Supercritical CO2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry (Rubus fruticosus L.) Pomace
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield of Blackberry Pomace
2.2. Peroxide Value of Blackberry Pomace Extracts
2.3. Antioxidant Activity, Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Total Anthocyanin Content (TAC)
2.4. Fatty Acid Profiles of the Extracts
2.5. Corotenoids and Chlorophylls in Blackberry Pomace Extracts
2.6. Volatile Organic Compounds (VOCs)
3. Materials and Methods
3.1. Materials
3.2. Solvents and Chemicals
3.3. Oil Extraction
3.3.1. Soxhlet Extraction
3.3.2. Supercritical Fluid Extraction (SC-CO2)
3.4. Extraction Yield
3.5. Oxidative Stability and Antioxidant Activity
3.5.1. Peroxide Value (PV)
3.5.2. DPPH• Radical Scavenging Activity (DPPH•-RSA) of Ethanolic Soxhlet Extract
3.6. Chemical Content of the Extracts
3.6.1. Fatty Acid Profile of the Extracts
3.6.2. Carotenoid and Chlorophyll Content of the Extracts
3.6.3. Total Phenolic Content (TPC) of Ethanolic Soxhlet Extract
3.6.4. Total Flavonoid Content (TFC) of Ethanolic Soxhlet Extract
3.6.5. Total Anthocyanin Content (TAC) of Ethanolic Soxhlet Extract
3.6.6. Volatile Organic Compounds of Extracts
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sozzi, A.; Zambon, M.; Mazza, G.; Salvatori, D. Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technol. 2021, 385, 37–49. [Google Scholar] [CrossRef]
- Yang, M.; Wang, S.; Zhou, R.; Zhao, Y.; He, Y.; Zheng, Y.; Gong, H.; Wang, W.-D. Optimization and component identification of ultrasound-assisted extraction of functional compounds from waste blackberry (Rubus fruticosus Pollich) seeds. J. Sci. Food Agric. 2024. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, S.S.; Paraíso, C.M.; Romanini, E.B.; Correa, V.G.; Peralta, R.M.; da Costa, S.C.; Santos Junior, O.O.; Visentainer, J.V.; Reis, M.H.M.; Madrona, G.S. Bioavailability of blackberry pomace microcapsules by using different techniques: An approach for yogurt application. Innov. Food Sci. Emerg. Technol. 2022, 81, 1466–8564. [Google Scholar] [CrossRef]
- Tamer, C.E. A research on raspberry and blackberry marmalades produced from different cultivars. J. Food Process. Preserv. 2012, 36, 74–80. [Google Scholar] [CrossRef]
- Junior, T.K.; de Moura, C.; Cruz, T.M.; Marques, M.B.; Carmo, M.A.V.d.; Deolindo, C.T.P.; Daguer, H.; Azevedo, L.; Granato, D. Optimization of the Green Chemistry-like Extraction of Phenolic Compounds from Grape (Vitis labrusca L.) and Blackberry (Rubus fruticosus L.) Seeds with Concomitant Biological and Antioxidant Activity Assessments. Plants 2023, 12, 2618. [Google Scholar] [CrossRef]
- Albert, C.; Codină, G.G.; Héjja, M.; András, C.D.; Chetrariu, A.; Dabija, A. Study of Antioxidant Activity of Garden Blackberries (Rubus fruticosus L.) Extracts Obtained with Different Extraction Solvents. Appl. Sci. 2022, 12, 4004. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Stobiecka, A.; Bonikowski, R.; Krajewska, A.; Sikora, M.; Kula, J. A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland. J. Sci. Food Agric. 2017, 97, 3576–3583. [Google Scholar] [CrossRef]
- Choe, U.; Li, Y.; Yu, L. Chemical composition of cold-pressed blackberry seed flour extract and its potential health-beneficial properties. Food Sci. Nutr. 2020, 8, 1215–1225. [Google Scholar] [CrossRef]
- Correa, M.S.; Fetzer, D.L.; Hamerski, F.; Corazza, M.L.; Scheer, A.P.; Ribani, R.H. Pressurized extraction of high-quality blackberry (Rubus spp. Xavante cultivar) seed oils. J. Supercrit. Fluids 2021, 169, 105101. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Păcularu-Burada, B.; Popescu, S.M. Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. [Google Scholar] [CrossRef] [PubMed]
