Radish and Spinach Seedling Production and Early Growth in Response to Struvite Use as a Phosphorus Source
Abstract
:1. Introduction
2. Results
2.1. Effects of Base Fertilization and Supplementary Fertigation on Radish and Spinach Germination and Early Growth
2.2. Radish Study
2.2.1. Radish Seed Germination and Plant Growth
2.2.2. Radish Physiological Parameters
2.2.3. Radish Stress Indicators, Total Phenolics, Flavonoids and Antioxidant Capacities
2.2.4. Radish Leaf and Root Nutrient Content
2.3. Spinach Study
2.3.1. Spinach Seed Germination and Plant Growth
2.3.2. Spinach Physiological Parameters
2.3.3. Spinach Stress Indicators, Total Phenolics, Flavonoids and Antioxidant Capacities
2.3.4. Spinach Leaf Nutrient Content
3. Discussion
3.1. Seed Germination Study
3.2. Early Plant Growth
3.3. Plant Physiology
3.4. Total Phenolics, Antioxidants, Flavonoids and Stress Indicators
3.5. Plant Nutritional Status
4. Materials and Methods
4.1. Plant Material and Experimental Setup
4.2. Germination and Plant Growth Study
4.3. Plant Physiology
4.4. Determination of Total Phenolics, Flavonoids, Antioxidants and Stress Indicators
4.5. Determination of Plant Mineral Content
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth Around the World. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Samota, S.R.; Venkatesh, K.; Tripathi, S.C. Global trends in use of nano-fertilizers for crop production: Advantages and constraints—A review. Soil Tillage Res. 2023, 228, 105645. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, N.; Kumar, J. Impact of increasing pesticides and fertilizers on human health: A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant Soil 2016, 401, 109–123. [Google Scholar] [CrossRef]
- Hertzberger, A.J.; Cusick, R.D.; Margenot, A.J. A review and meta-analysis of the agricultural potential of struvite as a phosphorus fertilizer. Soil Sci. Soc. Am. J. 2020, 84, 653–671. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Hollaway, M.J.; Beven, K.J.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; Kahana, R.; Macleod, C.J.A.A.; et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 2017, 8, 161. [Google Scholar] [CrossRef]
- Doydora, S.; Gatiboni, L.; Grieger, K.; Hesterberg, D.; Jones, J.L.; McLamore, E.S.; Peters, R.; Sozzani, R.; Van den Broeck, L.; Duckworth, O.W. Accessing legacy phosphorus in soils. Soil Syst. 2020, 4, 74. [Google Scholar] [CrossRef]
- Fageria, N.K.; He, Z.; Baligar, V.C. Phosphorus Management in Crop Production; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498705875. [Google Scholar]
- Moncada, A.; Miceli, A.; Vetrano, F. Use of plant growth-promoting rhizobacteria (PGPR) and organic fertilization for soilless cultivation of basil. Sci. Hortic. 2021, 275, 109733. [Google Scholar] [CrossRef]
- Hao, X.D.; Wang, C.C.; Lan, L.; Van Loosdrecht, M.C.M. Struvite formation, analytical methods and effects of pH and Ca2+. Water Sci. Technol. 2008, 58, 1687–1692. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Parada, F.; Rufí-Salis, M.; Stringari, G.; González, R.; Villalba, G.; Gabarrell, X. Extended use and optimization of struvite in hydroponic cultivation systems. Resour. Conserv. Recycl. 2022, 179, 106130. [Google Scholar] [CrossRef]
- Pathy, A.; Ray, J.; Paramasivan, B. Challenges and opportunities of nutrient recovery from human urine using biochar for fertilizer applications. J. Clean. Prod. 2021, 304, 127019. [Google Scholar] [CrossRef]
- Latifian, M.; Liu, J.; Mattiasson, B. Environmental Technology Struvite-based fertilizer and its physical and chemical properties Struvite-based fertilizer and its physical and chemical properties. Environ. Technol. 2012, 33, 2691–2697. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Kallikazarou, N.I.; Tzenos, C.; Kotsopoulos, T.A.; Koutsokeras, L.; Kokkinidou, D.; Michael, C.; Constantinides, G.; Anayiotos, A.S.; Botsaris, G.; et al. Pilot-scale biogas and in-situ struvite production from pig slurry: A novel integrated approach. J. Clean. Prod. 2023, 431, 139656. [Google Scholar] [CrossRef]
