Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of HMs Composite Contaminated Soil
2.2. Pot Experiments
2.3. Plant Sampling
2.4. Soil Sampling
2.5. Data Analysis
3. Results
3.1. Biomass of Edible Parts of Water Spinach
3.2. HMs Accumulation in Water Spinach
3.3. Effect of Organic Fertilizer on Soil Properties and the Available HMs
3.4. The Interactive Effects of HMs and Soil Properties on the HMs Accumulation in Water Spinach
4. Discussion
4.1. Effect of Organic Fertilizer on Available HMs
4.2. Effect of Organic Fertilizer on HMs Accumulation in Water Spinach
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhuang, Z.; Mu, H.; Fu, P.; Wan, Y.; Yu, Y.; Wang, Q.; Li, H. Accumulation of potentially toxic elements in agricultural soil and scenario analysis of cadmium inputs by fertilization: A case study in Quzhou county. J. Environ. Manag. 2020, 269, 110797. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Suruchi; Khanna, P. Assessment of heavy metal contamination in different vegetables grown in and around urban areas. Res. J. Environ. Toxicol. 2011, 5, 162–179. [Google Scholar]
- Bao, Z.; Han, Z.; Zhang, B.; Yu, Y.; Xu, Z.; Ma, W.; Ding, F.; Zhang, L.; Yu, M.; Liu, S.; et al. Arsenic trioxide blocked proliferation and cardiomyocyte differentiation of human induced pluripotent stem cells: Implication in cardiac developmental toxicity. Toxicol. Lett. 2019, 309, 51–58. [Google Scholar] [CrossRef]
- Chen, Z.; Muhammad, I.; Zhang, Y.; Hu, W.; Lu, Q.; Wang, W.; Huang, B.; Hao, M. Transfer of heavy metals in fruits and vegetables grown in greenhouse cultivation systems and their health risks in Northwest China. Sci. Total Environ. 2021, 766, 142663. [Google Scholar] [CrossRef]
- Toplan, S.; Özcelik, D.; Gulyasar, T.; Can Akyolcu, M. Changes in hemorheological parameters due to lead exposure in female rats. J. Trace Elem. Med. Biol. 2004, 18, 179–182. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Krishnan, S.; Kumar, S.; Nejad, Z.D.; Majeed Khan, M.A.; Alam, J. Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environ. Toxicol. Pharmacol. 2021, 82, 103563. [Google Scholar] [CrossRef]
- Wang, B.; Gao, F.; Qin, N.; Duan, X.; Li, Y.; Cao, S. A comprehensive analysis on source-distribution-bioaccumulation-exposure risk of metal(loid)s in various vegetables in peri-urban areas of Shenzhen, China. Environ. Pollut. 2022, 293, 118613. [Google Scholar] [CrossRef]
- Hseu, Z.Y.; Su, S.W.; Lai, H.Y.; Guo, H.Y.; Chen, T.C.; Chen, Z.S. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Sci. Plant Nutr. 2010, 56, 31–52. [Google Scholar] [CrossRef]
- Chen, D.; Ye, X.; Jiang, Y.; Xiao, W.; Zhang, Q.; Zhao, S.; Shao, S.; Gao, N.; Huang, M.; Hu, J. Continuously applying compost for three years alleviated soil acidity and heavy metal bioavailability in a soil-asparagus lettuce system. Front. Plant Sci. 2022, 13, 972789. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, M.A.; Khan Tarin, M.W.; Guo, J.X.; Chen, Y.H.; Guo, W. Soil liming effects on CH4, N2O emission and Cd, Pb accumulation in upland and paddy rice. Environ. Pollut. 2019, 248, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, M.; Zhao, Y.; Zhang, C.; Liu, W.; Wang, Z.; Zhou, Q.; Liang, X. Mechanism of mercapto-modified palygorskite in reducing soil Cd activity. Sci. Total Environ. 2023, 857, 159372. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xie, Z.; Chen, J.; Jiang, J.; Su, Q. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. J. Environ. Sci. 2008, 20, 1109–1117. [Google Scholar] [CrossRef]
- Yang, X.; Dai, Z.; Ge, C.; Yu, H.; Bolan, N.; Tsang, D.C.W.; Song, H.; Hou, D.; Shaheen, S.M.; Wang, H.; et al. Multiple-functionalized biochar affects rice yield and quality via regulating arsenic and lead redistribution and bacterial community structure in soils under different hydrological conditions. J. Hazard. Mater. 2023, 443, 130308. [Google Scholar] [CrossRef]
