi province during 2002–2014. Acta Phytopathol. Sin. 2016, 46, 374–384. (In Chinese) [Google Scholar]
- Jia, Q.Z.; Cao, S.Q.; Huang, J.; Zhang, B.; Sun, Z.Y.; Luo, H.S.; Wang, X.M.; Jin, S.L. Monitoring the variation of physiological races of Puccinia striiformis f. sp. tritici in Gansu Province, China during 2013–2016. Plant Prot. 2018, 44, 162–167. (In Chinese) [Google Scholar]
- Jia, Q.Z.; Cao, S.Q.; Wang, X.M.; Sun, Z.Y.; Zhang, B.; Huang, J.; Luo, H.S.; Li, Q.Q. Monitoring the variation of physiological races of Puccinia striiformis f. sp. tritici in Gansu province during 2019–2020. Plant Prot. 2022, 48, 327–332. (In Chinese) [Google Scholar]
- Zhang, G.S.; Zhao, Y.Y.; Kang, Z.S.; Zhao, J. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat stripe rust resistance gene Yr5 in China. Plant Dis. 2020, 104, 284. [Google Scholar] [CrossRef]
- Zhang, G.S.; Sun, M.D.; Ma, X.Y.; Liu, W.; Du, Z.M.; Kang, Z.S.; Zhao, J. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk. J. Integr. Agric. 2024, 23, 2674–2685. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Yamazaki, Y.; Dubcovsky, J.; Rogers, J.; Morris, C.; Appels, R.; Xia, X.E. Catalogue of gene symbols for wheat. In Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–13 September 2013; pp. 166–176. [Google Scholar]
- Feng, J.; Wang, F.T.; Lin, R.M.; Xu, S.C.; Chen, W.Q. Research progress on genetics of wheat stripe rust resistance and distribution of resistant genes in inoculum source areas. J. Plant Prot. 2022, 49, 263–275. (In Chinese) [Google Scholar]
- Klymiuk, V.; Chawla, H.S.; Wiebe, K.; Ens, J.; Fatiukha, A.; Govta, L.; Fahima, T.; Pozniak, C.J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun. Biol. 2022, 5, 826. [Google Scholar] [CrossRef]
- Feng, J.Y.; Yao, F.J.; Wang, M.N.; See, D.R.; Chen, X.M. Molecular mapping of Yr85 and comparison with other genes for resistance to stripe rust on wheat chromosome 1B. Plant Dis. 2023, 107, 3585–3591. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Cao, Q.; Han, D.J.; Wu, J.H.; Wu, L.; Tong, J.Y.; Xu, X.W.; Yan, J.; Zhang, Y.; Xu, K.; et al. Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor. Appl. Genet. 2023, 136, 142. [Google Scholar] [CrossRef]
- Wang, K.N.; Hong, X.W.; Wu, L.R.; Xie, S.X.; Meng, Q.Y.; Chen, S.M. The analysis of the resistance of varieties in the wheat stripe rust nurseries during 1951–1983. Acta Phytophylog. Sin. 1986, 13, 117–124. (In Chinese) [Google Scholar]
- Wang, K.N.; Xie, S.X.; Liu, X.K.; Wu, L.R.; Wang, J.X.; Chen, Y.L. Progress in studies on wheat stripe rust in China. Sci. Agric. Sin. 1988, 16, 80–85. (In Chinese) [Google Scholar]
- Line, R.F.; Chen, X.M. Successes in breeding for managing durable resistance to wheat rust. Plant Dis. 1995, 79, 1254–1255. [Google Scholar]
- Chen, W.Q.; Wu, L.R.; Liu, T.G.; Xu, S.C.; Jin, S.L.; Peng, Y.L. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis. 2009, 93, 1093–1101. [Google Scholar] [CrossRef]