- Diez-Sánchez, E.; Quiles, A.; Hernando, I. Use of Berry Pomace to Design Functional Foods. Food Rev. Int. 2021, 39, 3204–3224. [Google Scholar] [CrossRef]
- Campos-González, N.; Gómez-Salazar, J.A.; Cerón-García, A.; Lorenzo, J.M.; Santos, E.M.; Campagnol, P.C.B.; Sosa-Morales, M.E. Approaches to Assess the Functionality of Meat Products Made from the Incorporation of Vegetable By-Products: A Review. Food Rev. Int. 2023, 40, 1678–1702. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Jukniūtė, K.; Šlepetienė, A.; Paulauskienė, A. Qualitative properties of cookies enriched with berries pomace. Food Sci. Technol. 2021, 41, 474–481. [Google Scholar] [CrossRef]
- Różyło, R.; Wójcik, M.; Biernacka, B.; Dziki, D. Gluten-free crispbread with freeze-dried blackberry: Quality and mineral composition. CyTA-J. Food 2019, 17, 841–849. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2017, 58, 2119–2135. [Google Scholar] [CrossRef]
- Irigoytia, M.B.; Irigoytia, K.; Sosa, N.; de Escalada Pla, M.; Genevois, C. Blueberry by-product as a novel food ingredient: Physicochemical characterization and study of its application in a bakery product. J. Sci. Food Agric. 2022, 102, 4551–4560. [Google Scholar] [CrossRef]
- Sharma, M.; Usmani, Z.; Gupta, V.K.; Bhat, R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit. Rev. Biotechnol. 2021, 41, 535–563. [Google Scholar] [CrossRef]
- Bechtold, T.; Mahmud-Ali, A.; Mussak, R. Anthocyanin dyes extracted from grape pomace for the purpose of textile dyeing. J. Sci. Food Agric. 2007, 87, 2589–2595. [Google Scholar] [CrossRef]
- Sharma, M.; Hussain, S.; Shalima, T.; Aav, R.; Bhat, R. Valorization of seabuckthorn pomace to obtain bioactive carotenoids: An innovative approach of using green extraction techniques (ultrasonic and microwave-assisted extractions) synergized with green solvents (edible oils). Ind. Crops Prod. 2022, 175, 0926–6690. [Google Scholar] [CrossRef]
- Kitrytė, V.; Narkevičiūtė, A.; Tamkutė, L.; Syrpas, M.; Pukalskienė, M.; Venskutonis, P.R. Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus L.) pomace into functional ingredients: Process optimization and product characterization. Food Chem. 2020, 312, 0308–8146. [Google Scholar] [CrossRef] [PubMed]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of Berry and Currant Seed Oils from Asturias, Spain. Int. J. Food Prop. 2014, 17, 77–85. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.A.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci. 2020, 56, e17129. [Google Scholar] [CrossRef]
- Quirós, A.M.; Acosta, O.G.; Thompson, E.; Soto, M. Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (Rubus adenotrichos Schltdl.) by-product. J. Food Process Eng. 2019, 42, 13051. [Google Scholar] [CrossRef]
- Kryževičiūtė, N.; Kraujalis, P.; Venskutonis, P.R. Optimization of high pressure extraction processes for the separation of raspberry pomace into lipophilic and hydrophilic fractions. J. Supercrit. Fluids 2016, 108, 61–68. [Google Scholar] [CrossRef]
- Campalani, C.; Amadio, E.; Zanini, S.; Dall’Acqua, S.; Panozzo, M.; Ferrari, S.; Nadai, G.; Francescato, S.; Selva, M.; Perosa, A. Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J. CO2 Util. 2020, 41, 101259. [Google Scholar] [CrossRef]
