Cerium Oxide Nanoparticles (CeO2 NPs) Enhance Salt Tolerance in Spearmint (Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition
Abstract
:1. Introduction
2. Results
2.1. Agronomic Parameters
2.2. Photosynthetic Pigments
2.3. MDA and H2O2
2.4. Proline Content and Total Phenols
2.5. Antioxidant Enzymes Activities (APX, SOD, GP)
2.6. Essential Oil Profile
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Morphological Attributes
4.3. Chlorophyll and Carotenoid Content
4.4. Malondialdehyde (MDA) and Hydrogen Peroxide (H2O2) Content
4.5. Proline Content
4.6. Total Phenols
4.7. Activities of Antioxidant Enzymes
4.8. Essential Oils Analysis
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, O.; Chandra, M.; Pant, A.; Rawat, D. Mint (Mentha spicata L.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 561–572. [Google Scholar]
- Lawrence, B.M. Mint: The genus Mentha; CRC press: Boca Raton, FL, USA, 2006; pp. 25–86. [Google Scholar]
- Dhifi, W.; Jelali, N.; Mnif, W.; Litaiem, M.; Hamdi, N. Chemical composition of the essential oil of Mentha spicata L. from Tunisia and its biological activities. J. Food Biochem. 2013, 37, 362–368. [Google Scholar] [CrossRef]
- Tang, K.S.; Konczak, I.; Zhao, J. Identification and quantification of phenolics in Australian native mint (Mentha australis R. Br.). Food Chem. 2016, 192, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xie, M.; Charpin-El Hamri, G.; Ye, H.; Fussenegger, M. Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nat. Biomed. Eng. 2018, 2, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Zaia, M.G.; Cagnazzo, T.D.O.; Feitosa, K.A.; Soares, E.G.; Faccioli, L.H.; Allegretti, S.M.; Afonso, A.; Anibal, F.D.F. Anti-inflammatory properties of menthol and menthone in Schistosoma mansoni infection. Front. Pharmacol. 2016, 7, 170. [Google Scholar] [CrossRef]
- Noshad, M.; Falah, F. The combined effect of the combined Fennel and Clove essential oils on Staphylococcus epidermidis, Bacillus cereus, Salmonella typhi and Enterobacter aerogenes using Checkerboard assay (fractional inhibitory concentration index). J. Food Sci. Technol. 2020, 17, 75–83. [Google Scholar]
- Shirani, K.; Falah, F.; Vasiee, A.; Yazdi, F.T.; Behbahani, B.A.; Zanganeh, H. Effects of incorporation of Echinops setifer extract on quality, functionality, and viability of strains in probiotic yogurt. J. Food Meas. Charact. 2022, 16, 2899–2907. [Google Scholar] [CrossRef]
- Shasany, A.K.; Shukla, A.K.; Khanuja, S.P. Medicinal and aromatic plants. In Technical Crops; Springer: Berlin/Heidelberg, Germany, 2007; pp. 175–196. [Google Scholar]
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M. Regulation of essential oil in aromatic plants under changing environment. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100441. [Google Scholar] [CrossRef]