- Wang, Y.; Mou, J.; Liu, X.; Chang, J. Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio. Sci. Total Environ. 2021, 789, 147970. [Google Scholar] [CrossRef]
- Ahmed, N.; Shim, S.; Won, S.; Ra, C. Struvite recovered from various types of wastewaters: Characteristics, soil leaching behaviour, and plant growth. Land Degrad. Dev. 2018, 29, 2864–2879. [Google Scholar] [CrossRef]
- Min, K.J.; Kim, D.; Lee, J.; Lee, K.; Park, K.Y. Characteristics of vegetable crop cultivation and nutrient releasing with struvite as a slow-release fertilizer. Environ. Sci. Pollut. Res. 2019, 26, 34332–34344. [Google Scholar] [CrossRef]
- Carreras-Sempere, M.; Biel, C.; Viñas, M.; Guivernau, M.; Caceres, R. The use of recovered struvite and ammonium nitrate in fertigation in a horticultural rotation: Agronomic and microbiological assessment. Environ. Technol. 2022, 1–17. [Google Scholar] [CrossRef]
- Antonini, S.; Arias, M.A.; Eichert, T.; Clemens, J. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere 2012, 89, 1202–1210. [Google Scholar] [CrossRef]
- Kataki, S.; West, H.; Clarke, M.; Baruah, D.C. Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Waste Manag. 2016, 49, 437–454. [Google Scholar] [CrossRef]
- Melito, S.; Ronga, D.; Marceddu, D.; Kallikazarou, N.I.; Antoniou, M.G.; Giannini, V. Organo-mineral Fertilizer Containing Struvite from Liquid Digestate for Cucurbita pepo L. Seedling Production. J. Soil Sci. Plant Nutr. 2023, 23, 6707–6720. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Geelen, D.; De Paepe, J.; Clauwaert, P.; De Pascale, S.; Rouphael, Y. An Appraisal of Urine Derivatives Integrated in the Nitrogen and Phosphorus Inputs of a Lettuce Soilless Cultivation System. Sustainability 2021, 13, 4218. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Rufí-Salís, M.; Parada, F.; Gabarrell, X.; Villalba, G. Assessing the environmental behavior of alternative fertigation methods in soilless systems: The case of Phaseolus vulgaris with struvite and rhizobia inoculation. Sci. Total Environ. 2021, 770, 144744. [Google Scholar] [CrossRef] [PubMed]
- Halbert-Howard, A.; Häfner, F.; Karlowsky, S.; Schwarz, D.; Krause, A. Evaluating recycling fertilizers for tomato cultivation in hydroponics, and their impact on greenhouse gas emissions. Environ. Sci. Pollut. Res. 2021, 28, 59284–59303. [Google Scholar] [CrossRef]
- Mendoza, E.; Vosse, J.; Azzellino, A.; Santos, L.H.M.L.M.; Semitsoglou-Tsiapou, S.; Comas, J.; Buttiglieri, G. From shower to table: Fate of organic micropollutants in hydroponic systems for greywater treatment and lettuce cultivation. Blue-Green Syst. 2024, 6, 70–89. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Yen, H.W.; Nomanbhay, S.; Ho, Y.C.; Show, P.L. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Carreras-sempere, M.; Caceres, R.; Viñas, M.; Biel, C. Use of recovered struvite and ammonium nitrate in fertigation in tomato (Lycopersicum esculentum) production for boosting circular and sustainable horticulture. Agriculture 2021, 11, 1063. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.; Chohura, P.; Gałka, B.; Szuba-Trznadel, A.; Falkiewicz, A.; Białkowska, M. Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce (Lactuca sativa L.) Grown in Peat Substrate. Agriculture 2022, 12, 788. [Google Scholar] [CrossRef]
- Hauck, D.; Lohr, D.; Meinken, E.; Schmidhalter, U. Plant availability of secondary phosphates depending on pH in a peat-based growing medium. Acta Hortic. 2021, 1305, 437–442. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Hebebrand, C.; Laborde, D. High fertilizer prices contribute to rising global food security concerns. Commun. Public Aff. 2022. Available online: https://www.ifpri.org/blog/high-fertilizer-prices-contribute-rising-global-food-security-concerns/ (accessed on 15 October 2024).