- Irshad, M.; Gul, S.; Eneji, A.E.; Anwar, Z.; Ashraf, M. Extraction of heavy metals from manure and their bioavailability to spinach (Spinacia Oleracea L.) after composting. J. Plant Nutr. 2014, 37, 1661–1675. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Ming, C.; Wang, J.; Zhang, Y. Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. J. Environ. Manag. 2023, 336, 117674. [Google Scholar] [CrossRef]
- Deiana, S.; Gessa, C.; Manunza, B.; Rausa, R.; Seeber, R. Analytical and spectroscopic characterization of humic acids extracted from sewage sludge, manure, and worm compost. Soil Sci. 1990, 150, 419–424. [Google Scholar] [CrossRef]
- Baker, H.; Khalili, F. A study of complexation thermodynamic of humic acid with cadmium (II) and zinc (II) by Schubert’s ion-exchange method. Anal. Chim. Acta 2005, 542, 240–248. [Google Scholar] [CrossRef]
- Chen, W.; Peng, L.; Hu, K.; Zhang, Z.; Peng, C.; Teng, C.; Zhou, K. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A mirror of coherent structural variation. J. Hazard. Mater. 2020, 393, 122425. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wan, Y.; Camara, A.Y.; Li, H. Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice. Chemosphere 2018, 196, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Huang, Q.; Wang, Q.; Yu, Y.; Su, D.; Qiao, Y.; Li, H. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J. Hazard. Mater. 2020, 384, 121293. [Google Scholar] [CrossRef] [PubMed]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid. Interface. Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ma, Y.; Zhu, Y.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current status and mitigation dtrategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, X.; Xu, J.; Selim, H.M. Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard. Mater. 2010, 181, 778–787. [Google Scholar] [CrossRef]
- Grüter, R.; Costerousse, B.; Mayer, J.; Mäder, P.; Thonar, C.; Frossard, E.; Schulin, R.; Tandy, S. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat. Sci. Total Environ. 2019, 669, 608–620. [Google Scholar] [CrossRef]
- Jakubus, M.; Graczyk, M. The Effect of Compost and fly ash treatment of contaminated soil on the immobilisation and bioavailability of lead. Agronomy 2021, 11, 1188. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, Z.; Li, S.; Yang, Z.; Ling, W.; Wu, Z.; Gao, J.; Wang, Y. Reduction of the exchangeable cadmium content in soil by appropriately increasing the maturity degree of organic fertilizers. J. Environ. Manag. 2024, 365, 121599. [Google Scholar] [CrossRef]
- Li, Q.; Cai, S.; Mo, C.; Chu, B.; Peng, L.; Yang, F. Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicol. Environ. Saf. 2010, 73, 84–88. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil Environment Quality Risk Control Standard for Soilcontamination of Agriculture Land (On Trail). MEE (Ministry of Ecological Environment): Beijing, China, 2018.
- HJ 804-2016; Soil—Determination of Bioavailable form of Eight Elements—Extraction with Buffered DTPA Solution/Inductively Coupled Plasma Optical Emission Spectrometry. MEP (Ministry of Environmental Protection): Beijing, China, 2016.
- HJ 889-2017; Soil Quality—Determination of Cation Exchange Capacity (CEC)—Hexamminecobalt Trichloride Solution-Spectrophotometric Method. MEP (Ministry of Environmental Protection): Beijing, China, 2017.
- GB 2762-2022; National Food Safety Standard Maximum Levels of Contaminants in Foods. NHC (National Health Commission of the PRC) and SAMR (State Administration for Market Regulation): Beijing, China, 2022.