- Cordeiro, R.M.; de S. e Silva, A.P.; Pinto, R.H.H.; da Costa, W.A.; da Silva, S.H.M.; de Souza Pinheiro, W.B.; Carvalho Junior, R.N. Supercritical CO2 extraction of ucuúba (Virola surinamensis) seed oil: Global yield, kinetic data, fatty acid profile, and antimicrobial activities. Chem. Eng. Commun. 2019, 206, 86–97. [Google Scholar] [CrossRef]
- Castro-Vargas, H.I.; Rodriguez-Varela, L.I.; Ferreira, S.R.S.; Parada-Alfonso, F. Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids 2010, 51, 319–324. [Google Scholar] [CrossRef]
- Jazić, M.; Kukrić, Z.; Vulić, J.; Četojević-Simin, D. Polyphenolic composition, antioxidant and antiproliferative effects of wild and cultivated blackberries (Rubus fruticosus L.) pomace. Int. J. Food Sci. Technol. 2019, 54, 194–201. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M.; Dramur, M.U. Investigation of Oleuropein Content in Olive Leaf Extract Obtained by Supercritical Fluid Extraction and Soxhlet Methods. Sep. Sci. Technol. 2011, 46, 1829–1837. [Google Scholar] [CrossRef]
- Arturo-Perdomo, D.; Mora, J.P.J.; Ibáñez, E. Extraction and Characterization of the Polar Lipid Fraction of Blackberry and Passion Fruit Seeds Oils Using Supercritical Fluid Extraction. Food Anal. Methods. 2021, 14, 2026–2037. [Google Scholar] [CrossRef]
- Ispiryan, A.; Kraujutienė, I.; Viškelis, J. Quality Characteristics of Raspberry By-Products for Sustainable Production. Foods 2024, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Ispiryan, A.; Bobinaite, R.; Urbonaviciene, D.; Sermuksnyte-Alesiuniene, K.; Viskelis, P.; Miceikiene, A.; Viskelis, J. Physico-Chemical Properties, Fatty Acids Profile, and Economic Properties of Raspberry (Rubus idaeus L.) Seed Oil, Extracted in Various Ways. Plants 2023, 12, 2706. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martínez, L.; Mut-Salud, N.; Ruiz-García, J.A.; Falcón-Piñeiro, A.; Maijó-Ferré, M.; Baños, A.; De la Torre-Ramírez, J.M.; Guillamón, E.; Verardo, V.; Gómez-Caravaca, A.M. Phytochemicals Determination, and Antioxidant, Antimicrobial, Anti-Inflammatory and Anticancer Activities of Blackberry Fruits. Foods 2023, 12, 1505. [Google Scholar] [CrossRef]
- McNichol, J.; MacDougall, K.M.; Melanson, J.E. Suitability of Soxhlet Extraction to Quantify Microalgal Fatty Acids as Determined by Comparison with In Situ Transesterification. Lipids 2012, 47, 195–207. [Google Scholar] [CrossRef]
- Li, Y.; Ghasemi Naghdi, F.; Garg, S. A comparative study: The impact of different lipid extraction methods on current microalgal lipid research. Microb. Cell Fact. 2014, 13, 14. [Google Scholar] [CrossRef]
- Wu, Y.L.; Zhang, W.; Guo, L.D. Optimization of ultrasonic-assisted ethanol extraction of polyphenols from Phyllanthus emblica by response surface methodology. Chem. Pap. 2024, 78, 221–229. [Google Scholar] [CrossRef]
- Krist, S. Blackberry Seed Oil. In Vegetable Fats and Oils; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Hafer, E.; Holzgrabe, U.; Wiedemann, S.; Adams, K.M.; Diehl, B. NMR Spectroscopy: Determination of Peroxide Value in Vegetable and Krill Oil by Using Triphenylphosphine as Tagging Reagent. Eur. J. Lipid Sci. Technol. 2020, 122, 1900442. [Google Scholar] [CrossRef]
- Radočaj, O.; Vujasinović, V.; Dimić, E.; Basić, Z. (Blackberry (Rubus fruticosus L.) and raspberry (Rubus idaeus L.) seed oils extracted from dried press pomace after longterm frozen storage of berries can be used as functional food ingredients. Eur. J. Lipid Sci. Technol. 2014, 116, 1015–1024. [Google Scholar] [CrossRef]
- Dimić, E.B.; Vujasinovic, V.; Radočaj, O.F.; Pastor, O.P. Characteristics of blackberry and raspberry seeds and oils. Acta Period.Technol. 2012, 43, 1–9. [Google Scholar] [CrossRef]