- Ranal, M.A.; De Santana, D.G. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 171–190. [Google Scholar] [CrossRef]
- Kanjevac, M.; Jakovljević, D.; Todorović, M.; Stanković, M.; Ćurčić, S.; Bojović, B. Improvement of Germination and Early Growth of Radish (Raphanus sativus L.) through Modulation of Seed Metabolic Processes. Plants 2022, 11, 757. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.; Schultz, N.; Lewandrowski, W.; Good, M.K.; Cook, S. Lower dormancy with rapid germination is an important strategy for seeds in an arid zone with unpredictable rainfall. PLoS ONE 2019, 14, e0218421. [Google Scholar] [CrossRef] [PubMed]
- Katanda, Y.; Zvomuya, F.; Flaten, D.; Cicek, N.; Amarakoon, I. Effects of Seed-Placed Hog Manure-Recovered Struvite on Canola Seedling Emergence. Agron. J. 2019, 111, 390–396. [Google Scholar] [CrossRef]
- Mavi, K.; Powell, A.A.; Matthews, S. Rate of radicle emergence and, leakage of electrolytes provide quick predictions of percentage normal seedlings in standard germination tests of radish (Raphanus sativus). Seed Sci. Technol. 2016, 44, 393–409. [Google Scholar] [CrossRef]
- Chitwood, J.; Shi, A.; Evans, M.; Rom, C.; Gbur, E.E.; Motes, D.; Chen, P.; Hensley, D. Effect of temperature on seed germination in Spinach (Spinacia oleracea). HortScience 2016, 51, 1475–1478. [Google Scholar] [CrossRef]
- Mäkelä, P.S.A.; Wasonga, D.O.; Hernandez, A.S.; Santanen, A. Seedling growth and phosphorus uptake in response to different phosphorus sources. Agronomy 2020, 10, 1089. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; El-Nakhel, C.; De Pascale, S.; De Paepe, J.; Clauwaert, P.; Kerckhof, F.M.; Boon, N.; Geelen, D. Root-associated bacterial community shifts in hydroponic lettuce cultured with urine-derived fertilizer. Microorganisms 2021, 9, 1326. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.; Chochura, P.; Gałka, B.; Szuba-Trznadel, A.; Svecnjak, Z.; Latkovic, D. Effect of various rates of p from alternative and traditional sources on butterhead lettuce (Lactuca sativa L.) grown on peat substrate. Agriculture 2021, 11, 1279. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Rufí-Salís, M.; Parada, F.; Petit-Boix, A.; Gabarrell, X.; Villalba, G. Recovered phosphorus for a more resilient urban agriculture: Assessment of the fertilizer potential of struvite in hydroponics. Sci. Total Environ. 2021, 799, 149424. [Google Scholar] [CrossRef]
- Cetner, M.D.; Kalaji, H.M.; Borucki, W.; Kowalczyk, K. Phosphorus deficiency affects the i-step of chlorophyll a fluorescence induction curve of radish. Photosynthetica 2020, 58, 671–681. [Google Scholar] [CrossRef]