- Huang, Q.; Yu, Y.; Wan, Y.; Wang, Q.; Luo, Z.; Qiao, Y.; Su, D.; Li, H. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). J. Environ. Manag. 2018, 215, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zhao, T.; Fan, L.; Zhang, Y.; Wang, J.; Yang, Y.; Jiang, T.; Tong, Y. The transformation of soil Hg oxidation states controls elemental Hg release in the greenhouse with applying organic fertilizer. J. Hazard. Mater. 2023, 454, 131520. [Google Scholar] [CrossRef] [PubMed]
- Paradelo, R.; Barral, M.T. Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations. Bioresour. Technol. 2012, 104, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M. Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chem. Eng. J. 2011, 172, 361–368. [Google Scholar] [CrossRef]
- Udovic, M.; McBride, M.B. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test. J. Hazard. Mater. 2012, 205–206, 144–149. [Google Scholar] [CrossRef]
- Xiao, Q.; Huang, Y.; Wu, L.; Tian, Y.; Wang, Q.; Wang, B.; Xu, M.; Zhang, W. Long-term manuring increases microbial carbon use efficiency and mitigates priming effect via alleviated soil acidification and resource limitation. Biol. Fertil. Soils 2021, 57, 925–934. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 2016, 50, 4178–4185. [Google Scholar] [CrossRef]
- Mu, D.; Zheng, S.; Lin, D.; Xu, Y.; Dong, R.; Pei, P.; Sun, Y. Derivation and validation of soil cadmium thresholds for the safe farmland production of vegetables in high geological background area. Sci. Total Environ. 2023, 873, 162171. [Google Scholar] [CrossRef]
- Wan, Y.; Huang, Q.; Camara, A.Y.; Wang, Q.; Li, H. Water management impacts on the solubility of Cd, Pb, As, and Cr and their uptake by rice in two contaminated paddy soils. Chemosphere 2019, 228, 360–369. [Google Scholar] [CrossRef]
- Reddy, C.N.; Patrick, W.H. Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. J. Environ. Qual. 1977, 6, 259–262. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Lin, Q.; Rashid, M.S.; He, Z.; Yang, X. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total Environ. 2020, 707, 136121. [Google Scholar] [CrossRef] [PubMed]
- Kumarathilaka, P.; Seneweera, S.; Meharg, A.; Bundschuh, J. Arsenic speciation dynamics in paddy rice soil-water environment: Sources, physico-chemical, and biological factors—A review. Water Res. 2018, 140, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.H.; Rounds, S.A.; Needoba, J.A. Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream. Environ. Sci. Technol. 2012, 46, 4374–4381. [Google Scholar] [CrossRef] [PubMed]
- Habibul, N.; Chen, W. Structural response of humic acid upon binding with lead: A spectroscopic insight. Sci. Total Environ. 2018, 643, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- O’Dell, R.; Silk, W.; Green, P.; Claassen, V. Compost amendment of Cu–Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.). Environ. Pollut. 2007, 148, 115–124. [Google Scholar] [CrossRef]
- Mladenov, N.; Zheng, Y.; Simone, B.; Bilinski, T.M.; McKnight, D.M.; Nemergut, D.; Radloff, K.A.; Rahman, M.M.; Ahmed, K.M. Dissolved Organic Matter Quality in a Shallow Aquifer of Bangladesh: Implications for Arsenic Mobility. Environ. Sci. Technol. 2015, 49, 10815–10824. [Google Scholar] [CrossRef]
- Mladenov, N.; Zheng, Y.; Miller, M.P.; Nemergut, D.R.; Legg, T.; Simone, B.; Hageman, C.; Rahman, M.M.; Ahmed, K.M.; McKnight, D.M. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh Aquifers. Environ. Sci. Technol. 2010, 44, 123–128. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zhou, S.W.; Xu, M.G.; Gilles, C. Evolution characteristics and influence factors of acidification in paddy soil of southern China. Sci. Agric. Sin. 2015, 48, 4811–4817. (In Chinese) [Google Scholar]