- Lampi, A.M.; Heinonen, M. Berry Seed and Grapeseed Oils; AOCS Press: Champaign, IL, USA, 2009. [Google Scholar] [CrossRef]
- Eremeeva, N.B.; Makarova, N.V. Study of the Content of Antioxidants and Their Activity in Concentrated Extracts of Cranberry (Vaccinium oxycoccus), Sea Buckthorn (Hippophae rhamnoides L.), Blackberry (Rubus fruticosus), Guelder Rose (Viburnum opulus L.) and Mountain Ash (Sorbus aucuparia L.). Russ. J. Bioorg Chem. 2022, 48, 1392–1398. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.M.; Visser, R.G.F.; Bovy, A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Front. Chem. 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Čechovičienė, I.; Viškelis, J.; Viškelis, P.; Hallman, E.; Kruk, M.; Tarasevičienė, Ž. Potentially Bioactive Compounds and Sensory Compounds in By-Products of Several Cultivars of Blackberry (Rubus fruticosus L.). Horticulturae 2024, 10, 862. [Google Scholar] [CrossRef]
- Oancea, S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization Heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.K. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Part 7. Berries; Academic Press: Cambridge, MA, USA, 2020; pp. 407–420. Available online: https://www.sciencedirect.com/book/9780128127803/nutritional-composition-and-antioxidant-properties-of-fruits-and-vegetables (accessed on 5 September 2024).
- Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhé, R. Berry Seeds: A Source of Specialty Oils with High Content of Bioactives and Nutritional Value. J. Food Lipids 2009, 16, 33–49. [Google Scholar] [CrossRef]
- Wei, C.; Xiao, K.; Li, H.; Qi, Y.; Zou, Z.; Liu, Z. Optimization of ultrasound assisted aqueous enzymatic extraction of oil from Cinnamomum camphora seeds. LWT 2022, 164, 113689. [Google Scholar] [CrossRef]
- Rodríguez-González, I.; Díaz-Reinoso, B.; Domínguez, H. Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. Food Bioprocess. Technol. 2022, 15, 978–997. [Google Scholar] [CrossRef]
- Fang, L.; Wu, W.L.; Zhao, H.F.; Lv, L.F.; Li, W.L. Characteristics of Seed Oils from Four Blackberries Varieties (Rubus fruticosus L.). Appl. Mech. Mater. 2011, 140, 273–277. [Google Scholar] [CrossRef]
- De Filette, M.; Schatteman, K.; Geuens, J. Characterization of Six Cold-Pressed Berry Seed Oils and Their Seed Meals. Appl. Sci. 2024, 14, 439. [Google Scholar] [CrossRef]
- Krist, S.; Stuebiger, G.; Bail, S.; Unterweger, H. Analysis of volatile compounds and triacylglycerol composition of fatty seed oil gained from flax and false flax. Eur. J. Lipid Sci. Technol. 2006, 108, 48–60. [Google Scholar] [CrossRef]
- Demler, O.V.; Liu, Y.; Luttmann-Gibson, H.; Watrous, J.D.; Lagerborg, K.A.; Dashti, H.; Giulianini, F.; Heath, M.; Camargo, C.A.; Harris, W.S.; et al. One-year effects of omega-3 treatment on fatty acids, oxylipins, and related bioactive lipids and their associations with clinical lipid and inflammatory biomarkers: Findings from a substudy of the vitamin d and omega-3 trial (vital). Metabolites 2020, 10, 431. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yo, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry and blueberry seed oils. J. Agric. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Ćirić, I.; Sredojević, M.; Dabić Zagorac, D.; Fotirić-Akšić, M.; Meland, M.; Natić, M. Bioactive Phytochemicals from Berries Seed Oil Processing By-products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products; Ramadan Hassanien, M.F., Ed.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2023; pp. 431–453. [Google Scholar] [CrossRef]
