Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Fruit Samples
3.2. Extraction of Free and Bound Phenolic Compounds
3.2.1. Extraction of Free Phenolic Compounds
3.2.2. Extraction of Bound Phenolic Compounds
3.3. Evaluation of the Total Phenolic Content (TPCs)
3.4. Evaluation of Total Flavonoid Content (TFCs)
3.5. Determination of Total Monomeric Anthocyanins (TMAs)
3.6. Evaluation of Antioxidant Activity Potential (AOA)
3.7. Evaluation of Enzyme-Inhibitory Activities
3.7.1. α-Amylase (AM)-Inhibitory Assay
3.7.2. α-Glucosidase (AG)-Inhibitory Assay
3.7.3. Pancreatic Lipase-Inhibitory Assay
3.7.4. Acetylcholineesterase (AChE)-Inhibitory Assay
3.8. Antimicrobial Activity
3.9. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gentile, C. Biological Activities of Plant Food Components: Implications in Human Health. Foods 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska, R.; Nurzyńska-Wierdak, N. Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules 2023, 28, 1731. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Lakshmikanthan, M.; Muthu, S.; Krishnan, K.; Altemimi, A.B.; Haider, N.N.; Govindan, L.; Selvakumari, J.; Alkanan, Z.T.; Cacciola, F.; Francis, Y.M. A Comprehensive Review on Anthocyanin-Rich Foods: Insights into Extraction, Medicinal Potential, and Sustainable Applications. J. Agric. Food Res. 2024, 17, 101245. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.J.; Tomas, M.; et al. Functional Implications of Bound Phenolic Compounds and Phenolics–Food Interaction: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Yao, J.; Chen, J.; Yang, J.; Hao, Y.; Fan, Y.; Wang, C.; Li, N. Free, Soluble-Bound and Insoluble-Bound Phenolics and Their Bioactivity in Raspberry Pomace. LWT 2021, 135, 109995. [Google Scholar] [CrossRef]
- da Silva, C.; Kaufmann Robbs, B.; Nestal De Moraes, G.; Aatif, M. Current Understanding of Polyphenols to Enhance Bioavailability for Better Therapies. Biomedicines 2023, 11, 2078. [Google Scholar] [CrossRef]
- Ecevit, K.; Barros, A.A.; Silva, J.M.; Reis, R.L. Preventing Microbial Infections with Natural Phenolic Compounds. Future Pharmacology 2022, 2, 460–498. [Google Scholar] [CrossRef]
- Chew, J.; Peh, S.-C.; Yeang, T.S.; Chew, J.; Peh, S.-C.; Yeang, T.S. Non-Microbial Natural Products That Inhibit Drug-Resistant Staphylococcus aureus. In Staphylococcus Aureus; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Zhang, L.; Wang, M.; Chang, W. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases. Nutrients 2022, 14, 5373. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ouyang, F.; He, J.; Qiu, D.; Luo, D.; Xiao, S. Associations of Socioeconomic Status and Healthy Lifestyle With Incidence of Dyslipidemia: A Prospective Chinese Governmental Employee Cohort Study. Front. Public. Health 2022, 10, 878126. [Google Scholar] [CrossRef] [PubMed]
- Moieni, M.; Eisenberger, N.I. Effects of Inflammation on Social Processes and Implications for Health. Ann. N. Y Acad. Sci. 2018, 1428, 5. [Google Scholar] [CrossRef]