- Ramut, R.; Jama-Rodzeńska, A.; Gębarowska, E.; Gałka, B.; Szuba-Trznadel, A.; Wilusz-Nogueira, M.; Jarki, D.; Kamińska, J.A.; Białkowska, M. Effect of struvite (Crystal Green) application on microbial activity and soybean yield—A preliminary study. J. Elem. 2024, 29, 485–503. [Google Scholar]
- Krähenbühl, M.; Etter, B.; Udert, K.M. Pretreated magnesite as a source of low-cost magnesium for producing struvite from urine in Nepal. Sci. Total Environ. 2016, 542, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: New York, NY, USA, 2011; pp. 1–651. [Google Scholar]
- El-Beltagi, H.S.; Maraei, R.W.; Shalaby, T.A.; Aly, A.A. Metabolites, Nutritional Quality and Antioxidant Activity of Red Radish Roots Affected by Gamma Rays. Agronomy 2022, 12, 1916. [Google Scholar] [CrossRef]
- Nicastro, R.; El-Nakhel, C.; Geelen, D.; Fusco, G.M.; De Pascale, S.; Rouphael, Y.; Carillo, P. Exploring the potential of human urine derivatives in circular agriculture: A case study on lettuce. Front. Sustain. Food Syst. 2024, 8, 1440014. [Google Scholar] [CrossRef]
- Koyro, H.-W.; Ahmad, P.; Geissler, N. Abiotic Stress Responses in Plants: An Overview. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Springer: New York, NY, USA, 2012; pp. 1–28. [Google Scholar]
- Jurga, A.; Ratkiewicz, K.; Wdowikowska, A.; Reda, M.; Janicka, M.; Chohura, P.; Janiak, K. Urine and grey water based liquid fertilizer—Production and the response of plants. J. Environ. Manag. 2023, 331, 117248. [Google Scholar] [CrossRef]
- Zhang, T.; He, X.; Deng, Y.; Tsang, D.C.W.; Yuan, H.; Shen, J.; Zhang, S. Swine manure valorization for phosphorus and nitrogen recovery by catalytic–thermal hydrolysis and struvite crystallization. Sci. Total Environ. 2020, 729, 138999. [Google Scholar] [CrossRef]
- Constán-Aguilar, C.; Leyva, R.; Romero, L.; Soriano, T.; Blasco, B.; Manuel Ruiz, J. The Effect of Potassium Biofortification over Yield and Nutritional Quality of Cherry Tomato Fruits. Am. J. Adv. Food Sci. Technol. 2015, 3, 67–93. [Google Scholar] [CrossRef]
- Mugo, B.M.; Kiio, J.; Munyaka, A. Effect of blanching time–temperature on potassium and vitamin retention/loss in kale and spinach. Food Sci. Nutr. 2024, 12, 5403–5411. [Google Scholar] [CrossRef]
- Öztekin, G.B.; Uludağ, T.; Tüzel, Y. Growing spinach (Spinacia oleracea L.) in a floating system with different concentrations of nutrient solution. Appl. Ecol. Environ. Res. 2018, 16, 3333–3350. [Google Scholar] [CrossRef]
- Gülser, F. Effects of ammonium sulphate and urea on NO3− and NO2− accumulation, nutrient contents and yield criteria in spinach. Sci. Hortic. 2005, 106, 330–340. [Google Scholar] [CrossRef]
