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Abstract: Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a
universal role in plant defense and physiological responses, including the regulation of growth and
development. In the Rhizobium–legume symbiosis, hydrogen peroxide plays an important signaling
role throughout the development of this interaction. In the functioning nodule, H2O2 has been
shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence.
In this study, the pattern of H2O2 accumulation in pea (Pisum sativum L.) wild-type and mutant
nodules blocked at different stages of the infection process was analyzed using a cytochemical
reaction with cerium chloride. The observed dynamics of H2O2 deposition in the infection thread
walls indicated that the distribution of H2O2 was apparently related to the stiffness of the infection
thread wall. The dynamics of H2O2 accumulation was traced, and its patterns in different nodule
zones were determined in order to investigate the relationship of H2O2 localization and distribution
with the stages of symbiotic nodule development in P. sativum. The patterns of H2O2 localization in
different zones of the indeterminate nodule have been partially confirmed by comparative analysis
on mutant genotypes.

Keywords: hydrogen peroxide; polar growth; infection thread; root nodule; Rhizobium–legume
symbiosis; Pisum sativum L.

1. Introduction

Reactive oxygen species (ROS), such as superoxide anion (O2
•−), and hydrogen perox-

ide (H2O2) are redox-signaling molecules produced by plants in response to environmental
cues [1].

One of the most studied ROS is hydrogen peroxide [2–8]. Numerous studies have shown
that H2O2 plays an important role in plant adaptation to abiotic and biotic stresses [9,10].
It is involved in many resistance mechanisms such as the strengthening of the plant cell
wall and the production of phytoalexins. Indeed, numerous studies have shown the H2O2-
dependent cross-linking of cell wall extensins and the participation of hydrogen peroxide
in the cleavage of polysaccharides, leading to cell wall modification and different growth
responses [8]. H2O2 has also been shown to act as a signaling molecule, participating
in the regulation of a wide range of plant life processes, such as senescence [4,11], pho-
torespiration and photosynthesis [12], stomata movement [13], cell cycle [14], and growth
and development [2,15–17]. An excessive accumulation of hydrogen peroxide can lead to
oxidative stress in the plant, causing cell death [6]. Plant growth and development largely
depend on the activation of an effective H2O2-scavenging mechanism [18–20]. Enzymes
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such as superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione
reductase [21] are jointly involved in H2O2 detoxification, as well as non-enzymatic an-
tioxidants such as tocopherols, ascorbic acid, and glutathione [3,12,22–27]. Maintaining
H2O2 concentration at an appropriate level can promote plant development and enhance
tolerance to environmental stresses. In addition, H2O2 alters the expression of various
genes [28,29]. Numerous studies have shown that H2O2 is not only itself a key signaling
molecule [5,18,30] but also activates many other important signaling molecules in plants
(Ca2+, salicylic acid, abscisic acid, jasmonic acid, ethylene, and NO) [4,9,30]. These signal-
ing molecules function together and play a complex role in signal transduction pathways
during plant growth, development, and stability.

ROS are absolutely essential for the successful development of the Rhizobium–legume
symbiosis from the earliest stages of its establishment [1,31,32]. Respiratory burst oxidases
(Rbohs) have been proposed as a plant source of H2O2 in nodules [33–36]. It has been
shown that RbohA and RbohB may play a key role in successful rhizobia colonization,
apparently as a result of the stimulation of ROS production [34,35]. They are involved in the
proper growth and shape of infection threads but do not play a major role in intercellular
infection [37]. Class III peroxidases (Prx-IIIs), also called rhizobial-induced peroxidases
(Rip1–10), are also considered as potential sources of enzymatic ROS [38–40]. Diamine
oxidase is another plant source of hydrogen peroxide in nodules that can lead to the
cross-linking of tyrosine residues of arabinogalactan protein-extensin molecules, resulting
in the hardening of the matrix of infection threads and intercellular space [41]. Bacteria
carefully control H2O2 levels through the activity of catalases [42,43], glutathione [44–46],
and glutaredoxins [47].