- Matei, P.L.; Deleanu, I.; Brezoiu, A.M.; Chira, N.A.; Busuioc, C.; Isopencu, G.; Cîlțea-Udrescu, M.; Alexandrescu, E.; Stoica-Guzun, A. Ultrasound-Assisted Extraction of Blackberry Seed Oil: Optimization and Oil Characterization. Molecules 2023, 28, 2486. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Shahidi, F. Chemical Characteristics of Cold-Pressed Blackberry, Black Raspberry, and Blueberry Seed Oils and the Role of the Minor Components in Their Oxidative Stability. J. Agric. Food Chem. 2016, 64, 5410–5416. [Google Scholar] [CrossRef]
- Nasri, N.; Elfalleh, W.; Tlili, N.; Martine, L.; Berdeaux, O.; Salles, C.; Triki, S.; Khaldi, A. Contents of Carotenoids, Tocopherols and Sterols in Acacia cyanophylla Seed Oils. J. Am. Oil Chem. Soc. 2013, 90, 429–436. [Google Scholar] [CrossRef]
- Arathi, B.P.; Sowmya, P.R.-R.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Progress in Enrichment and Metabolic Profiling of Diverse Carotenoids in Tropical Fruits: Importance of Hyphenated Techniques. In Phytonutritional Improvement of Crops; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. 2021 Could fruits be a reliable source of food colorants, Pros and cons of these natural additives. Crit. Rev. Food Sci. Nutr. 2021, 61, 805–835. [Google Scholar] [CrossRef]
- Koop, B.L.; Maciel, A.G.; Soares, L.S.; Monteiro, A.R.; Valencia, G.A. Natural Colorants. In Natural Additives in Foods; Springer: Cham, Switzerland, 2023; pp. 87–122. [Google Scholar] [CrossRef]
- Lobo, F.; Silva, V.; Domingues, J.; Rodrigues, S.; Costa, V.; Falcão, D.; Araujo, K.G. de L. Inclusion complexes of yellow bell pepper pigments with β-cyclodextrin: Preparation, characterisation and application as food natural colorant. J. Sci. Food Agric. 2018, 98, 2665–2671. [Google Scholar] [CrossRef]
- Ali, L.; Alsanius, B.W.; Rosberg, A.K.; Svensson, B.; Nielsen, T.; Olsson, M.E. Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur. Food Res. Technol. 2012, 234, 33–44. [Google Scholar] [CrossRef]
- Rotundo, A.; Forlani, M.; Di Vaio, C. Influence of shading net on vegetative and productive characteristics, gas exchange and chlorophyll content of the leaves in two blackberry (Rubus ulmifolius Schott.) cultivars. Acta Hortic. 1997, 457, 333–340. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Z.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. Effects of nitrogen application level on the physiological characteristics, yield and fruit quality of blackberry. Sci. Hortic. 2023, 313, 111915. [Google Scholar] [CrossRef]
- Aly, A.A.; El-Desouky, W.; El-Leel, O.F.A. Micropropagation, phytochemical content and antioxidant activity of gamma-irradiated blackberry (Rubus fruticosus L.) plantlets. In Vitro Cell. Dev. Biol.-Plant 2022, 58, 457–469. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3243–3259. [Google Scholar] [CrossRef] [PubMed]
- Urbonavičienė, D.; Bobinas, Č.; Bobinaitė, R.; Raudonė, L.; Trumbeckaitė, S.; Viškelis, J.; Viškelis, P. Composition and Antioxidant Activity, Supercritical Carbon Dioxide Extraction Extracts, and Residue after Extraction of Biologically Active Compounds from Freeze-Dried Tomato Matrix. Processes 2021, 9, 467. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, J.; Chao, Y.; Liu, R.; Li, C.; Xia, Z. Evaluation of yields and quality parameters of oils from Cornus wilsoniana fruit extracted by subcritical n-butane extraction and conventional methods. Grain Oil Sci. Technol. 2022, 5, 204–212. [Google Scholar] [CrossRef]
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/71268.html (accessed on 5 September 2024).