- Kelebemang, R.; Dinake, P.; Sehube, N.; Daniel, B.; Totolo, O.; Laetsang, M. Speciation and mobility of lead in shooting range soils. Chem. Speciat. Bioavailab. 2017, 29, 143–152. [Google Scholar] [CrossRef]
- Yu, G.; Wu, Y.Y. Effects of heavy metals joint action on their characterstic of sorption and desorption in brown soil. Environ. Chem. 1997, 16, 30–36. (In Chinese) [Google Scholar]
- Zhuang, Z.; Niño-Savala, A.G.; Mi, Z.; Wan, Y.; Su, D.; Li, H.; Fangmeier, A. Cadmium accumulation in wheat and maize grains from China: Interaction of soil properties, novel enrichment models and soil thresholds. Environ. Pollut. 2021, 275, 116623. [Google Scholar] [CrossRef] [PubMed]
- Madeira, A.C.; de Varennes, A.; Abreu, M.M.; Esteves, C.; Magalhães, M.C.F. Tomato and parsley growth, arsenic uptake and translocation in a contaminated amended soil. J. Geochem. Explor. 2012, 123, 114–121. [Google Scholar] [CrossRef]
- Hattab, N.; Motelica-Heino, M.; Faure, O.; Bouchardon, J. Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J. Environ. Manag. 2015, 159, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.M.; Megharaj, M.; Naidu, R. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp. Environ. Sci. Pollut. Res. 2016, 23, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Naidu, R.; Alston, A.M. Chemistry of Inorganic Arsenic in Soils. J. Environ. Qual. 2002, 31, 557–563. [Google Scholar] [PubMed]
- Burló, F.; Guijarro, I.; Carbonell-Barrachina, A.A.; Valero, D.; Martínez-Sánchez, F. Arsenic species: Effects on and accumulation by tomato plants. J. Agric. Food Chem. 1999, 47, 1247–1253. [Google Scholar] [CrossRef]
- Azeem, W.; Ashraf, M.; Shahzad, S.M.; Imtiaz, M.; Akhtar, M.; Rizwan, M.S. Phosphate-arsenate relations to affect arsenic concentration in plant tissues, growth, and antioxidant efficiency of sunflower (Helianthus annuus L.) under arsenic stress. Environ. Sci. Pollut. Res. 2017, 24, 24376–24386. [Google Scholar] [CrossRef]
- Caille, N.; Swanwick, S.; Zhao, F.J.; McGrath, S.P. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environ. Pollut. 2004, 132, 113–120. [Google Scholar] [CrossRef]
Treatment | Cd (mg/kg) | As (mg/kg) | Pb (mg/kg) | Contamination Level |
---|---|---|---|---|
S1 | 0 | 0 | 0 | - |
S2 | 0.1 | 20 | 50 | Below RSV |
S3 | 0.3 | 40 | 90 | Equal to RSV |
S4 | 1.0 | 100 | 300 | Between RSV and RIV |
S5 | 2.0 | 150 | 500 | Equal to RIV |
S6 | 5.0 | 200 | 1000 | Higher than RIV |
Treatment | Urea | Potassium Chloride | Superphosphate | Organic Fertilizer |
---|---|---|---|---|
OF0 | 1.03 | 0.27 | 0.99 | 0 |
OF50 | 0.52 | 0.14 | 0.50 | 60 |
OF100 | 0 | 0 | 0 | 120 |
Treatments | OF0 | OF50 | OF100 |
---|---|---|---|
S1 | 12.05 ± 0.66 aB | 14.82 ± 1.15 aB | 14.88 ± 1.06 aB |
S2 | 14.81 ± 1.78 aAB | 14.70 ± 0.84 aB | 16.96 ± 0.28 aAB |
S3 | 16.06 ± 0.62 bA | 17.29 ± 0.40 abAB | 18.36 ± 0.10 aAB |
S4 | 13.72 ± 0.52 bAB | 17.84 ± 0.28 abA | 19.73 ± 1.62 aA |
S5 | 5.83 ± 0.37 cC | 11.12 ± 0.68 bC | 14.88 ± 0.92 aB |
S6 | 1.11 ± 0.10 aD | 2.62 ± 0.59 aD | 1.75 ± 0.11 aC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.; Zhuang, Z.; Liu, J.; Huang, S.; Wang, Q.; Wang, Q.; Li, H.; Wan, Y. Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer. Plants 2024, 13, 2935. https://doi.org/10.3390/plants13202935
Qi H, Zhuang Z, Liu J, Huang S, Wang Q, Wang Q, Li H, Wan Y. Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer. Plants. 2024; 13(20):2935. https://doi.org/10.3390/plants13202935
Chicago/Turabian StyleQi, Hao, Zhong Zhuang, Jiang Liu, Siyu Huang, Qiqi Wang, Qi Wang, Huafen Li, and Yanan Wan. 2024. "Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer" Plants 13, no. 20: 2935. https://doi.org/10.3390/plants13202935
APA StyleQi, H., Zhuang, Z., Liu, J., Huang, S., Wang, Q., Wang, Q., Li, H., & Wan, Y. (2024). Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer. Plants, 13(20), 2935. https://doi.org/10.3390/plants13202935