- Yu, X.; Liang, C.; Chen, J.; Qi, X.; Liu, Y.; Li, W. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Sci. Hortic. 2015, 197, 579–583. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Loupasaki, S.; Petropoulos, S.A.; Tzortzakis, N. Salinity and cation foliar application: Implications on essential oil yield and composition of hydroponically grown spearmint plants. Sci. Hortic. 2019, 256, 108581. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The effect of salinity on the growth, yield and essential oils of turnip-rooted and leaf parsley cultivated within the Mediterranean region. J. Sci. Food Agric. 2009, 89, 1534–1542. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Tola, E.; Alshahrani, T.S.; Seleiman, M.F. Enhancement of morphological and physiological performance of Zea mays L. under saline stress using ZnO nanoparticles and 24-epibrassinolide seed priming. Agronomy 2023, 13, 771. [Google Scholar] [CrossRef]
- Alhammad, B.A.; Ahmad, A.; Seleiman, M.F.; Tola, E. Seed priming with nanoparticles and 24-epibrassinolide improved seed germination and enzymatic performance of Zea mays L. in salt-stressed soil. Plants 2023, 12, 690. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M. Plant responses and tolerance to salt stress: Physiological and molecular interventions. Int. J. Mol. Sci. 2022, 23, 4810. [Google Scholar] [CrossRef]
- Wani, S.H.; Kumar, V.; Khare, T.; Guddimalli, R.; Parveda, M.; Solymosi, K.; Suprasanna, P.; Kavi Kishor, P. Engineering salinity tolerance in plants: Progress and prospects. Planta 2020, 251, 1–29. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002, 25, 131–139. [Google Scholar] [CrossRef]
- Zeeshan, M.; Lu, M.; Sehar, S.; Holford, P.; Wu, F. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 2020, 10, 127. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Esmaielpour, B.; Behnamian, M.; Gohari, G.; Giglou, M.T.; Vachova, P.; Rastogi, A.; Brestic, M.; Skalicky, M. Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials 2021, 11, 684. [Google Scholar] [CrossRef]
- Assaha, D.V.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017, 8, 275169. [Google Scholar] [CrossRef] [PubMed]
- Abdelrady, W.A.; Ma, Z.; Elshawy, E.E.; Wang, L.; Askri, S.M.H.; Ibrahim, Z.; Dennis, E.; Kanwal, F.; Zeng, F.; Shamsi, I.H. Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress. Plant Stress 2024, 11, 100403. [Google Scholar] [CrossRef]
- Thabet, S.G.; Alqudah, A.M. New genetic insights into improving barley cope with salt stress via regulating mineral accumulation, cellular ion homeostasis, and membrane trafficking. Environ. Exp. Bot. 2023, 208, 105252. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 9, 206–216. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Singh, P.; Choudhary, K.K.; Chaudhary, N.; Gupta, S.; Sahu, M.; Tejaswini, B.; Sarkar, S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Front. Plant Sci. 2022, 13, 1006617. [Google Scholar] [CrossRef]
- Cotruvo, J.A., Jr. The chemistry of lanthanides in biology: Recent discoveries, emerging principles, and technological applications. ACS Cent. Sci. 2019, 5, 1496–1506. [Google Scholar] [CrossRef]
- Xu, C.; Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90. [Google Scholar] [CrossRef]
- Dahle, J.T.; Arai, Y. Environmental geochemistry of cerium: Applications and toxicology of cerium oxide nanoparticles. Int. J. Environ. Res. Public Health 2015, 12, 1253–1278. [Google Scholar] [CrossRef]
- Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738. [Google Scholar] [CrossRef]