- Brand-Williams, M.E.; Cuvelier, C.B. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Muangrat, R.; Ravichai, K.; Jirarattanarangsri, W. Encapsulation of polyphenols from fermented wastewater of Miang processing by freeze drying using a maltodextrin/gum Arabic mixture as coating material. J. Food Process. Preserv. 2019, 43, 13908. [Google Scholar] [CrossRef]
- Kazancev, K.; Sendzikiene, E.; Kazanceva, I. Application of Enzymatic Process for Biodiesel Synthesis from Vegetable Oil with High Fatty Acid Content Using Butanol. Eng. Rural Dev. 2015, 10, 301–306. Available online: https://www.researchgate.net/publication/282377171_Application_of_enzymatic_process_for_biodiesel_synthesis_from_vegetable_oil_with_high_fatty_acid_content_using_butanol (accessed on 5 September 2024).
- Ponder, A.; Hallmann, E. Phenolics and carotenoid contents in the leaves of different organic and conventional raspberry (Rubus idaeus L.) cultivars and their in vitro activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef]
- Durdun, C.; Papuc, C.; Nicorescu, V.; Gajaila, I.; Goran, G.; Petcu, C.; Stefan, G. The Influence of Solid-to-Solvent Ratio and Extraction Method on Total Phenolic Content, Flavonoid Content and Antioxidant Properties of Some Ethanolic Plant Extracts. Rev. Chim.-Buchar.-Orig. Ed. 2016, 67, 1922–1927. Available online: https://www.researchgate.net/publication/309740361_The_Influence_of_Solid-to-Solvent_Ratio_and_Extraction_Method_on_Total_Phenolic_Content_Flavonoid_Content_and_Antioxidant_Properties_of_Some_Ethanolic_Plant_Extracts (accessed on 5 September 2024).
- Taghavi, T.; Patel, H.; Rafie, R. Comparing pH differential and methanol-based methods for anthocyanin assessments of strawberries. Food Sci. Nutr. 2022, 10, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Urbonaviciene, D.; Bobinaite, R.; Viskelis, P.; Bobinas, C.; Petruskevicius, A.; Klavins, L.; Viskelis, J. Geographic Variability of Biologically Active Compounds, Antioxidant Activity and Physico-Chemical Properties in Wild Bilberries (Vaccinium myrtillus L.). Antioxidants 2022, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Wojtasik-Kalinowska, I.; Szpicer, A.; Binkowska, W.; Hanula, M.; Marcinkowska-Lesiak, M.; Poltorak, A. Effect of Processing on Volatile Organic Compounds Formation of Meat—Review. Appl. Sci. 2023, 13, 705. [Google Scholar] [CrossRef]
Extraction Method | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC-CO2 |
---|---|---|---|
Cultivar | |||
‘Orkan’ | 44.16 ± 4.21 a * | 5.87 ± 0.23 b | 5.04 ± 0.25 b |
‘Polar’ | 41.88 ± 1.13 a | 4.97 ± 0.03 b | 4.09 ± 0.03 b |
‘Brzezina’ | 42.66 ± 4.67 a | 4.93 ± 0.08 b | 4.30 ± 0.27 b |