- Nguyen, T.-P.-D.; Vu, N.-T.; Nguyen, Q.-T.; Tran, T.-T.-H.; Cao, P.-B.; Kim, I.-S.; Jang, D.-C. Growth and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) Affected by the Light Intensity of Red and Blue LEDs. Sains Malays. 2022, 51, 473–483. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Charalambous, S.; Xylia, P.; Litskas, V.; Stavrinides, M.; Tzortzakis, N. Assessing the biostimulant effects of a novel plant-based formulation on tomato crop. Sustainability 2020, 12, 8432. [Google Scholar] [CrossRef]
- Xylia, P.; Fasko, K.G.; Chrysargyris, A.; Tzortzakis, N. Heat treatment, sodium carbonate, ascorbic acid and rosemary essential oil application for the preservation of fresh Rosmarinus officinalis quality. Postharvest Biol. Technol. 2022, 187, 111868. [Google Scholar] [CrossRef]
Radish | Spinach | |||||
---|---|---|---|---|---|---|
BF | SF | BF × SF | BF | SF | BF × SF | |
Mean germination time (d) | ns | ns | ns | * | ns | ns |
Total seed emergence (%) | ns | ns | ns | ns | ns | ns |
Plant number | – | – | – | ns | ns | ns |
Plant height (cm) | ns | *** | ** | ns | *** | ns |
Stem diameter (mm) | ns | *** | * | – | – | – |
Leaf number | ns | *** | ns | ns | *** | * |
Leaf FW (g) | ns | ** | ns | ns | *** | ns |
Leaf DM (%) | ns | *** | ns | ** | ** | *** |
Total FW pot−1 (g) | – | – | – | ns | *** | *** |
Radish FW (g) | ns | *** | ns | – | – | – |
Radish DM (%) | * | ns | ** | – | – | – |
Lateral root FW (g) | ns | ** | ns | – | – | – |
SPAD | ** | ns | ns | ns | ns | ns |
Chlorophyll fluorescence (Fv Fm−1) | ns | ns | ns | * | * | * |
Stomatal conductance (µmol m−1 s−1) | *** | * | *** | – | – | – |
Chl a (mg g−1 FW) | ns | *** | ns | * | *** | *** |
Chl b (mg g−1 FW) | ns | *** | ns | ** | *** | * |
Total chlorophylls (mg g−1 FW) | ns | *** | ns | * | *** | ** |
Total carotenoids (mg g−1 FW) | ns | *** | ns | * | ns | * |
Chl a:Chl b | ns | ns | ns | * | *** | ns |
Total carotenoids: Total chlorophylls | ns | ns | * | ** | *** | ns |
H2O2 (μmol g−1) | *** | *** | *** | *** | *** | *** |
MDA (nmol g−1) | ns | *** | ** | ns | ns | * |
Phenols (mg GAE g−1) | *** | *** | *** | ns | ns | ns |
DPPH (mg Trolox g−1) | *** | *** | *** | * | ns | ** |
FRAP (mg Trolox g−1) | *** | *** | *** | * | ns | ns |
ABTS (mg Trolox g−1) | *** | *** | *** | * | ** | ns |
Flavonoids (mg Rutin g−1) | *** | *** | *** | *** | *** | *** |
Leaf N (g kg−1) | ** | *** | * | *** | *** | *** |
Leaf P (g kg−1) | *** | *** | *** | * | *** | ** |
Root P (g kg−1) | *** | ** | *** | – | – | – |
Leaf K (g kg−1) | *** | ns | *** | ns | ns | ns |
Root K (g kg−1) | ns | * | *** | – | – | – |
Leaf Na (g kg−1) | *** | * | ns | ** | * | ns |
Root Na (g kg−1) | ** | *** | *** | – | – | – |