- Yu, J.; Li, W.; You, B.; Yang, S.; Xian, W.; Deng, Y.; Huang, W.; Yang, R. Phenolic Profiles, Bioaccessibility and Antioxidant Activity of Plum (Prunus salicina Lindl). Food Res. Int. 2021, 143, 110300. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Cipriano, L.; Nazzaro, F. Apricots: Biochemistry and Functional Properties. Curr. Opin. Food Sci. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Guerrero, B.I.; Guerra, M.E.; Rodrigo, J. Simple Sequence Repeat (SSR)-Based Genetic Diversity in Interspecific Plumcot-Type (Prunus salicina × Prunus armeniaca) Hybrids. Plants 2022, 11, 1241. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.A.A.S.; Coimbra, P.P.S.; Araújo-Lima, C.F.; Freitas-Silva, O.; Teodoro, A.J.; Morais, M.M.B.; Cruz, M.A.A.S.; Coimbra, P.P.S.; Araújo-Lima, C.F.; Freitas-Silva, O.; et al. Hybrid Fruits for Improving Health—A Comprehensive Review. Foods 2024, 13, 219. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D.; Pandova, S.; Doykina, P. Research-Gap-Spotting in Plum–Apricot Hybrids—Bioactive Compounds, Antioxidant Activities, and Health Beneficial Properties. Horticulturae 2023, 9, 584. [Google Scholar] [CrossRef]
- Lante, A.; Mihaylova, D.; Dincheva, I.; Popova, A. HS-SPME-GC/MS Metabolomic Analysis for the Comparative Evaluation between a Plum–Apricot Hybrid and Its Parents. Chemosensors 2024, 12, 50. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Serraino, I.; Dugo, P.; Di Paola, R.; Mondello, L.; Genovese, T.; Morabito, D.; Dugo, G.; Sautebin, L.; Caputi, A.P.; et al. Protective Effects of Anthocyanins from Blackberry in a Rat Model of Acute Lung Inflammation. Free Radic. Res. 2003, 37, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Montilla, P.; Barcos, M.; Muñoz, M.C.; Muñoz-Castañeda, J.R.; Bujalance, I.; Túnez, I. Protective Effect of Montilla-Moriles Appellation Red Wine on Oxidative Stress Induced by Streptozotocin in the Rat. J. Nutr. Biochem. 2004, 15, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.-X. Potential Mechanisms of Cancer Chemoprevention by Anthocyanins. Curr. Mol. Med. 2003, 3, 149–159. [Google Scholar] [CrossRef]
- Youdim, K.A.; Martin, A.; Joseph, J.A. Incorporation of the Elderberry Anthocyanins by Endothelial Cells Increases Protection against Oxidative Stress. Free Radic. Biol. Med. 2000, 29, 51–60. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Identification and Characterization of Anthocyanins and Non-Anthocyanin Phenolics from Australian Native Fruits and Their Antioxidant, Antidiabetic, and Anti-Alzheimer Potential. Food Res. Int. 2022, 162, 111951. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Okulevičiūtė, R.; Lanauskas, J.; Kviklys, D.; Zymonė, K.; Rendyuk, T.; Žvikas, V.; Uselis, N.; Janulis, V. Variability in the Content of Phenolic Compounds in Plum Fruit. Plants 2020, 9, 1611. [Google Scholar] [CrossRef]
- Vlaic, R.A.; Mureşan, V.; Mureşan, A.E.; Mureşan, C.C.; Păucean, A.; Mitre, V.; Chiş, S.M.; Muste, S. The Changes of Polyphenols, Flavonoids, Anthocyanins and Chlorophyll Content in Plum Peels during Growth Phases: From Fructification to Ripening. Not. Bot. Horti. Agrobot. Cluj Napoca 2018, 46, 148–155. [Google Scholar] [CrossRef]
- Bousselma, A.; Abdessemed, D.; Tahraoui, H.; Zedame, F.; Amrane, A.; Amrane Polyphenols, A. Polyphenols and Flavonoids Contents of Fresh and Dried Apricots Extracted by Cold Soaking and Ultrasound-Assisted Extraction. Kemija Industriji 2023, 72, 161–168. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Pintea, A. Phenolic Compounds, Flavonoids, Lipids and Antioxidant Potential of Apricot (Prunus armeniaca L.) Pomace Fermented by Two Filamentous Fungal Strains in Solid State System. Chem. Cent. J. 2017, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Akin, E.B.; Karabulut, I.; Topcu, A. Some Compositional Properties of Main Malatya Apricot (Prunus armeniaca L.) Varieties. Food Chem. 2008, 107, 939–948. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Martinez-Monzo, J.; Pasten, A.; Lemus-Mondaca, R. CyTA-Journal of Food Bioactive Compounds and Physicochemical Characterization of Dried Apricot (Prunus armeniaca L.) as Affected by Different Drying Temperatures Bioactive Compounds and Physicochemical Characterization of Dried Apricot (Prunus armeniaca L.) as Affected by Different Drying Temperatures. CyTA J. Food 2019, 17, 297–306. [Google Scholar] [CrossRef]
- Tareen, A.K.; Panezai, M.A.; Sajjad, A.; Achakzai, J.K.; Kakar, A.M.; Khan, N.Y. Comparative Analysis of Antioxidant Activity, Toxicity, and Mineral Composition of Kernel and Pomace of Apricot (Prunus armeniaca L.) Grown in Balochistan, Pakistan. Saudi J. Biol. Sci. 2021, 28, 2830–2839. [Google Scholar] [CrossRef]
- Miletić, N.; Popović, B.; Mitrović, O.; Kandić, M. Phenolic Content and Antioxidant Capacity of Fruits of Plum Cv. “Stanley” (Prunus domestica L.) as Influenced by Maturity Stage and on-Tree Ripening. Aust. J. Crop Sci. 2012, 6, 681–687. [Google Scholar]
- Iordanescu, O.A.; Alexa, E.; Lalescu, D.; Berbecea, A.; Camen, D.; Poiana, M.A.; Moigradean, D.; Bala, M. Chemical Composition and Antioxidant Activity of Some Apricot Varieties at Different Ripening Stages. Chil. J. Agric. Res. 2018, 78, 266–275. [Google Scholar] [CrossRef]
- Ozzengin, B.; Zannou, O.; Koca, I. Quality Attributes and Antioxidant Activity of Three Wild Plums from Prunus Spinosa and Prunus Domestica Species. Meas. Food 2023, 10, 100079. [Google Scholar] [CrossRef]
- Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in Their Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9290. [Google Scholar] [CrossRef]
- Aluko, R.E. Food-Derived Acetylcholinesterase Inhibitors as Potential Agents against Alzheimer’s Disease. eFood 2021, 2, 49–58. [Google Scholar] [CrossRef]
- Bonesi, M.; Tenuta, M.C.; Loizzo, M.R.; Sicari, V.; Tundis, R. Potential Application of Prunus armeniaca L. and P. domestica L. Leaf Essential Oils as Antioxidant and of Cholinesterases Inhibitors. Antioxidants 2018, 8, 2. [Google Scholar] [CrossRef]
- Saleem, U.; Hussain, L.; Shahid, F.; Anwar, F.; Chauhdary, Z.; Zafar, A. Pharmacological Potential of the Standardized Methanolic Extract of Prunus armeniaca L. in the Haloperidol-Induced Parkinsonism Rat Model. Evid.-Based Complement. Altern. Med. 2022, 2022, 3697522. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P. Profile of Phenolic Compounds of Prunus armeniaca L. Leaf Extract Determined by LC-ESI-QTOF-MS/MS and Their Antioxidant, Anti-Diabetic, Anti-Cholinesterase, and Anti-Inflammatory Potency. Antioxidants 2021, 10, 1869. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.; Wojdyło, A. Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit. Antioxidants 2023, 12, 1380. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Wojdyło, A.; Oszmiański, J.; Nowicka, P. Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods 2021, 10, 808. [Google Scholar] [CrossRef] [PubMed]
- de Sales, P.M.; de Souza, P.M.; Simeoni, L.A.; Magalhães, P.d.O.; Silveira, D. α-Amylase Inhibitors: A Review of Raw Material and Isolated Compounds from Plant Source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef]