Extraction Method | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC-CO2 |
---|---|---|---|
Cultivar | |||
‘Orkan’ | 1.67 ± 0.18 ef * | 3.76 ± 1.31 a | 2.70 ± 0.25 bc |
‘Polar’ | 1.76 ± 0.03 def | 3.80 ± 0.10 a | 2.43 ± 0.16 cde |
‘Brzezina’ | 1.53 ± 0.14 f | 3.39 ± 0.09 ab | 2.51 ± 0.11 cd |
Cultivar | ‘Orkan’ | ‘Polar’ | ‘Brzezina’ |
---|---|---|---|
TPC, mg 100 g−1 | 313.18 ± 6.01 b * | 313.04 ± 16.95 b | 347.17 ± 14.63 a |
TFC, mg 100 g−1 | 155.23 ± 5.46 a | 133.75 ± 3.58 b | 158.89 ± 14.60 a |
TAC, mg 100 g−1 | 97.06 ± 2.93 a | 26.33 ± 0.53 c | 69.89 ± 3.48 b |
IC50, µg mL−1 | 119.76 ± 0.47 b | 124.01 ± 0.21 a | 105.74 ± 1.04 c |
‘Orkan’ | ‘Polar’ | ‘Brzezina’ | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatty Acids/Extraction Method | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC- CO2 | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC- CO2 | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC- CO2 | Cultivar | Extraction Method | Cultivar × Extraction Method |
SFA | 21.64 ± 0.16 b * | 10.20 ± 0.21 c | 10.27 ± 0.33 c | 20.88 ± 1.02 b | 10.64 ± 0.07 c | 10.36 ± 0.12 c | 25.78 ± 7.01 a | 10.01 ± 0.72 c | 10.25 ± 0.40 c | 0.4003 | 0.0001 | 0.2771 |
MUFA | 15.47 ± 0.02 b | 11.25 ± 0.61 b | 11.56 ± 0.92 b | 15.26 ± 0.04 b | 16.67 ± 0.06 b | 16.11 ± 0.34 b | 26.76 ± 11.05 a | 14.34 ± 1.58 b | 14.02 ± 1.47 b | 0.0185 | 0.0124 | 0.0314 |
PUFA | 62.90 ± 0.18 d | 78.55 ± 0.82 a | 78.17 ± 1.25 a | 63.87 ± 0.98 d | 72.69 ± 0.13 c | 73.54 ± 0.21 bc | 47.46 ± 4.04 e | 75.65 ± 2.30 abc | 75.74 ± 1.86 ab | 0.0001 | 0.0001 | 0.0001 |
Omega- 3 acids | 13.93 ± 0.08 a | 13.35 ± 0.18 a | 13.16 ± 0.23 ab | 11.43 ± 0.09 cd | 10.81 ± 0.04 d | 10.60 ± 0.20 d | 10.61 ± 1.36 d | 12.30 ± 0.61 bc | 12.27 ± 0.61 bc | 0.0001 | 0.7946 | 0.0024 |
Omega- 6 acids | 46.43 ± 0.32 e | 65.01 ± 0.62 a | 64.81 ± 1.02 bc | 50.83 ± 0.93 d | 61.72 ± 0.09 c | 62.80 ± 0.02 c | 33.65 ±1.38 f | 63.18 ± 1.70 bc | 63.28 ± 1.24 bc | 0.0001 | 0.0001 | 0.0001 |
Omega- 9 acids | 17.27 ± 0.06 b | 10.96 ± 0.58 c | 11.29 ± 0.91 c | 16.20 ± 0.01 bc | 16.36 ± 0.04 bc | 15.80 ± 0.35 bc | 28.97 ± 9.75 a | 14.02 ± 1.57 bc | 13.73 ± 1.43 bc | 0.0070 | 0.0002 | 0.0064 |
MUFA/ PUFA | 0.25 | 0.14 | 0.15 | 0.24 | 0.23 | 0.22 | 0.56 | 0.19 | 0.19 | |||
PUFA/ SFA | 2.91 | 7.70 | 7.61 | 3.06 | 6.83 | 7.10 | 1.84 | 7.56 | 7.39 | |||
n-6/n-3 | 3.33 | 4.87 | 4.92 | 4.45 | 5.71 | 5.92 | 3.17 | 5.14 | 5.16 | |||
U/S | 3.62 | 8.80 | 8.74 | 3.79 | 8.40 | 8.65 | 2.88 | 8.99 | 8.76 |
‘Orkan’ | ‘Polar’ | ‘Brzezina’ | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC- CO2 | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC- CO2 | Soxhlet with Ethanol | Soxhlet with n-Hexane | SC- CO2 | Cultivar | Extraction Method | Cultivar × Extraction Method |