In determinate nodules, H2O2 was detected both in the intercellular spaces of cortical
cells and in infected cells [48,49]. In mature indeterminate nodules, hydrogen peroxide was
detected around bacteria in infection threads and in the walls of some infection threads,
as well as in the intercellular space and cell walls of cortical cells [43,50,51]. Thus, ROS
are essential for the optimal establishment of symbiosis, and they are produced as a
specific response to infection associated with the developmental program of both types of
nodules [3]. Nevertheless, it should be noted that data on hydrogen peroxide localization
in nodules remain fragmentary and contradictory. So far, no studies have been conducted
to investigate the localization of hydrogen peroxide in all zones of indeterminate nodule.

In the present study, we analyzed the dynamics of hydrogen peroxide accumulation
in wild-type P. sativum nodules from four different well-characterized genotypes and
corresponding symbiotic mutants blocked at different stages of nodule development.

2. Results
2.1. Dynamics of Distribution of Hydrogen Peroxide in Infection Threads

In this study, the dynamics of H2O2 accumulation in infection threads and droplets
was analyzed using cytochemical reaction with cerium chloride in sections of wild-type
pea nodules from four different genotypes (laboratory lines SGE and Sprint-2; cultivars
‘Finale’ and ‘Sparkle’). It was shown that H2O2 started to be deposited on the inner surface
of the infection thread wall as individual islets (Figures 1A and S1A,F,K) and then as a
continuous layer on the inner surface (Figures 1B and S1B,G,L). Further deposition occurs
as islands on the outer surface of the wall (Figures 1C and S1C,H,M) and throughout the
thickness (Figures 1D and S1D,I,N). The final action in the modification of the infection
thread is the deposition of small cerium perhydroxide crystals in the wall, in the matrix,
and around the bacteria within the infection thread (Figure 1E). The matrix of the infection
droplet is also filled with numerous cerium chloride precipitates (Figures 1F and S1E,J,O).
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Figure 1. Cytochemical detection of hydrogen peroxide (H2O2) in sections of wild-type nodules of 
Pisum sativum. Cytochemical reaction with cerium chloride in 2-week-old wild-type line SGE nod-
ules. (A) Initial H2O2 deposits on the inner surface of the infection thread wall. (B) Solid deposits of 
H2O2 on the inner surface of the infection thread wall. (C) Appearance of H2O2 deposits on the outer 
surface of the infection thread wall. (D) Complete H2O2 impregnation of the infection thread wall. 
(E) Filling of the infection thread wall and matrix with small crystals of cerium perhydroxide and 
appearance of precipitates around rhizobia. (F) Appearance of cerium perhydroxide precipitates in 
the matrix of infection threads and droplets. IT, infection thread; ID, infection droplet; Ba, bacteroid; 
arrows indicate cerium perhydroxide deposits. Bar = 1 µm. 
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In addition to localization in infection structures, the dynamics of hydrogen peroxide 

distribution was studied in different cell types in various nodule zones in wild types. As 
a result, it was revealed that in all zones, except for the senescence zone, H2O2 accumula-
tion was associated with plant cell walls. It was demonstrated that in the meristem (Fig-
ures 2A and S2A,E) and the infection zone (Figures 2B and S2B,F), hydrogen peroxide 
accumulation occurred in individual, or a few, cerium perhydroxide drops located be-
tween the plasma membrane and the cell wall. In the early nitrogen fixation zone, the 
drops became smaller and more numerous (Figure S2C,G). In the late nitrogen fixation 
zone, the walls of infected cells became impregnated with small crystals of cerium perhy-
droxide (Figures 2C and S2D,H). In some degenerated infected cells, the deposition of 
cerium perhydroxide precipitates becomes more intense (Figure 2D), and even more crys-
tals of cerium perhydroxide appeared in the cytoplasm around the symbiosomes (Figure 
2D). In the cell walls of the uninfected cells, the pattern of hydrogen peroxide localization 
in different nodule zones corresponds to that in the infected cells (Figure 3). 

Figure 1. Cytochemical detection of hydrogen peroxide (H2O2) in sections of wild-type nodules of
Pisum sativum. Cytochemical reaction with cerium chloride in 2-week-old wild-type line SGE nodules.
(A) Initial H2O2 deposits on the inner surface of the infection thread wall. (B) Solid deposits of H2O2

on the inner surface of the infection thread wall. (C) Appearance of H2O2 deposits on the outer
surface of the infection thread wall. (D) Complete H2O2 impregnation of the infection thread wall.
(E) Filling of the infection thread wall and matrix with small crystals of cerium perhydroxide and
appearance of precipitates around rhizobia. (F) Appearance of cerium perhydroxide precipitates in
the matrix of infection threads and droplets. IT, infection thread; ID, infection droplet; Ba, bacteroid;
arrows indicate cerium perhydroxide deposits. Bar = 1 µm.