- Wojdyło, A.; Turkiewicz, I.P.; Tkacz, K.; Nowicka, P.; Bobak, Ł. Nuts as Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their in Vitro Bioactive Properties. Food Chem. X 2022, 15, 100418. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Hussain, H.; Mamadalieva, N.Z.; Hussain, A.; Hassan, U.; Rabnawaz, A.; Ahmed, I.; Green, I.R. Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Curr. Issues Mol. Biol. 2022, 44, 1960–1994. [Google Scholar] [CrossRef]
- Silvan, J.M.; Ciechanowska, A.M.; Martinez-Rodriguez, A.J. Modulation of Antibacterial, Antioxidant, and Anti-Inflammatory Properties by Drying of Prunus domestica L. Plum Juice Extracts. Microorganisms 2020, 8, 119. [Google Scholar] [CrossRef]
- Lima, E.M.F.; Matsumura, C.H.S.; Da Silva, G.L.; Patrocínio, I.C.S.; Santos, C.A.; Pereira, P.A.P.; Hassimotto, N.M.A.; Pinto, U.M.; Da Cunha, L.R. Antimicrobial and Antioxidant Activity of Apricot (Mimusopsis comersonii) Phenolic-Rich Extract and Its Application as an Edible Coating for Fresh-Cut Vegetable Preservation. Biomed. Res. Int. 2022, 2022, 8440304. [Google Scholar] [CrossRef]
- van der Maas, L.; Driessen, J.L.S.P.; Mussatto, S.I. Effects of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysates on the Growth of Bacillus subtilis. Energies 2021, 14, 8419. [Google Scholar] [CrossRef]
- Ibraheem, O.; Ndimba, B.K. Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-Derived Inhibitory Compounds. Int. J. Biol. Sci. 2013, 9, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Desseva, I.; Dincheva, I.; Tumbarski, Y. Valorization of Peels of Eight Peach Varieties: GC–MS Profile, Free and Bound Phenolics and Corresponding Biological Activities. Antioxidants 2023, 12, 205. [Google Scholar] [CrossRef]
- Ding, Y.; Morozova, K.; Scampicchio, M.; Ferrentino, G. Non-Extractable Polyphenols from Food By-Products: Current Knowledge on Recovery, Characterisation, and Potential Applications. Processes 2020, 8, 925. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Kivrak, I.; Kivrak, S. Antioxidant Properties, Phenolic Profile and Nutritional Value for Sorbus umbellata Fruits from Turkey. J. Nutr. Food Sci. 2014, 2, 1043. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Barnes, K.W.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Desseva, I.; Manolov, I.; Petkova, N.; Vrancheva, R.; Peltekov, A.; Slavov, A.; Zhivondov, A. Comprehensive Evaluation of Late Season Peach Varieties (Prunus persica L.): Fruit Nutritional Quality and Phytochemicals. Molecules 2021, 26, 2818. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mihaylova, D.; Lante, A.; Krastanov, A. Total Phenolic Content, Antioxidant and Antimicrobial Activity of Haberlea rhodopensis Extracts Obtained by Pressurized Liquid Extraction. Acta Aliment. 2015, 44, 326–332. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Enzymatic Assay of α-Amylase (EC 3.2.1.1). Available online: https://www.sigmaaldrich.com/BG/en/technical-documents/protocol/protein-biology/enzyme-activity-assays/enzymatic-assay-of-a-amylase (accessed on 6 September 2024).
- Mihaylova, D.; Desseva, I.; Popova, A.; Dincheva, I.; Vrancheva, R.; Lante, A.; Krastanov, A. GC-MS Metabolic Profile and α-Glucosidase-, α-Amylase-, Lipase-, and Acetylcholinesterase-Inhibitory Activities of Eight Peach Varieties. Molecules 2021, 26, 4183. [Google Scholar] [CrossRef] [PubMed]