- Li, M.; Tang, Y.L.; Li, C.S.; Wu, X.L.; Tao, X.; Liu, M. Climate warming causes changes in wheat phenological development that benefit yield in the Sichuan Basin of China. Eur. J. Agron. 2022, 139, 126574. [Google Scholar] [CrossRef]
- Liang, J.M.; Wan, Q.; Luo, Y.; Ma, Z.H. Population genetic structures of Puccinia striiformis in Ningxia and Gansu provinces of China. Plant Dis. 2013, 97, 501–509. [Google Scholar] [CrossRef]
- Liang, J.M.; Liu, X.F.; Li, Y.; Wan, Q.; Ma, Z.H.; Luo, Y. Population genetic structures and the migration of Puccinia striiformis f. sp. tritici between the Gansu and Sichuan Basin populations of China. Phytopathology 2016, 106, 192–201. [Google Scholar] [CrossRef]
- Wan, Q.; Liang, J.M.; Luo, Y.; Ma, Z.H. Population genetic structure of Puccinia striiformis in northwestern China. Plant Dis. 2015, 99, 1764–1774. [Google Scholar] [CrossRef]
- Hu, X.P.; Ma, L.J.; Liu, T.G.; Wang, C.H.; Peng, Y.L.; Pu, Q.; Xu, X.M. Population genetic analysis of Puccinia striiformis f. sp. Tritici suggests two distinct populations in Tibet and the other regions of China. Plant Dis. 2017, 101, 288–296. [Google Scholar] [CrossRef]
- Wang, C.H.; Li, Y.X.; Wang, B.T.; Hu, X.P. Genetic analysis reveals relationships among populations of Puccinia striiformis f. sp. Tritici from the Longnan, Longdong and central Shaanxi regions of China. Pytopathology 2022, 112, 278–289. [Google Scholar] [CrossRef]
- Li, Y.X.; Dai, J.C.; Zhang, T.X.; Wang, B.T.; Zhang, S.Y.; Wang, C.H.; Zhang, J.G.; Yao, Q.; Li, M.J.; Li, C.; et al. Genomic analysis, trajectory tracking, and field surveys reveal sources and long–distance dispersal routes of wheat stripe rust pathogen in China. Plant Commun. 2023, 4, 100563. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Liu, D.; Liu, H.Z.; Zhang, S.Y.; Zhao, J.C.; Zhang, J.G.; Li, Y.X.; Hu, X.P.; Shang, W.J. Population genetics analysis of Puccinia striiformis f. sp. tritici in Yunnan-Guizhou-Sichuan area. Mycosystema 2024, 101, 288–296. (In Chinese) [Google Scholar] [CrossRef]
- Shen, L.; Luo, L.M.; Chen, W.Q.; Zhao, Z.M.; Wang, J.J. Epidemic zones and dispersal routes of wheat stripe rust caused by Puccinia striiformis West. in Sichuan. Acta Phytopathol. Sin. 2008, 3, 220–226. [Google Scholar]
- Li, S.N.; Chen, W.; Ma, X.Y.; Tian, X.X.; Liu, Y.; Huang, L.L.; Kang, Z.S.; Zhao, J. Identification of eight Berberis species from the Yunnan-Guizhou plateau as aecial hosts for Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. J. Integr. Agric. 2021, 20, 1563–1569. [Google Scholar] [CrossRef]
- Roels, A.P.; Singh, R.P.; Saari, E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management; CIMMYT: Mexico City, Mexico, 1992. [Google Scholar]