Fertilizer Application | Plant Height | Stem Diameter | Leaf No. | Leaf Fresh Weight | Leaf Dry Matter Content | Radish Fresh Weight | Radish Dry Matter Content | Lateral Root Fresh Weight |
---|---|---|---|---|---|---|---|---|
NoFert | 8.38 ± 0.55 e | 4.26 ± 0.08 d | 5.00 ± 0.41 e | 4.27 ± 2.77 b | 5.69 ± 0.05 d | 1.77 ± 0.55 d | 5.69 ± 0.02 bcd | 0.07 ± 0.02 cd |
Fert | 11.20 ± 0.93 d | 5.67 ± 0.52 cd | 6.00 ± 0.32 cde | 3.94 ± 0.93 b | 6.77 ± 0.56 bcd | 1.79 ± 0.76 d | 6.54 ± 0.03 a | 0.08 ± 0.02 bcd |
ST1 | 12.30 ± 1.24 cd | 6.71 ± 0.50 c | 6.60 ± 0.68 bcd | 5.64 ± 1.21 b | 6.13 ± 0.04 d | 2.75 ± 0.82 d | 5.52 ± 0.03 cd | 0.07 ± 0.01 cd |
ST2 | 11.20 ± 0.87 d | 5.29 ± 0.79 cd | 5.40 ± 0.81 de | 3.32 ± 1.20 b | 6.51 ± 0.09 cd | 1.71 ± 1.08 d | 6.11 ± 0.02 abc | 0.06 ± 0.01 d |
NoFert+S | 22.60 ± 0.33 a | 11.70 ± 0.07 a | 8.40 ± 0.24 a | 16.93 ± 0.92 a | 8.99 ± 1.36 ab | 32.75 ± 2.15 a | 5.27 ± 0.23 d | 0.16 ± 0.02 a |
Fert+S | 19.90 ± 1.00 b | 10.82 ± 0.65 a | 8.00 ± 0.32 ab | 13.76 ± 0.92 a | 10.12 ± 0.38 a | 22.25 ± 3.93 b | 5.58 ± 0.16 cd | 0.13 ± 0.02 abc |
ST1+S | 14.30 ± 0.64 c | 9.15 ± 0.28 b | 7.40 ± 0.51 abc | 5.94 ± 0.86 b | 9.29 ± 0.51 a | 10.62 ± 1.90 c | 6.28 ± 0.19 ab | 0.14 ± 0.04 ab |
ST2+S | 18.70 ± 0.92 b | 11.67 ± 0.44 a | 8.00 ± 0.32 ab | 16.38 ± 1.69 a | 8.76 ± 0.14 abc | 30.26 ± 3.10 a | 5.85 ± 0.25 bcd | 0.16 ± 0.02 a |
Fertilizer Application | SPAD | Chlorophyll Fluorescence | Stomatal Conductance | Chl a | Chl b | Total Chl | Total Car | Chl a:Chl b | Total Car: Total Chl |
---|---|---|---|---|---|---|---|---|---|
NoFert | 33.75 ± 1.06 c | 0.82 ± 0.01 ab | 543.33 ± 91.71 c | 0.42 ± 0.01 c | 0.17 ± 0.00 c | 0.59 ± 0.01 c | 0.050 ± 0.000 bc | 2.44 ± 0.00 ab | 0.095 ± 0.005 a |
Fert | 38.28 ± 1.47 bc | 0.82 ± 0.01 ab | 606.67 ± 8.82 c | 0.57 ± 0.06 bc | 0.22 ± 0.01 bc | 0.79 ± 0.07 bc | 0.065 ± 0.005 bc | 2.61 ± 0.18 a | 0.085 ± 0.005 ab |
ST1 | 40.65 ± 2.61 b | 0.81 ± 0.02 b | 538.33 ± 36.09 c | 0.46 ± 0.03 bc | 0.23 ± 0.03 bc | 0.68 ± 0.01 bc | 0.045 ± 0.015 bc | 2.01 ± 0.38 c | 0.065 ± 0.015 c |
ST2 | 38.65 ± 2.70 bc | 0.83 ± 0.01 ab | 588.33 ± 72.59 c | 0.38 ± 0.01 c | 0.17 ± 0.01 c | 0.55 ± 0.02 c | 0.035 ± 0.005 c | 2.30 ± 0.02 abc | 0.065 ± 0.005 c |
NoFert+S | 41.65 ± 2.75 b | 0.83 ± 0.00 ab | 696.67 ± 12.02 bc | 1.07 ± 0.02 a | 0.49 ± 0.01 a | 1.56 ± 0.02 a | 0.130 ± 0.000 a | 2.17 ± 0.01 bc | 0.080 ± 0.000 abc |
Fert+S | 36.53 ± 1.91 bc | 0.83 ± 0.00 ab | 184.67 ± 13.48 d | 0.88 ± 0.03 ab | 0.42 ± 0.02 ab | 1.30 ± 0.05 ab | 0.097 ± 0.003 ab | 2.12 ± 0.02 bc | 0.073 ± 0.003 bc |
ST1+S | 42.43 ± 2.43 ab | 0.84 ± 0.01 a | 846.67 ± 63.60 ab | 1.09 ± 0.04 a | 0.50 ± 0.02 a | 1.59 ± 0.06 a | 0.123 ± 0.003 a | 2.20 ± 0.02 bc | 0.077 ± 0.003 bc |