- Dhall, A.; Self, W. Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants 2018, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, G.; Chen, L.; Gu, J.; Wu, H.; Li, Z. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. J. Nanobiotechnology 2021, 19, 153. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res. Lett. 2017, 12, 92. [Google Scholar] [CrossRef]
- An, J.; Hu, P.; Li, F.; Wu, H.; Shen, Y.; White, J.C.; Tian, X.; Li, Z.; Giraldo, J.P. Emerging investigator series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ. Sci. Nano 2020, 7, 2214–2228. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Nair, R.; Giraldo, J.P.; Prasad, P.V.V. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega 2018, 3, 14406–14416. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Chen, B.-H. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J. Pharm. Sci. 2020, 15, 558–575. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, C.; Lord, M.S.; Lovell, E.; Wong, R.J.; Jung, M.S.; Oscar, D.; Mann, R.; Amal, R. Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant activity. ACS Omega 2019, 4, 9473–9479. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Wang, K.; Kolattukudy, P.E. Cerium oxide nanoparticles inhibits oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J. Pharmacol. Exp. Ther. 2011, 338, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.H.Z.; Panahirad, S.; Navai, A.; Bahrami, M.K.; Kulak, M.; Gohari, G. Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian Balm (Dracocephalum moldavica L.) under salinity stress. Plant Stress 2021, 1, 100006. [Google Scholar] [CrossRef]
- Khan, M.N.; Li, Y.; Khan, Z.; Chen, L.; Liu, J.; Hu, J.; Wu, H.; Li, Z. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. J. Nanobiotechnology 2021, 19, 276. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, X.; Zhang, W.; Pei, H.; Chen, Y. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 2012, 4, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Peralta-Videa, J.R.; Rico, C.M.; Hernandez-Viezcas, J.A.; Sun, Y.; Niu, G.; Servin, A.; Nunez, J.E.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J. Agric. Food Chem. 2014, 62, 2752–2759. [Google Scholar] [CrossRef]
- Yadav, S.P.; Bharadwaj, R.; Nayak, H.; Mahto, R.; Singh, R.K.; Prasad, S.K. Impact of salt stress on growth, productivity and physicochemical properties of plants: A Review. Int. J. Chem. Study 2019, 7, 1793–1798. [Google Scholar]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Zhang, Y.J.; Li, Z.; Bai, D.F.; Zhong, Y.P.; Fang, J.B. Effect of salt stress on growth, physiological and biochemical characters of four kiwifruit genotypes. Sci. Hortic. 2020, 271, 109473. [Google Scholar] [CrossRef]
- Urbinati, G.; Nota, P.; Frattarelli, A.; Lucioli, S.; Forni, C.; Caboni, E. Morpho-physiological responses of sea buckthorn (Hippophae rhamnoides) to NaCl stress. Plant Biosyst. -Int. J. Deal. All Asp. Plant Biol. 2020, 154, 827–834. [Google Scholar] [CrossRef]
- Gohari, G.; Farhadi, H.; Panahirad, S.; Zareei, E.; Labib, P.; Jafari, H.; Mahdavinia, G.; Hassanpouraghdam, M.B.; Ioannou, A.; Kulak, M. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int. J. Biol. Macromol. 2023, 224, 893–907. [Google Scholar] [CrossRef]