- Stubbs, R.W. Stripe Rust. In The Cereal Rusts; Roelfs, A.P., Bushnell, W.R., Eds.; Academic Press: New York, NY, USA, 1985; pp. 61–101. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Rules for Resistance Evaluation of Wheat to Diseases and Insect Pests; Part1: Rule for Resistance Evaluation of Wheat to Yellow Rust (Puccinia striiformis West. f. sp. tritici Eriks.et Henn.): NY/T 1443.1-2007; Standards Press of China: Beijing, China, 2007. (In Chinese)
Pathogroup | Pst Race/Virulence Type | Total Number of Isolates | Number of Isolates Per Pathogroup | SC-W * | SC-L | GZ | |
---|---|---|---|---|---|---|---|
Mianyang | Guangyuan | ||||||
Hybrid 46 group | CYR32 | 49 | 52 | 0 | 0 | 45 | 4 |
HY_108 | 3 | 0 | 0 | 0 | 3 | ||
G-22 group | CYR34 | 31 | 45 | 27 | 2 | 2 | 0 |
G22_014 | 1 | 1 | 0 | 0 | 0 | ||
G22_083 | 1 | 0 | 1 | 0 | 0 | ||
G22_104 | 5 | 5 | 0 | 0 | 0 | ||
G22_183 | 1 | 0 | 1 | 0 | 0 | ||
G22-244 | 5 | 3 | 2 | 0 | 0 | ||
G22_245 | 1 | 1 | 0 | 0 | 0 | ||
Total number of isolates | 97 | 97 | 43 | 47 | 7 |
Pathogroup | Pst Race or/Virulence Type | Total Number of Isolates | Number of Isolates Per Pathogroup | SC-W * | SC-E | SC-L | SC-G | GZ | YN | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Mianyang | Deyang | Guangyuan | Luzhou | ||||||||
Hybrid 46 group | CYR31 | 8 | 59 | 0 | 0 | 0 | 0 | 6 | 0 | 2 | 0 |
CYR32 | 36 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 30 | ||
HY_008_1 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | ||
HY_019 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ||
HY_035 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
HY_183 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
HY_311 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | ||
Other HY | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | ||
G-22 group | CYR34 | 28 | 40 | 15 | 0 | 10 | 0 | 0 | 3 | 0 | 0 |
G22_083 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G22_108 | 4 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | ||
G22_183 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G22-431 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Other G-22 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Total number of isolates | 99 | 99 | 36 | 1 | 22 | 3 | 5 | 32 |
Parameter | SC * | SC_L+G | YN | GZ |
---|---|---|---|---|
Number of isolates | 80 | 72 | 32 | 12 |
Nei’s diversity index, Hs | 0.047 | 0.047 | 0.014 | 0.090 |
Simpson index, Si | 0.562 | 0.532 | 0.119 | 0.681 |
Shannon normalized index, Sh | 0.319 | 0.298 | 0.080 | 0.546 |
Kosman index, KWm | 0.052 | 0.056 | 0.015 | 0.111 |
Stoddart index (St) | 2.281 | 2.136 | 1.135 | 3.130 |
Shannon index (SH) | 1.398 | 1.281 | 0.277 | 1.358 |
Evenness (E) | 0.583 | 0.556 | 0.252 | 0.844 |
Gleason index of richness (G) | 2.282 | 2.098 | 0.577 | 1.610 |
Populations | SC | SC_L+G | YN | GZ |
---|---|---|---|---|
SC | 0.9570 * | 0.9517 | 0.9558 | |
SC_L+G | 0.0440 | 0.9972 | 0.9962 | |
YN | 0.0495 | 0.0028 | 0.9922 | |
GZ | 0.0452 | 0.0039 | 0.0079 |
Wheat Genotype/Cultivar | Gene | Ningnan * | Jiangyou | ||||