2.2. Dynamics of Distribution of Hydrogen Peroxide in Cells of Wild-Type Nodules

In addition to localization in infection structures, the dynamics of hydrogen peroxide
distribution was studied in different cell types in various nodule zones in wild types. As
a result, it was revealed that in all zones, except for the senescence zone, H2O2 accumu-
lation was associated with plant cell walls. It was demonstrated that in the meristem
(Figures 2A and S2A,E) and the infection zone (Figures 2B and S2B,F), hydrogen peroxide
accumulation occurred in individual, or a few, cerium perhydroxide drops located between
the plasma membrane and the cell wall. In the early nitrogen fixation zone, the drops
became smaller and more numerous (Figure S2C,G). In the late nitrogen fixation zone, the
walls of infected cells became impregnated with small crystals of cerium perhydroxide
(Figures 2C and S2D,H). In some degenerated infected cells, the deposition of cerium
perhydroxide precipitates becomes more intense (Figure 2D), and even more crystals of
cerium perhydroxide appeared in the cytoplasm around the symbiosomes (Figure 2D).
In the cell walls of the uninfected cells, the pattern of hydrogen peroxide localization in
different nodule zones corresponds to that in the infected cells (Figure 3).
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Figure 2. Cytochemical detection of hydrogen peroxide (H2O2) in wild-type nodules of Pisum sa-
tivum. Cytochemical reaction with cerium chloride in 2-week-old wild-type nodules of cv. ‘Finale’. 
(A) Meristematic cells. (B) Infected cells from the infection zone. (C) Infected cells from the nitrogen 
fixation zone. (D) Individual degenerating infected cells from the late nitrogen fixation zone. N, 
nucleus; V, vacuole; CW, cell wall; ID, infection droplet; Ba, bacteroid; dBa, degenerated bacteroid; 
arrows indicate cerium perhydroxide deposits. Bar (A,B) = 5 µm, (C,D) = 1 µm. 

 
Figure 3. Cytochemical detection of hydrogen peroxide (H2O2) in wild-type nodules of Pisum sa-
tivum. Cytochemical reaction with cerium chloride in 2-week-old wild-type nodules: line SGE (C) 
and cv. ‘Finale’ (A,B). (A) Uninfected cell from the infection zone. (B) Uninfected cell from the early 
nitrogen fixation zone. (C) Uninfected cell from the late nitrogen fixation zone. IC, infected cell; UC, 
uninfected cell; N, nucleus; CW, cell wall; arrows indicate cerium perhydroxide deposits. Bar (A,C) 
= 1 µm, (B) = 2 µm. 

Figure 2. Cytochemical detection of hydrogen peroxide (H2O2) in wild-type nodules of Pisum
sativum. Cytochemical reaction with cerium chloride in 2-week-old wild-type nodules of cv. ‘Finale’.
(A) Meristematic cells. (B) Infected cells from the infection zone. (C) Infected cells from the nitrogen
fixation zone. (D) Individual degenerating infected cells from the late nitrogen fixation zone. N,
nucleus; V, vacuole; CW, cell wall; ID, infection droplet; Ba, bacteroid; dBa, degenerated bacteroid;
arrows indicate cerium perhydroxide deposits. Bar (A,B) = 5 µm, (C,D) = 1 µm.
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Figure 3. Cytochemical detection of hydrogen peroxide (H2O2) in wild-type nodules of Pisum sativum.
Cytochemical reaction with cerium chloride in 2-week-old wild-type nodules: line SGE (C) and cv.
‘Finale’ (A,B). (A) Uninfected cell from the infection zone. (B) Uninfected cell from the early nitrogen
fixation zone. (C) Uninfected cell from the late nitrogen fixation zone. IC, infected cell; UC, uninfected
cell; N, nucleus; CW, cell wall; arrows indicate cerium perhydroxide deposits. Bar (A,C) = 1 µm,
(B) = 2 µm.
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2.3. Dynamics of Distribution of Hydrogen Peroxide in Infected Cells of Mutant Nodules

The patterns of H2O2 localization in different zones of the wild-type indeterminate
nodule were partially confirmed by comparative analysis on P. sativum symbiotic mutants.
Nevertheless, a detailed analysis of mutants blocked at different developmental stages
revealed features of hydrogen peroxide localization associated with the mutant phenotype.