- Alenazi, M.M.; El-Ebidy, A.M.; El-shehaby, O.A.; Seleiman, M.F.; Aldhuwaib, K.J.; Abdel-Aziz, H.M.M. Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in Phaseolus vulgaris L. Plants. Plants 2024, 13, 398. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, L.; Dhankher, O.P.; Xing, B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ. Int. 2020, 142, 105831. [Google Scholar] [CrossRef]
- Singh, S.; Husen, A. Role of nanomaterials in the mitigation of abiotic stress in plants. In Nanomaterials and Plant Potential; Springer: Berlin/Heidelberg, Germany, 2019; pp. 441–471. [Google Scholar]
- Hezaveh, T.A.; Pourakbar, L.; Rahmani, F.; Alipour, H. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Commun. Soil Sci. Plant Anal. 2019, 50, 698–715. [Google Scholar] [CrossRef]
- Alsaeedi, A.; El-Ramady, H.; Alshaal, T.; El-Garawany, M.; Elhawat, N.; Al-Otaibi, A. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem. 2019, 139, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, S.; Yin, L.; Deng, X. How does silicon mediate plant water uptake and loss under water deficiency? Front. Plant Sci. 2018, 9, 340168. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Al Hassan, M.; Naranjo, M.A.; Agrawal, V.; Boscaiu, M.; Vicente, O. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE 2017, 12, e0185017. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.A.D.C.; Pestana, I.A.; Santa-Catarina, C.; Hauser-Davis, R.A.; Suzuki, M.S. Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnol. Bras. 2017, 29, e9. [Google Scholar] [CrossRef]
- Jurkow, R.; Sękara, A.; Pokluda, R.; Smoleń, S.; Kalisz, A. Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal (oid) oxide nanoparticles. Agronomy 2020, 10, 997. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Q.; Ervin, E.H.; Yang, Z.; Zhang, X. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front. Plant Sci. 2017, 8, 1017. [Google Scholar] [CrossRef] [PubMed]
- Hassanpouraghdam, M.B.; Vojodi Mehrabani, L.; Bonabian, Z.; Aazami, M.A.; Rasouli, F.; Feldo, M.; Strzemski, M.; Dresler, S. Foliar application of cerium oxide-salicylic acid nanoparticles (CeO2: SA Nanoparticles) Influences the growth and physiological responses of portulaca oleracea l. under salinity. Int. J. Mol. Sci. 2022, 23, 5093. [Google Scholar] [CrossRef]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Wan, H.; Zhou, G.; Cheng, Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci. Hortic. 2020, 270, 109444. [Google Scholar] [CrossRef]
- Azimi, F.; Oraei, M.; Gohari, G.; Panahirad, S.; Farmarzi, A. Chitosan-selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant Physiol. Biochem. 2021, 167, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Noohpisheh, Z.; Amiri, H.; Mohammadi, A.; Farhadi, S. Effect of the foliar application of zinc oxide nanoparticles on some biochemical and physiological parameters of Trigonella foenum-graecum under salinity stress. Plant Biosyst. -Int. J. Deal. All Asp. Plant Biol. 2021, 155, 267–280. [Google Scholar] [CrossRef]
- Castillo, J.M.; Mancilla-Leytón, J.M.; Martins-Noguerol, R.; Moreira, X.; Moreno-Pérez, A.J.; Muñoz-Vallés, S.; Pedroche, J.J.; Figueroa, M.E.; García-González, A.; Salas, J.J. Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Sci. Horticturae 2022, 301, 111136. [Google Scholar] [CrossRef]