ST2+S | 48.15 ± 0.69 a | 0.83 ± 0.01 ab | 900.00 ± 40.41 a | 0.67 ± 0.28 abc | 0.31 ± 0.13 abc | 0.98 ± 0.41 abc | 0.080 ± 0.035 abc | 2.14 ± 0.01 bc | 0.080 ± 0.000 abc |
Leaves | ||||
Fertilizer Application | N | P | K | Na |
NoFert | 35.00 ± 0.02 d | 4.90 ± 0.02 d | 28.41 ± 0.03 d | 14.93 ± 0.04 c |
Fert | 43.83 ± 0.79 c | 6.31 ± 0.10 c | 49.78 ± 2.95 b | 21.33 ± 1.38 a |
ST1 | 46.05 ± 0.19 c | 6.73 ± 0.41 c | 55.59 ± 0.11 a | 16.17 ± 1.00 bc |
ST2 | 47.32 ± 0.57 c | 9.22 ± 0.62 b | 47.85 ± 0.02 bc | 13.70 ± 1.48 c |
NoFert+S | 55.90 ± 1.60 ab | 7.00 ± 0.24 c | 46.28 ± 1.24 bc | 14.62 ± 0.38 c |
Fert+S | 53.70 ± 0.66 b | 13.25 ± 0.69 a | 49.18 ± 1.01 b | 18.03 ± 1.07 b |
ST1+S | 58.20 ± 2.35 ab | 10.06 ± 0.42 b | 44.69 ± 1.10 c | 16.44 ± 0.66 bc |
ST2+S | 60.60 ± 2.80 a | 6.45 ± 0.18 c | 47.17 ± 1.26 bc | 9.78 ± 0.66 d |
Roots | ||||
Fertilizer Application | N | P | K | Na |
NoFert | nd | 8.16 ± 0.01 c | 47.62 ± 0.07 f | 13.06 ± 0.03 bc |
Fert | nd | 8.05 ± 0.03 c | 54.28 ± 0.05 de | 12.14 ± 0.01 c |
ST1 | nd | 8.81 ± 0.02 bc | 67.37 ± 0.04 a | 14.32 ± 0.01 b |
ST2 | nd | 10.63 ± 0.02 a | 56.22 ± 0.01 d | 18.93 ± 0.02 a |
NoFert+S | nd | 6.80 ± 0.31 d | 65.75 ± 2.32 ab | 9.63 ± 0.83 d |
Fert+S | nd | 9.32 ± 0.30 b | 61.38 ± 0.68 bc | 10.31 ± 0.18 d |
ST1+S | nd | 10.23 ± 0.31 a | 49.90 ± 0.90 ef | 11.80 ± 0.13 c |
ST2+S | nd | 6.90 ± 0.31 d | 57.84 ± 1.94 cd | 7.33 ± 0.56 e |
Fertilizer Application | Plant Number | Plant Height | Leaf No. | Plant Fresh Weight | Yield per Pot | Dry Matter Content |
---|---|---|---|---|---|---|
NoFert | 5.40 ± 0.51 | 8.60 ± 0.40 e | 7.00 ± 0.00 cd | 0.84 ± 0.10 c | 3.08 ± 0.31 e | 12.82 ± 0.07 a |
Fert | 5.00 ± 0.00 | 13.80 ± 0.86 cd | 7.60 ± 0.60 cd | 2.32 ± 0.27 c | 6.50 ± 0.36 cd | 9.99 ± 0.40 b |
ST1 | 5.00 ± 0.00 | 13.00 ± 0.76 d | 6.40 ± 0.51 d | 1.64 ± 0.31 c | 4.84 ± 0.51 de | 8.50 ± 0.16 d |
ST2 | 5.00 ± 0.00 | 16.00 ± 0.35 c | 7.00 ± 0.55 cd | 2.68 ± 0.44 c | 8.42 ± 0.76 c | 8.39 ± 0.21 d |
NoFert+S | 4.80 ± 0.20 | 22.80 ± 0.92 b | 9.40 ± 0.60 bc | 7.42 ± 0.37 ab | 30.12 ± 1.03 a | 8.30 ± 0.05 d |
Fert+S | 4.80 ± 0.20 | 23.10 ± 1.26 b | 10.80 ± 1.39 b | 6.96 ± 1.13 b | 23.36 ± 1.62 b | 8.27 ± 0.10 d |
ST1+S | 5.00 ± 0.00 | 22.20 ± 0.73 b | 11.20 ± 0.86 ab | 6.34 ± 0.53 b | 29.42 ± 0.95 a | 9.55 ± 0.74 bc |
ST2+S | 5.00 ± 0.00 | 26.20 ± 1.20 a | 13.20 ± 0.97 a | 8.86 ± 0.94 a | 28.34 ± 1.37 a | 8.65 ± 0.23 cd |
Fertilizer Application | SPAD | Chlorophyll Fluorescence | Chl a | Chl b | Total Chl | Total Car | Chl a:Chl b | Total Car: Total Chl |
---|---|---|---|---|---|---|---|---|
NoFert | 26.03 ± 4.21 ab | 0.74 ± 0.01 b | 0.72 ± 0.01 c | 0.22 ± 0.04 e | 0.94 ± 0.05 e | 0.17 ± 0.01 ab | 3.43 ± 0.61 a | 0.186 ± 0.024 a |