The mutants in the gene Sym33 are characterized with “locked” infection threads with
thickened suberized walls [52,53] and thickened suberized cell walls [53], as well as the
presence of suberized cell wall material in the vacuole [54]. In addition, bacteria are dead
inside the infection threads of the nodules of mutant sym33-2 [55]. These traits indicate
strongly expressed defense responses in these mutants.

When studying the localization and distribution of hydrogen-peroxide-colonized
cells in the nodules of mutants in gene Sym33, an excessive accumulation of H2O2 was
demonstrated in the form of small cerium perhydroxide crystals in the infection thread walls
(Figure 4A,B), around bacteria (Figure 4A,B), in the infection thread matrix (Figure 4C),
and in infection droplets (Figure 4D), as well as in cell walls (Figure 4E). In addition,
vesicles carrying cell wall material to the plasma membrane were detected with cerium
perhydroxide crystals (Figure 4F).

Plants 2024, 13, x FOR PEER REVIEW 5 of 15 
 

 

2.3. Dynamics of Distribution of Hydrogen Peroxide in Infected Cells of Mutant Nodules 
The patterns of H2O2 localization in different zones of the wild-type indeterminate 

nodule were partially confirmed by comparative analysis on P. sativum symbiotic mu-
tants. Nevertheless, a detailed analysis of mutants blocked at different developmental 
stages revealed features of hydrogen peroxide localization associated with the mutant 
phenotype. 

The mutants in the gene Sym33 are characterized with “locked” infection threads 
with thickened suberized walls [52,53] and thickened suberized cell walls [53], as well as 
the presence of suberized cell wall material in the vacuole [54]. In addition, bacteria are 
dead inside the infection threads of the nodules of mutant sym33-2 [55]. These traits indi-
cate strongly expressed defense responses in these mutants. 

When studying the localization and distribution of hydrogen-peroxide-colonized 
cells in the nodules of mutants in gene Sym33, an excessive accumulation of H2O2 was 
demonstrated in the form of small cerium perhydroxide crystals in the infection thread 
walls (Figure 4A,B), around bacteria (Figure 4A,B), in the infection thread matrix (Figure 
4C), and in infection droplets (Figure 4D), as well as in cell walls (Figure 4E). In addition, 
vesicles carrying cell wall material to the plasma membrane were detected with cerium 
perhydroxide crystals (Figure 4F). 

 
Figure 4. Cytochemical detection of hydrogen peroxide (H2O2) in nodules of Pisum sativum mutants 
in the Sym33 gene. Cytochemical reaction with cerium chloride in 2-week-old nodules of mutants 
SGEFix–-2 (sym33-3) (A,C,D,F), RBT4 (sym33-3, sym42) (B), and RBT3 (sym33-3, sym40-1) (E). (A,B) 
Infection threads with different intensity of cerium perhydroxide precipitate accumulation. (C) De-
graded rhizobia in the infection thread. (D) Infection droplet completely filled with cerium perhy-
droxide precipitates. (E) Cell wall of colonized cell. (F) Transport vesicles with cerium perhydroxide 
precipitates. CW, cell wall; ICS, intercellular space; IT, infection thread; ID, infection droplet; ITW, 