Carotenoids | ||||||||||||
Zeaxanthin | 6.87 ± 0.23 f * | 66.13 ± 2.68 b | 43.59 ± 1.22 e | 5.89 ± 0.05 f | 88.14 ± 2.27 a | 51.49 ± 1.51 c | 5.56 ± 0.28 f | 48.33 ± 0.79 d | 49.24 ± 0.98 cd | 0.0001 | 0.0001 | 0.0001 |
Lutein | 5.81 ± 0.93 f | 535.9 ± 7.17 a | 15.91 ± 0.20 e | 4.07 ± 0.21 f | 266.18 ± 10.31 b | 33.45 ± 1.83 d | 2.17 ± 0.35 f | 129.68 ± 1.61 c | 21.72 ± 0.75 e | 0.0001 | 0.0001 | 0.0001 |
β-cryptoxanthin | 0.72 ± 0.00 f | 6.14 ± 0.14 a | 4.45 ± 0.05 d | 0.36 ± 0.02 g | 4.55 ± 0.05 d | 3.88 ± 0.07 e | 0.37 ± 0.00 g | 5.39 ± 0.10 b | 4.98 ± 0.08 c | 0.0001 | 0.0001 | 0.0001 |
α-carotene | 1.69 ± 0.02 f | 52.57 ± 0.45 a | 36.55 ± 1.29 d | 2.71 ± 0.18 f | 46.96 ± 3.05 b | 22.22 ± 1.49 e | 1.33 ± 0.04 f | 41.05 ± 2.38 c | 36.11 ± 0.39 d | 0.0001 | 0.0001 | 0.0001 |
β-catotene | 40.31 ± 1.96 d | 170.83 ± 4.53 a | 117.63 ± 6.16 b | 20.51 ± 0.99 e | 162.35 ± 8.96 a | 73.32 ± 1.30 c | 26.33 ± 9.32 de | 161.79 ± 21.74 a | 167.9 ± 8.06 a | 0.0001 | 0.0001 | 0.0001 |
Chlorophylls | ||||||||||||
Chlorophyll a | 0.57 ± 0.02 e | 8.37 ± 0.19 a | 4.98 ± 0.12 cd | 0.79 ± 0.03 e | 5.94 ± 0.30 b | 4.71 ± 0.02 d | 0.62 ± 0.01 e | 5.78 ± 0.26 b | 5.19 ± 0.11 c | 0.0001 | 0.0001 | 0.0001 |
Chlorophyll b | 0.84 ± 0.05 e | 7.07 ± 0.37 b | 4.79 ± 0.17 d | 0.85 ± 0.03 e | 7.45 ± 0.23 a | 4.68 ± 0.32 d | 0.73 ± 0.01 e | 5.85 ± 0.23 c | 4.86 ± 0.08 d | 0.0001 | 0.0001 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čechovičienė, I.; Kazancev, K.; Hallmann, E.; Sendžikienė, E.; Kruk, M.; Viškelis, J.; Tarasevičienė, Ž. Supercritical CO2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry (Rubus fruticosus L.) Pomace. Plants 2024, 13, 2931. https://doi.org/10.3390/plants13202931
Čechovičienė I, Kazancev K, Hallmann E, Sendžikienė E, Kruk M, Viškelis J, Tarasevičienė Ž. Supercritical CO2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry (Rubus fruticosus L.) Pomace. Plants. 2024; 13(20):2931. https://doi.org/10.3390/plants13202931
Chicago/Turabian StyleČechovičienė, Indrė, Kiril Kazancev, Ewellina Hallmann, Eglė Sendžikienė, Marcin Kruk, Jonas Viškelis, and Živilė Tarasevičienė. 2024. "Supercritical CO2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry (Rubus fruticosus L.) Pomace" Plants 13, no. 20: 2931. https://doi.org/10.3390/plants13202931
APA StyleČechovičienė, I., Kazancev, K., Hallmann, E., Sendžikienė, E., Kruk, M., Viškelis, J., & Tarasevičienė, Ž. (2024). Supercritical CO2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry (Rubus fruticosus L.) Pomace. Plants, 13(20), 2931. https://doi.org/10.3390/plants13202931