- Ghanem, A.-M.F.; Mohamed, E.; Kasem, A.M.; El-Ghamery, A.A. Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants 2021, 10, 1100. [Google Scholar] [CrossRef] [PubMed]
- Pungin, A.; Lartseva, L.; Loskutnikova, V.; Shakhov, V.; Popova, E.; Skrypnik, L.; Krol, O. Effect of Salinity Stress on Phenolic Compounds and Antioxidant Activity in Halophytes Spergularia marina (L.) Griseb. and Glaux maritima L. Cultured In Vitro. Plants 2023, 12, 1905. [Google Scholar] [CrossRef]
- Jahani, S.; Saadatmand, S.; Mahmoodzadeh, H.; Khavari-Nejad, R.A. Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L. Biologia 2019, 74, 1063–1075. [Google Scholar] [CrossRef]
- Kalisz, A.; Húska, D.; Jurkow, R.; Dvořák, M.; Klejdus, B.; Caruso, G.; Sękara, A. Nanoparticles of cerium, iron, and silicon oxides change the metabolism of phenols and flavonoids in butterhead lettuce and sweet pepper seedlings. Environ. Sci. Nano 2021, 8, 1945–1959. [Google Scholar] [CrossRef]
- Zandi, P.; Schnug, E. Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef]
- Mishra, N.; Jiang, C.; Chen, L.; Paul, A.; Chatterjee, A.; Shen, G. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Front. Plant Sci. 2023, 14, 1110622. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo Neto, A.D.; Prisco, J.T.; Enéas-Filho, J.; de Abreu, C.E.B.; Gomes-Filho, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 2006, 56, 87–94. [Google Scholar] [CrossRef]
- Preetha, J.S.Y.; Sriram, D.; Premasudha, P.; Pudake, R.N.; Arun, M. Cerium oxide as a nanozyme for plant abiotic stress tolerance: An overview of the mechanisms. Plant Nano Biol. 2023, 6, 100049. [Google Scholar] [CrossRef]
- Mahajan, M.; Kuiry, R.; Pal, P.K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100255. [Google Scholar] [CrossRef]
- Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Sci. Hortic. 2020, 271, 109465. [Google Scholar] [CrossRef]
- Karray-Bouraoui, N.; Rabhi, M.; Neffati, M.; Baldan, B.; Ranieri, A.; Marzouk, B.; Lachaâl, M.; Smaoui, A. Salt effect on yield and composition of shoot essential oil and trichome morphology and density on leaves of Mentha pulegium. Ind. Crops Prod. 2009, 30, 338–343. [Google Scholar] [CrossRef]
- Arnon, A. Method of extraction of chlorophyll in the plants. Agron. J. 1967, 23, 112–121. [Google Scholar]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Sinha, S.; Saxena, R.; Singh, S. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: Role of antioxidants and antioxidant enzymes. Chemosphere 2005, 58, 595–604. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.A.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Tunc-Ozdemir, M.; Miller, G.; Song, L.; Kim, J.; Sodek, A.; Koussevitzky, S.; Misra, A.N.; Mittler, R.; Shintani, D. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol. 2009, 151, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Sairam, R.K.; Rao, K.V.; Srivastava, G. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002, 163, 1037–1046. [Google Scholar] [CrossRef]
- Panda, S.; Singha, L.; Khan, M. Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata). Bulg. J. Plant Physiol. 2003, 29, 77–86. [Google Scholar]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef]