---|---|---|---|---|---|---|---|
Infection Type | Severity (%) | Incidence (%) | Infection Type | Severity (%) | Incidence (%) | ||
Heines VII | Yr2 | 3 | 30 | 10 | 2 | 100 | 30 |
Heies Peko | Yr2.6 | 3 | 5 | 5 | 2 | 90 | 70 |
Nord Desprez | Yr3+ | 3 | 60 | 10 | 2 | 100 | 60 |
Hybrid46 | YR4.3b | 3 | 5 | 5 | 0 | 0 | 0 |
Mingxian 169*6/Yr5 | Yr5 | 0 | 0 | 0 | 0 | 0 | 0 |
Triticum spelta album | Yr5 | 3− | 10 | 5 | 0 | 0 | 0 |
Reichersberg42 | Yr7+ | 3 | 5 | 5 | 2 | 5 | 10 |
Compare | Yr8.19 | 3 | 70 | 40 | 2 | 100 | 70 |
Lovrin 10 | Yr9 | 3− | 10 | 30 | 4 | 90 | 100 |
Avocet S*6/Yr9 | Yr9 | 0 | 0 | 0 | 2− | 90 | 5 |
Lovrin 13 | Yr9+ | 3 | 20 | 10 | 4 | 90 | 100 |
Mingxian 169*6/Yr10 | Yr10 | 3 | 70 | 10 | 4 | 100 | 100 |
Joss Cambier | Yr11 | 0 | 0 | 0 | 3 | 100 | 80 |
Mega | Yr12 | 3 | 30 | 5 | 2 | 70 | 70 |
Hobbit | Yr14 | 3 | 40 | 5 | 3 | 80 | 60 |
Avocet S*6/Yr15 | Yr15 | 3 | 50 | 20 | 2 | 100 | 70 |
Jupateco R Yr18 | Yr18 | 1+ | 10 | 30 | 2 | 100 | 80 |
Avocet S*6/Yr24 | Yr24 | 3 | 60 | 20 | 4 | 100 | 100 |
Avocet S*6/Yr26 | Yr26 | 4 | 70 | 90 | 4 | 100 | 100 |
Carsten V | Yr32 | 3 | 40 | 10 | 2 | 100 | 60 |
C591 | YrC591 | 2 | 20 | 10 | 2 | 80 | 10 |
Kangyin 655 | YrKy | 3 | 30 | 10 | 4 | 100 | 100 |
Spaldings Prolific | YrSpP | 3 | 30 | 20 | 3 | 100 | 70 |
Suwon 11 | YrSu | 3− | 5 | 20 | 4 | 100 | 100 |
Changmai 26 | 2 | 20 | 10 | 2 | 100 | 60 | |
Changmai 29 | 2+ | 60 | 20 | 3 | 100 | 100 | |
Changmai 32 | 2 | 60 | 70 | 2+ | 100 | 70 | |
Changmai 33 | 2 | 50 | 40 | 2+ | 100 | 60 | |
Changmai 34 | 2 | 30 | 30 | 3− | 100 | 70 | |
Changmai 35 | 2− | 5 | 5 | 2 | 100 | 60 | |
Chuanmai 42 | 2+ | 60 | 70 | 2− | 5 | 1 | |
Chuanmai 55 | 2 | 60 | 60 | 0 | 0 | 0 | |
Chuanmai 58 | 2 | 60 | 10 | 0 | 0 | 0 | |
Chuanmai 61 | 2+ | 30 | 20 | 0 | 0 | 0 | |
Chuanmai 62 | 2 | 20 | 10 | 0 | 0 | 0 | |
Chuanmai 82 | 2 | 20 | 10 | 2 | 10 | 1 | |
Chuanmai 83 | 3 | 70 | 40 | 0 | 0 | 0 | |
Chuanmai 86 | 2− | 5 | 10 | 0 | 0 | 0 | |
Chuanmai 93 | 2 | 10 | 20 | 0 | 0 | 0 | |
Chuanmai 98 | 0 | 0 | 0 | 0 | 0 | 0 | |
Chuanmai 104 | 2+ | 60 | 60 | 2− | 5 | 1 | |
Chuanmai 107 | 3 | 70 | 70 | 4 | 90 | 90 | |
Chuanmai 602 | 2+ | 60 | 20 | 0 | 0 | 0 | |
Chuanmai 604 | 2 | 20 | 5 | 0 | 0 | 0 | |
Chuanmai 1131 | 3 | 70 | 90 | 0 | 0 | 0 | |
Chuanmai 1145 | 4 | 90 | 90 | 3 | 60 | 60 | |
Chuanmai 1247 | 2+ | 20 | 30 | 0 | 0 | 0 | |
Chuanmai 1456 | 0; | 5 | 5 | 0 | 0 | 0 | |
Chuanmai 1546 | 3 | 70 | 60 | 0 | 0 | 0 | |
Chuanmai 1557 | 2 | 20 | 30 | 0 | 0 | 0 | |
Chuanmai 1580 | 2 | 30 | 30 | 0 | 0 | 0 | |
Chuanmai 1826 | 2+ | 70 | 80 | 0 | 0 | 0 | |
Chuannong 19 | 3− | 60 | 20 | 3 | 100 | 90 | |
Chuannong 26 | 2+ | 60 | 40 | 4 | 100 | 90 | |
Chuannong 27 | 0 | 0 | 0 | 3 | 90 | 90 | |
Chuannong 27 | 2+ | 30 | 30 | 3− | 90 | 50 | |
Chuannong 29 | 2 | 30 | 30 | 0 | 0 | 0 | |
Chuannong 30 | 2+ | 70 | 60 | 3− | 100 | 60 | |
Chuannong 32 | 2 | 40 | 30 | 2 | 100 | 50 | |
Chuanyu 23 | 3− | 40 | 10 | 2 | 90 | 40 | |