Figure 4. Cytochemical detection of hydrogen peroxide (H2O2) in nodules of Pisum sativum mu-
tants in the Sym33 gene. Cytochemical reaction with cerium chloride in 2-week-old nodules of
mutants SGEFix–-2 (sym33-3) (A,C,D,F), RBT4 (sym33-3, sym42) (B), and RBT3 (sym33-3, sym40-1)
(E). (A,B) Infection threads with different intensity of cerium perhydroxide precipitate accumulation.
(C) Degraded rhizobia in the infection thread. (D) Infection droplet completely filled with cerium
perhydroxide precipitates. (E) Cell wall of colonized cell. (F) Transport vesicles with cerium perhy-
droxide precipitates. CW, cell wall; ICS, intercellular space; IT, infection thread; ID, infection droplet;
ITW, infection thread wall; B, bacterium; #, vesicle; arrows indicate cerium perhydroxide deposits.
Bar (C) = 2 µm, (B,D,E) = 1 µm, (A,F) = 500 nm.
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The mutant SGEFix–-1 (sym40-1) is characterized with hypertrophied infection droplets
and abnormal bacteroid differentiation, as well as the strong defense reactions manifested
in the suberization of the nodule endodermis [52,53]. In this study, the nodules of the
mutant SGEFix–-1 (sym40-1) were characterized by an excessive accumulation of H2O2 in
the infection thread walls (Figure 5A), in the matrix of hypertrophied infection droplets
(Figure 5B), around some juvenile bacteroids (that form further abnormal bacteroids)
(Figure 5C), and in the symbiosome membrane in multibacteroid symbiosomes (Figure 5D).
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clustered into multibacteroid symbiosomes [56], showed an abnormal accumulation of 
small cerium perhydroxide crystals in the nuclear heterochromatin (Figure 6A), an exces-
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Figure 5. Cytochemical detection of hydrogen peroxide (H2O2) in nodules of Pisum sativum mutant
in the Sym40 gene. Cytochemical reaction with cerium chloride in 2-week-old nodules of the mutant
SGEFix–-1 (sym40-1). (A) Infection thread with intense accumulation of cerium perhydroxide pre-
cipitates in the wall and matrix. (B) Infection droplet completely filled with cerium perhydroxide
precipitates. (C) Juvenile bacteroids with cerium perhydroxide precipitates and further formation of
abnormal bacteroids. (D) Formation of multibacteroid symbiosomes surrounded by cerium perhy-
droxide precipitates. CW, cell wall; IT, infection thread; ID, infection droplet; ITW, infection thread
wall; B, bacterium; jBa, juvenile bacteroid; aBa, abnormal bacteroid; ˆ, infection droplet matrix filled
with small cerium perhydroxide precipitates; *, multibacteroid symbiosome; arrows indicate cerium
perhydroxide precipitates. Bar = 1 µm.

The mutant Sprint-2Fix– (sym31), characterized by undifferentiated bacteroids and
clustered into multibacteroid symbiosomes [56], showed an abnormal accumulation of
small cerium perhydroxide crystals in the nuclear heterochromatin (Figure 6A), an excessive
accumulation of H2O2 in the infection thread matrix (Figure 6B), and the appearance of
small cerium perhydroxide precipitates around bacteroids in individual and multibacteroid
symbiosomes (Figure 6C).
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opment in both animal and plant cells [59]. ROS are produced both in stress-resistance 
reactions and during physiological metabolism [6,60]. During evolution, plants have been 
able to achieve a high degree of control over the accumulation of ROS and, in particular, 
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Figure 6. Cytochemical detection of hydrogen peroxide (H2O2) in nodules of Pisum sativum mu-
tants. Cytochemical reaction with cerium chloride in 2-week-old nodules of the mutants Sprint-2Fix–

(sym31) (A–C) and RisFixV (sym42) (D–F). (A) Small cerium perhydroxide precipitates in nuclear hete-
rochromatin. (B) Infection thread abundantly filled with cerium perhydroxide precipitates. (C) Small
cerium perhydroxide precipitates around bacteroids in individual and multibacteroid symbiosomes.
(D) Infection thread with a thickened callose-impregnated wall with large cerium perhydroxide
precipitates. (E) Cell wall with callose deposits filled with small cerium perhydroxide precipitates.
(F) Small cerium perhydroxide precipitates around degenerated bacteroids in senescent infected
cell. N, nucleus; CW, cell wall; IT, infection thread; ITW, infection thread wall; ICS, intercellular
space; Ba, bacteroid; *, multibacteroid symbiosome; arrows indicate cerium perhydroxide precipitates.
Bar = 1 µm.

The mutant RisFixV (sym42) is known for the formation of infection threads with
thickened callose-impregnated walls and morphologically differentiated bacteroids that
undergo premature senescence [53,57,58]. For the mutant RisFixV (sym42), hydrogen
peroxide was shown to accumulate around prematurely senescent bacteroids (Figure 6F) in
the form of large drops of cerium perhydroxide in the thickness of the callose-impregnated
wall of infection threads (Figure 6D) and small crystals in thickened cell walls (Figure 6E).