Fert | 27.18 ± 3.68 ab | 0.82 ± 0.01 a | 0.81 ± 0.02 bc | 0.35 ± 0.02 d | 1.15 ± 0.04 d | 0.16 ± 0.00 ab | 2.34 ± 0.13 b | 0.140 ± 0.002 ab |
ST1 | 19.23 ± 1.36 b | 0.80 ± 0.00 a | 0.71 ± 0.09 c | 0.30 ± 0.03 de | 1.01 ± 0.12 de | 0.13 ± 0.02 bc | 2.30 ± 0.31 b | 0.132 ± 0.004 b |
ST2 | 25.38 ± 2.07 ab | 0.80 ± 0.00 a | 0.93 ± 0.03 b | 0.47 ± 0.03 c | 1.40 ± 0.06 c | 0.16 ± 0.01 ab | 1.91 ± 0.18 bc | 0.106 ± 0.011 bc |
NoFert+S | 30.20 ± 2.96 a | 0.81 ± 0.00 a | 1.13 ± 0.05 a | 0.60 ± 0.03 b | 1.73 ± 0.08 a | 0.20 ± 0.01 a | 1.96 ± 0.05 bc | 0.122 ± 0.004 b |
Fert+S | 27.00 ± 2.51 ab | 0.82 ± 0.01 a | 0.89 ± 0.06 b | 0.73 ± 0.04 a | 1.62 ± 0.04 ab | 0.08 ± 0.04 d | 1.18 ± 0.07 c | 0.039 ± 0.032 d |
ST1+S | 29.25 ± 3.02 a | 0.81 ± 0.01 a | 0.91 ± 0.03 b | 0.60 ± 0.05 b | 1.51 ± 0.04 bc | 0.14 ± 0.01 abc | 1.74 ± 0.05 bc | 0.106 ± 0.009 bc |
ST2+S | 34.03 ± 3.60 a | 0.81 ± 0.01 a | 0.90 ± 0.04 b | 0.70 ± 0.02 ab | 1.60 ± 0.06 abc | 0.09 ± 0.01 cd | 1.26 ± 0.03 c | 0.058 ± 0.004 cd |
Leaves | ||||
---|---|---|---|---|
Fertilizer Application | N | P | K | Na |
NoFert | 17.78 ± 0.13 c | 10.53 ± 0.48 c | 82.23 ± 4.74 cd | 9.50 ± 0.61 a |
Fert | 46.96 ± 1.29 b | 6.67 ± 0.39 e | 78.95 ± 2.24 d | 7.21 ± 0.18 bc |
ST1 | 44.19 ± 0.83 b | 8.72 ± 0.12 d | 89.18 ± 3.34 bcd | 7.82 ± 0.11 b |
ST2 | 49.05 ± 1.81 b | 6.21 ± 0.59 e | 102.38 ± 5.35 a | 5.50 ± 0.48 d |
NoFert+S | 57.52 ± 2.72 a | 11.79 ± 0.57 bc | 82.00 ± 2.07 cd | 7.23 ± 0.34 bc |
Fert+S | 56.56 ± 1.25 a | 11.47 ± 0.06 bc | 91.57 ± 4.42 abc | 6.93 ± 0.12 bc |
ST1+S | 55.58 ± 0.70 a | 13.15 ± 1.08 ab | 94.13 ± 2.04 ab | 7.08 ± 0.33 bc |
ST2+S | 54.47 ± 0.93 a | 14.12 ± 0.53 a | 94.69 ± 3.36 ab | 6.42 ± 0.31 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neofytou, G.; Chrysargyris, A.; Antoniou, M.G.; Tzortzakis, N. Radish and Spinach Seedling Production and Early Growth in Response to Struvite Use as a Phosphorus Source. Plants 2024, 13, 2917. https://doi.org/10.3390/plants13202917
Neofytou G, Chrysargyris A, Antoniou MG, Tzortzakis N. Radish and Spinach Seedling Production and Early Growth in Response to Struvite Use as a Phosphorus Source. Plants. 2024; 13(20):2917. https://doi.org/10.3390/plants13202917
Chicago/Turabian StyleNeofytou, Giannis, Antonios Chrysargyris, Maria G. Antoniou, and Nikolaos Tzortzakis. 2024. "Radish and Spinach Seedling Production and Early Growth in Response to Struvite Use as a Phosphorus Source" Plants 13, no. 20: 2917. https://doi.org/10.3390/plants13202917
APA StyleNeofytou, G., Chrysargyris, A., Antoniou, M. G., & Tzortzakis, N. (2024). Radish and Spinach Seedling Production and Early Growth in Response to Struvite Use as a Phosphorus Source. Plants, 13(20), 2917. https://doi.org/10.3390/plants13202917