Fan 6 | 3− | 60 | 20 | 4 | 100 | 100 | |
Jianongmai 809 | 2 | 20 | 10 | 3− | 90 | 80 | |
Jimai 22 | 3− | 60 | 40 | 4 | 100 | 100 | |
Jimai 38 | 4 | 70 | 60 | 4 | 100 | 100 | |
Jintai 170 | 4 | 80 | 70 | 4 | 100 | 100 | |
Kechengmai 4 | 3 | 70 | 50 | 0 | 0 | 0 | |
Kechengmai 5 | 2 | 40 | 10 | 2 | 100 | 50 | |
Kechengmai 6 | 2 | 20 | 10 | 0 | 0 | 0 | |
Lantian 19 | 0 | 0 | 0 | 0; | 10 | 1 | |
Lantian 26 | 0 | 0 | 0 | 0 | 0 | 0 | |
Lantian 31 | 0 | 0 | 0 | 1 | 5 | 1 | |
Little Clup | 3− | 80 | 90 | 4 | 90 | 100 | |
Longjian 386 | 0 | 0 | 0 | 0 | 0 | 0 | |
Lumai 23 | 3 | 30 | 10 | 4 | 100 | 100 | |
Mianmai 37 | 4 | 70 | 80 | 0 | 0 | 0 | |
Mianmai 46 | 4 | 70 | 80 | 3 | 90 | 70 | |
Mianmai 51 | 2+ | 60 | 30 | 0 | 0 | 0 | |
Mianmai 112 | 4 | 90 | 90 | 0 | 0 | 0 | |
Mianmai 228 | 3 | 80 | 90 | 0 | 0 | 0 | |
Mianmai 285 | 3 | 60 | 60 | 0 | 0 | 0 | |
Mianmai 312 | 2+ | 20 | 10 | 0 | 0 | 0 | |
Mianmai 367 | 2+ | 50 | 20 | 0 | 0 | 0 | |
Mianmai 827 | 2 | 20 | 10 | 0 | 0 | 0 | |
Mianmai 902 | 2 | 10 | 20 | 2 | 100 | 40 | |
Mianmai 1501 | 2 | 20 | 10 | 0 | 0 | 0 | |
Mianyang 11 | 4 | 90 | 100 | 4 | 100 | 100 | |
Mianzimai 830 | 2 | 20 | 20 | 3− | 100 | 80 | |
Nanmai 618 | 3 | 60 | 20 | 2 | 5 | 5 | |
Nanmai 660 | 2+ | 20 | 20 | 0 | 0 | 0 | |
Nanmai 991 | 2− | 5 | 20 | 3 | 10 | 20 | |
Neimai 11 | 4 | 90 | 90 | 0 | 0 | 0 | |
Neimai 316 | 2+ | 40 | 60 | 0 | 0 | 0 | |
Neimai 366 | 2+ | 60 | 20 | 0 | 0 | 0 | |
Neimai 836 | 3 | 90 | 90 | 0 | 0 | 0 | |
Neimai 9 | 3 | 80 | 70 | 0 | 0 | 0 | |
Neimai 9 | 3 | 70 | 70 | 0 | 0 | 0 | |
Shi 4185 | 4 | 70 | 70 | 4 | 100 | 100 | |
Tianxuan 50 | 0 | 0 | 0 | 1 | 40 | 5 | |
Yangmai158 | 4 | 80 | 70 | 3 | 100 | 70 | |
Yannong 15 | 2+ | 40 | 10 | 4 | 100 | 100 | |
Zhong 4 | 0 | 0 | 0 | 0 | 0 | 0 | |
Zhoumai 22 | 0 | 0 | 0 | 2 | 40 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Wang, Y.; Ji, Z.; Liu, J.; Zhang, M.; Peng, Y.; Zhao, J.; Ji, H. Differences in the Virulence Between Local Populations of Puccinia striiformis f. sp. tritici in Southwest China. Plants 2024, 13, 2902. https://doi.org/10.3390/plants13202902
Yang F, Wang Y, Ji Z, Liu J, Zhang M, Peng Y, Zhao J, Ji H. Differences in the Virulence Between Local Populations of Puccinia striiformis f. sp. tritici in Southwest China. Plants. 2024; 13(20):2902. https://doi.org/10.3390/plants13202902
Chicago/Turabian StyleYang, Fang, Yunjing Wang, Zhiying Ji, Jiahui Liu, Mei Zhang, Yunliang Peng, Jie Zhao, and Hongli Ji. 2024. "Differences in the Virulence Between Local Populations of Puccinia striiformis f. sp. tritici in Southwest China" Plants 13, no. 20: 2902. https://doi.org/10.3390/plants13202902
APA StyleYang, F., Wang, Y., Ji, Z., Liu, J., Zhang, M., Peng, Y., Zhao, J., & Ji, H. (2024). Differences in the Virulence Between Local Populations of Puccinia striiformis f. sp. tritici in Southwest China. Plants, 13(20), 2902. https://doi.org/10.3390/plants13202902