3. Discussion

Reactive oxygen species (ROS), both radicals and non-radical active molecules pro-
duced by oxygen oxidation, are associated with numerous adaptive responses and devel-
opment in both animal and plant cells [59]. ROS are produced both in stress-resistance
reactions and during physiological metabolism [6,60]. During evolution, plants have been
able to achieve a high degree of control over the accumulation of ROS and, in particular,
H2O2 [61].
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In the Rhizobium–legume symbiosis, during infection, the production of superoxide
anion (O2

•−) and H2O2 has been observed in infection threads and infected cells [39,50,51].
In this case, hydrogen peroxide accumulation is suggested to promote the hardening of the
infection thread matrix as a result of the cross-linking of tyrosine residues of arabinogalactan
protein extensin molecules [41]. Thus, the role of hydrogen peroxide in nodule development
is now attributed to a signaling function in the early stages of interaction [5] and an increase
in the stiffness of the infection thread matrix necessary for its successful growth [3,5].

In this study, hydrogen peroxide localization was analyzed in nodules of four dif-
ferent pea genotypes. It was found that H2O2 deposition in the infection threads and
infection droplets is characterized by specific dynamic characteristics of all genotypes
studied (Figure 7A–D). The observed sequential stages of hydrogen peroxide accumulation
help to explain the differences in the previously described patterns of H2O2 localization
in infection threads. For example, in alfalfa (Medicago sativa) nodules, hydrogen peroxide
was detected between the walls of infection threads and the matrix [43] as well as in the
infection thread matrix and infection thread wall [50]. In infection threads in nodules of
both alfalfa and pea, H2O2 was localized around bacteria, in the walls of infection threads,
and in “patches” in the matrix of infection threads [51].
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cerium perhydroxide precipitates. (E–H) Sequential stages of hydrogen peroxide accumulation
in the cell walls of meristematic cell (E), colonized cell from infection zone (F), infected cell from
nitrogen fixation zone (G), and senescent cell (H). (I–L) Hydrogen peroxide accumulation in nodules
of ineffective mutants. (I) Distribution of hydrogen peroxide in the nodules of the mutants in gene
Sym33 (two patterns of H2O2 distribution in infection threads are presented). The thin layer of
cytoplasm around the nucleus, infection thread, and infection droplet is not indicated for simplicity
(J) Distribution of hydrogen peroxide in the nodules of mutant sym40-1. (K) Distribution of hydrogen
peroxide in the nodules of mutant sym31. (L) Distribution of hydrogen peroxide in the nodules
of mutant sym42. N, nucleus (dark blue); V, vacuole (light blue); IT, infection thread (light yellow
with violet wall); ID, infection droplet (light yellow); Ba, bacteroid (red; symbiosome with a single
bacteroid is presented without a membrane, and multibacteroid symbiosome is presented with
symbiosome membrane); cell wall is presented in violet; callose cell wall is presented in yellow;
peroxisomes are presented in white; cytoplasm is presented in green; black stars indicate cerium
perhydroxide precipitates. Objects are not scaled.

The dynamics of hydrogen peroxide deposition in the walls of different types of nodule
cells was also analyzed (Figure 7E–H). Earlier, the localization of hydrogen peroxide in cell
walls was shown for infected cells in the infection zone but has not been described in the
cell walls of meristematic and infected cells in the nitrogen fixation zone in indeterminate
nodules [50,51].

At the same time, H2O2 was not detected in symbiosomes in active nitrogen-fixing cells
(Figures 2B,C and S2B–D,G,H). Previously, hydrogen peroxide localization using cerium
chloride also failed to detect H2O2 in symbiosomes in active infected cells. However,
histochemical localization using diaminobenzidine revealed hydrogen peroxide in infected
cells of Lotus japonicus nodules [49]. Moreover, H2O2 production was detected in Medicago
truncatula nodules in cells of the inner cortex and infection zone using HyPer, the fluorescent
probe for H2O2 [29].

In this study, in single senescent cells, H2O2 accumulation around degrading bac-
teroids was observed (Figure 2D). Previously, in alfalfa, pea, and soybean nodules, a lot
of cerium perhydroxide precipitates were also observed around the peribacteroid and
bacteroid membranes in senescing infected cells, confirming the involvement of H2O2 in
the senescence process [48,50,51].