Stress | Treatments | Plant Height (cm) | Change (%) | Leaf Number | Change (%) | Leaf FW (g) | Change (%) | Leaf DW (g) | Change (%) | Shoot FW (g) | Change (%) | Shoot DW (g) | Change (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 41.5 ab | 0.00 | 102 b | 0.00 | 10.15 ab | 0.00 | 2.4 b | 0.00 | 15.95 ab | 0.00 | 4.3 b | 0.00 | |
NaCl | CeO2 NPs (25 mg/L) | 38.75 ab | −6.63 | 113 ab | 10.78 | 10.4 ab | 2.46 | 2.5 ab | 4.17 | 17.25 a | 8.15 | 4.42 b | 2.79 |
(0 mM) | CeO2 NPs (50 mg/L) | 39.05 ab | −5.90 | 118.5 a | 16.18 | 11.5 a | 13.30 | 2.6 a | 8.33 | 16.5 a | 3.45 | 5.51 a | 28.14 |
CeO2 NPs (100 mg/L) | 34.75 b | −16.27 | 110 ab | 7.84 | 10.1 b | −0.49 | 2.3 b | −4.17 | 16.75 a | 5.02 | 4.19 b | −2.56 | |
No treatment | 34.75 b | −16.27 | 80 cd | −21.57 | 8.98 c | −11.53 | 1.3 d | −45.83 | 11.87 c | −25.58 | 2.8 c | −34.88 | |
NaCl | CeO2 NPs (25 mg/L) | 45.5 a | 9.64 | 88.33 bc | −13.40 | 8.1 cd | −20.20 | 1.04 e | −56.67 | 11.05 cde | −30.72 | 4.29 b | −0.23 |
(50 mM) | CeO2 NPs (50 mg/L) | 39.76 ab | −4.19 | 95 bc | −6.86 | 8.4 cd | −17.24 | 1.9 c | −20.83 | 10.18 de | −36.18 | 4.37 b | 1.63 |
CeO2 NPs (100 mg/L) | 35.95 b | −13.37 | 68 e | −33.33 | 7.97 ef | −21.48 | 1.3 d | −45.83 | 10.94 cde | −31.41 | 3.26 bc | −24.19 | |
No treatment | 25.75 c | −37.95 | 84 c | −17.65 | 5.9 e | −41.87 | 0.7 fg | −70.83 | 8.9 ef | −44.20 | 2.22 cd | −48.37 | |
NaCl | CeO2 NPs (25 mg/L) | 29.75 bc | −28.31 | 88.33 bc | −13.40 | 6.95 e | −31.53 | 0.81 f | −66.25 | 9.93 de | −37.74 | 2.51 c | −41.63 |
(100 mM) | CeO2 NPs (50 mg/L) | 25.5 c | −38.55 | 81.33 c | −20.26 | 6.85 e | −32.51 | 1.19 de | −50.42 | 8.8 ef | −44.83 | 2.04 cd | −52.56 |
CeO2 NPs (100 mg/L) | 25.87 c | −37.66 | 81.33 c | −20.26 | 5.05 g | −50.25 | 0.71 fg | −70.42 | 8.65 ef | −45.77 | 2.19 cd | −49.07 |
Stress | Treatments | Chlorophyll a (mg g−1 FW) | Change (%) | Chlorophyll b (mg g−1 FW) | Change (%) | Carotenoids (mg g−1 FW) | Change (%) |
---|---|---|---|---|---|---|---|
Control | 2.44 bc | 0.00 | 1.13 ab | 0.00 | 0.43 bc | 0.00 | |
NaCl | CeO2 NPs (25 mg/L) | 2.64 b | 8.20 | 1.24 a | 9.73 | 0.50 b | 16.28 |
(0 mM) | CeO2 NPs (50 mg/L) | 3.16 a | 29.51 | 1.15 ab | 1.77 | 0.60 a | 39.53 |
CeO2 NPs (100 mg/L) | 2.70 b | 10.66 | 1.09 b | −3.54 | 0.47 b | 9.30 | |
No treatment | 1.63 de | −33.20 | 0.81 d | −28.32 | 0.39 c | −9.30 | |
NaCl | CeO2 NPs (25 mg/L) | 1.99 cd | −18.44 | 0.98 c | −13.27 | 0.43 bc | 0.00 |
(50 mM) | CeO2 NPs (50 mg/L) | 2.20 c | −9.84 | 1.09 b | −3.54 | 0.50 ab | 16.28 |
CeO2 NPs (100 mg/L) | 1.85 d | −24.18 | 0.91 cd | −19.47 | 0.20 e | −53.49 | |
No treatment | 1.03 g | −57.79 | 0.53 f | −53.10 | 0.20 e | −53.49 | |
NaCl | CeO2 NPs (25 mg/L) | 1.73 de | −29.10 | 0.64 e | −43.36 | 0.30 d | −30.23 |
(100 mM) | CeO2 NPs (50 mg/L) | 1.60 e | −34.43 | 0.55 f | −51.33 | 0.40 bc | −6.98 |
CeO2 NPs (100 mg/L) | 1.28 f | −47.54 | 0.52 fg | −53.98 | 0.10 f | −76.74 |
Salinity Stress | 0 mM NaCl | 50 mM NaCl | 100 mM NaCl | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | RI | Control | CeO2 NPs Treatments | No Treatment | CeO2 NPs Treatments | No Treatment | CeO2 NPs Treatments | ||||||
25 mg L−1 | 50 mg L−1 | 100 mg L−1 | 25 mg L−1 | 50 mg L−1 | 100 mg L−1 | 25 mg L−1 | 50 mg L−1 | 100 mg L−1 | |||||