Along with the localization of hydrogen peroxide in wild-type nodule cells, its lo-
calization in nodule cells of pea symbiotic mutants blocked at different stages of nodule
development was studied in this work (Figure 7I–L).

The localization and distribution of hydrogen peroxide was studied in nodules of
pea mutants for the Sym33 gene characterized by “locked” infection threads without
bacterial release. It was shown that the pattern of H2O2 accumulation in mutants for the
Sym33 gene (Figure 7I), into the cytoplasm of plant cells, to some extent corresponds to
the pattern of localization in the meristem and the early infection zone in pea wild-type
nodules. In addition, this mutant is also characterized by pronounced defense reactions
like thickened suberized cell walls and infection thread walls [53], as well as the presence
of suberized cell wall material in the vacuole [54], accompanied by excessive hydrogen
peroxide accumulation (Figure 7I) and the appearance of numerous peroxisomes (Figure 7I).
Indeed, the macromolecular assembly of polyphenolic domains during suberization occurs
via a H2O2-dependent peroxidase-mediated free-radical binding process [62].

In the mutant SGEFix–-1 (sym40-1), which is characterized by the hypertrophy of
infection droplets, an excessive accumulation of cerium perhydroxide precipitates in in-
fection threads and infection droplets was observed (Figure 7J) compared with wild-type
nodules. This may be attributed to the development of strong oxidative stress as a result of
incompatible interactions due to the mutant phenotype, as observed in plant–pathogen
interactions [59,63]. In addition, the deposition of cerium perhydroxide precipitates on
the bacterial membranes of juvenile bacteroids recently released into host cytoplasm was
also observed in the mutant SGEFix–-1 (sym40-1) (Figure 7J). Rhizobia (free-living forms)
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are known to be more sensitive to H2O2 than other bacterial species [64,65]; however,
during differentiation into bacteroids, they can survive utilizing the host antioxidant sys-
tem to cope with H2O2. It seems that the bacteroids in SGEFix–-1 (sym40-1) are unable to
overcome this stress, and the differentiation process goes incorrectly, as indicated by the
presence of abnormal bacteroids in the cytoplasm of infected nodule cells and their early
senescence [66].

The mutant Sprint-2Fix– (sym31) is characterized by undifferentiated bacteroids [56].
In this mutant, small crystals of cerium perhydroxide in the cell walls of infected cells
were observed resembling H2O2 accumulation in cell walls in the nitrogen fixation zone
in wild-type nodules. In addition, the mutant Sprint-2Fix– (sym31) developed oxidative
stress as manifested by the appearance of hydrogen peroxide in the nucleus (Figure 7K)
and an excessive accumulation of cerium perhydroxide precipitates in the infection thread
matrix (Figure 7K) and around undifferentiated bacteroids in multibacteroid symbiosomes
(Figure 7K).

In the mutant RisFixV (sym42) with a premature senescence of symbiotic structures
and pronounced defense reactions in the form of callose deposition in cell walls and
infection thread walls [53], different patterns of the deposition of cerium perhydroxide
precipitates were observed. In large infected cells in nodules of this mutant, in which
bacteroids have not yet degenerated, the pattern of H2O2 accumulation was similar to
that in infected cells in wild-type nodules. Degenerating infected cells in nodules of this
mutant were completely filled with cerium perhydroxide precipitates (Figure 7L). The cell
walls and callose-impregnated infection thread walls also showed different patterns of
H2O2 localization (Figure 7L); hydrogen peroxide accumulated in the thickness of callose
deposits in the form of clusters.

4. Materials and Methods
4.1. Plant Material and Bacterial Strain

Pea (Pisum sativum L.) ineffective (Fix–) mutants blocked at different stages of nodule
development and corresponding wild types were used (Table 1).

Table 1. Plant material used in the study.