α pinene | 928 | 1.23 | 1.87 | 1.94 | 0.98 | 1.06 | 2.09 | 2.65 | 1.53 | 1.64 | 1.67 | 2.14 | 1.57 |
Sabinene | 967 | 0.97 | 1.08 | 1.84 | 1.19 | 0.98 | 0.86 | 1.37 | 1.08 | 1.65 | 1.81 | 1.78 | 1.37 |
β pinene | 970 | 2.01 | 2.46 | 2.88 | 1.94 | 2.79 | 2.98 | 3.07 | 2.06 | 1.39 | 2.36 | 2.04 | 2.01 |
β myrcene | 989 | 0.57 | 0.89 | 0.94 | 0.71 | 0.96 | 1.8 | 0.91 | 0.76 | 0.87 | 1.82 | 1.51 | 0.82 |
α terpinene | 1012 | 0.27 | - | 0.44 | - | 0.32 | 0.27 | 0.19 | - | - | 0.18 | 0.34 | - |
1,8-Cineole | 1026 | 14.02 | 18.61 | 18.11 | 13.08 | 15.67 | 18.43 | 18.87 | 13.02 | 12.05 | 15.01 | 14.27 | 11.08 |
Linalool | 1092 | - | 0.07 | 0.17 | 0.04 | 0.23 | 0.41 | 0.29 | 0.21 | - | 0.14 | 0.07 | - |
L-menthone | 1151 | 32.1 | 41.16 | 43.01 | 46.24 | 38.44 | 43.77 | 49.47 | 40.05 | 31.49 | 36.13 | 37.71 | 31.02 |
Menthofuran | 1158 | 0.49 | 1.24 | 1.56 | 2.57 | 1.08 | 2.98 | 2.01 | 1.74 | 1.67 | 2.09 | 1.95 | 1.08 |
Isopulegol | 1170 | 0.76 | 0.97 | 0.47 | 0.79 | 0.97 | 0.87 | 1.05 | 1.11 | 0.51 | 0.93 | 1.05 | 0.81 |
α terpineol | 1184 | 1.33 | 1.72 | 1.97 | 1.55 | 1.85 | 2.06 | 2.77 | 1.56 | 1.06 | 1.43 | 1.01 | 0.96 |
Pulegone | 1235 | 23.41 | 22.39 | 20.14 | 25.94 | 22.64 | 25.61 | 29.07 | 27.19 | 20.45 | 21.06 | 16.07 | 15.08 |
Piperitone | 1247 | - | 0.15 | 0.17 | - | 0.09 | 0.26 | 0.39 | 0.07 | - | - | 0.17 | 0.19 |
Sabinyl acetate | 1288 | 0.31 | 0.54 | 0.23 | 0.64 | 0.52 | 0.74 | 0.81 | 0.97 | 0.19 | 0.27 | 0.32 | 0.24 |
α humulene | 1445 | 0.09 | - | 0.11 | 0. 15 | 0.13 | 0.14 | 0.21 | 0.12 | 0.06 | 0.14 | 0.12 | 0.08 |
β farnesene | 1453 | 0.45 | 0.53 | 0.28 | 0.15 | 0.29 | 0.61 | 0.81 | 0.42 | 0.14 | 0.29 | 0.34 | 0.21 |
germacrene D | 1489 | 5.09 | 6.35 | 6.08 | 6.37 | 6.79 | 8.26 | 7.98 | 6.74 | 4.03 | 4.54 | 4.88 | 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghmadad Milani, M.; Mohammadi, A.; Panahirad, S.; Farhadi, H.; Labib, P.; Kulak, M.; Gohari, G.; Fotopoulos, V.; Vita, F. Cerium Oxide Nanoparticles (CeO2 NPs) Enhance Salt Tolerance in Spearmint (Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition. Plants 2024, 13, 2934. https://doi.org/10.3390/plants13202934
Haghmadad Milani M, Mohammadi A, Panahirad S, Farhadi H, Labib P, Kulak M, Gohari G, Fotopoulos V, Vita F. Cerium Oxide Nanoparticles (CeO2 NPs) Enhance Salt Tolerance in Spearmint (Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition. Plants. 2024; 13(20):2934. https://doi.org/10.3390/plants13202934
Chicago/Turabian StyleHaghmadad Milani, Maryam, Asghar Mohammadi, Sima Panahirad, Habib Farhadi, Parisa Labib, Muhittin Kulak, Gholamreza Gohari, Vasileios Fotopoulos, and Federico Vita. 2024. "Cerium Oxide Nanoparticles (CeO2 NPs) Enhance Salt Tolerance in Spearmint (Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition" Plants 13, no. 20: 2934. https://doi.org/10.3390/plants13202934
APA StyleHaghmadad Milani, M., Mohammadi, A., Panahirad, S., Farhadi, H., Labib, P., Kulak, M., Gohari, G., Fotopoulos, V., & Vita, F. (2024). Cerium Oxide Nanoparticles (CeO2 NPs) Enhance Salt Tolerance in Spearmint (Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition. Plants, 13(20), 2934. https://doi.org/10.3390/plants13202934