Genotype Nodule Phenotype References

SGE Wild type [52,67]

SGEFix–-1 (sym40-1) 1
Hypertrophied infection droplets
and infection threads, abnormal

bacteroids, early nodule senescence
[52]

SGEFix–-2 (sym33-3) 2
“Locked” infection threads, absence
of bacterial release into the host cell
cytoplasm of most infected cells 3

[52]

RBT3 (sym33-3, sym40-1) “Locked” infection threads, absence
of bacterial release [68]

RBT4 (sym33-3, sym42) “Locked” infection threads, absence
of bacterial release [69]

Sprint-2 Wild type [70]

Sprint-2Fix– (sym31) Undifferentiated bacteroids [56]

‘Sparkle’ Wild type [71]

‘Finale’ Wild type [57,58,72]

RisFixV (sym42) Early nodule senescence, thickening
of the infection thread wall [53,57,58,72,73]

1 The Sym40 gene is orthologous to the M. truncatula EFD gene [73]. 2 The Sym33 gene is orthologous to the
M. truncatula IPD3 gene [73]. 3 The mutant line sym33-3 has a leaky phenotype, and bacterial release occurs in
some cells or nodules [52].
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In all experiments, P. sativum plants were inoculated with Rhizobium johnstonii strain
3841 [74] (former Rhizobium leguminosarum bv. viciae 3841 strain [75].

4.2. Plant Growth Conditions

Seeds were sterilized with concentrated sulfuric acid for 30 min and washed ten
times with sterile water. The seeds were planted in pots containing 200 mL of vermiculite
and 100 mL nutrient solution without nitrogen [76], and then each seed was inoculated
with 1 mL of an aqueous suspension of bacteria (107–108 cells). Plants were grown in a
growth chamber MLR-352H (Sanyo Electric Co., Ltd., Moriguchi, Japan) under controlled
conditions: day/night, 16/8 h; temperature, 21 ◦C; relative humidity 75%; photosynthetic
photon flux density of ~280 µmol photons m−2 s−1. For histochemical analysis, three
independent experiments were performed. Nodules of P. sativum were harvested on day 14
after inoculation (DAI). For each variant, ten nodules from different plants were analyzed.

4.3. Histochemical Localization of H2O2

To detect hydrogen peroxide (H2O2), a cytochemical reaction with cerium chloride was
carried out to form electron-dense deposits of cerium perhydroxide [77]. For this purpose,
the nodules were immediately immersed after harvesting in a 10 mM solution of cerium
chloride (CeCl3) in 50 mM MOPS (3-(N-Morpholino)propanesulfonic acid) (Sigma-Aldrich,
St. Louis, MO, USA) solution (pH 7.0) for 1 h in vacuum before fixation in 2.5% glutaralde-
hyde (Sigma-Aldrich) in 0.1 M cacodylate buffer (pH 7.2) (Sigma-Aldrich). Nodules treated
and untreated (negative control) with cerium chloride were additionally fixed for 1 h in a
1% aqueous solution of osmium tetraoxide (OsO4) (Electron Microscopy Sciences, Hatfield,
PA, USA) in 0.1 M cacodylate buffer and then subjected to routine sample preparation for
electron microscopy and embedded in epoxy resin Epon812 (Honeywell Fluka, Waltham,
MA, USA) at 60 ◦C for 48 h. Ultrathin sections (90–100 nm) were contrasted with 2%
aqueous uranyl acetate solution (Electron Microscopy Sciences) for 20 min and further
contrasted with lead citrate solution [78] for 5 min. For transmission electron microscopy,
ultrathin sections (90–100 nm thick) were cut with a Leica EM UC7 ultramicrotome (Leica
Microsystems, Vienna, Austria) and counterstained as described previously [66]. Nodule
tissues were examined using a JEM-1200 EM transmission electron microscope (JEOL Ltd.,
Tokyo, Japan) at 80 kV. Electron micrographs were captured with a Veleta CCD camera
(Olympus, Münster, Germany).

5. Conclusions

In this work, the dynamics of hydrogen peroxide accumulation and patterns of its
localization in different zones of pea nodules were studied. The results obtained correlate
well with the previously proposed role of hydrogen peroxide in the growth of infection
threads through its association with an increase in the stiffness of the infection thread wall.
The role of hydrogen peroxide in the maturation of the cell wall of infected cells during their
differentiation has also been proposed. The revealed intensive accumulation of hydrogen
peroxide in nodules of pea symbiotic mutants reflects the activation of defense reactions
and oxidative stress during the development of ineffective symbiosis.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/plants13202923/s1. Figure S1: Cytochemical detection of hydrogen
peroxide (H2O2) in sections of wild-type nodules of Pisum sativum (infection threads); Figure S2: Cyto-
chemical detection of hydrogen peroxide (H2O2) in wild-type nodules of Pisum sativum (nodule cells).
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