- Saifuddin, N.; Raziah, A.Z. Enhancement of Lipase Enzyme Activity in Non-Aqueous Media through a Rapid Three Phase Partitioning and Microwave Irradiation. J. Chem. 2008, 5, 864–871. [Google Scholar] [CrossRef]
- Dobrev, G.; Zhekova, B.; Dobreva, V.; Strinska, H.; Doykina, P.; Krastanov, A. Lipase Biosynthesis by Aspergillus Carbonarius in a Nutrient Medium Containing Products and Byproducts from the Oleochemical Industry. Biocatal. Agric. Biotechnol. 2015, 4, 77–82. [Google Scholar] [CrossRef]
- Lobbens, E.S.B.; Vissing, K.J.; Jorgensen, L.; van de Weert, M.; Jäger, A.K. Screening of Plants Used in the European Traditional Medicine to Treat Memory Disorders for Acetylcholinesterase Inhibitory Activity and Anti Amyloidogenic Activity. J. Ethnopharmacol. 2017, 200, 66–73. [Google Scholar] [CrossRef]
- Assaad, H.I.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid Publication-Ready MS-Word Tables for One-Way ANOVA. SpringerPlus 2014, 3, 474. [Google Scholar] [CrossRef]
Samples/Assays | TPCs | TFs | TMAs | |
---|---|---|---|---|
“Stendesto” plum–apricot hybrid | Free | 23.52 ± 0.75 a | 5840.7 ± 108.8 a | 1502.70 ± 24.10 a |
Alkaline hydrolysis | 0.72 ± 0.01 d | 76.5 ± 0.9 d | 25.61 ± 1.09 c | |
Acid hydrolysis | 0.40 ± 0.00 d | - | - | |
“Stanley” plum | Free | 19.08 ± 0.58 b | 1971.96 ± 13.32 c | 1219.96 ± 34.29 b |
Alkaline hydrolysis | 0.61 ± 0.01 d | 54.04 ± 3.55 d | 19.71 ± 1.34 c | |
Acid hydrolysis | 0.50 ± 0.01 d | 25.37 ± 5.54 d | - | |
“Modesto” apricot | Free | 4.45 ± 0.09 c | 3277.71 ± 11.79 b | - |
Alkaline hydrolysis | 1.01 ± 0.00 d | - | - | |
Acid hydrolysis | 0.97 ± 0.01 d | - | - |
Sample/Assay | DPPH | ABTS | FRAP | CUPRAC | |
---|---|---|---|---|---|
“Stendesto” plum–apricot hybrid | Free | 58.86 ± 1.46 a | 340.27 ± 1.54 a | 173.77 ± 2.60 a | 260.16 ± 4.49 a |
Alkaline hydrolysis | 1.79 ± 0.01 d | 10.14 ± 1.82 d | 4.16 ± 0.08 d | 7.52 ± 0.19 d | |
Acid hydrolysis | 1.03 ± 0.03 d | 8.15 ± 0.45 d | 1.07 ± 0.02 d | 5.07 ± 0.07 d | |
“Stanley” plum | Free | 52.78 ± 0.58 b | 239.50 ± 4.90 b | 136.57 ± 6.73 b | 191.85 ± 1.65 b |
Alkaline hydrolysis | 1.517 ± 0.026 d | ˂LOD | 2.77 ± 0.05 d | 5.65 ± 0.34 d | |
Acid hydrolysis | 1.146 ± 0.036 d | ˂LOD | 2.81 ± 0.04 d | 5.92 ± 0.25 d | |
“Modesto” apricot | Free | 12.98 ± 0.06 c | 64.20 ± 0.39 c | 33.96 ± 0.16 c | 55.31 ± 0.63 c |
Alkaline hydrolysis | 0.54 ± 0.06 d | ˂LOD | 2.98 ± 0.06 d | 6.48 ± 0.03 d | |
Acid hydrolysis | 0.35 ± 0.02 d | ˂LOD | 2.32 ± 0.08 d | 5.40 ± 0.25 d |
Sample | Extraction Type | IC50, g/mL |
---|---|---|
“Stendesto” plum–apricot hybrid | Free | 0.0219 ± 0.001 b |
Alkaline hydrolysis | - | |
Acid hydrolysis | - | |
“Stanley” plum | Free | 0.0547 ± 0.003 a |
Alkaline hydrolysis | 0.0584 ± 0.002 b | |
Acid hydrolysis | - | |
“Modesto” apricot | Free | - |
Alkaline hydrolysis | - | |
Acid hydrolysis | - |
Sample/Assay | α-Glucosidase | Lipase | α-Amylase | |
---|---|---|---|---|
“Stendesto” plum–apricot hybrid | Free | 0.00425 ± 0.001 c | - | - |
Alkaline hydrolysis | 0.0416 ± 0.001 a | - | - | |
Acid hydrolysis | - | - | - | |
“Stanley” plum | Free | 0.005254 ± 0.0003 c | - | - |
Alkaline hydrolysis | 0.029735 ± 0.002 b | - | - | |
Acid hydrolysis | - | - | - | |
“Modesto” apricot | Free | - | - | - |
Alkaline hydrolysis | - | - | - | |
Acid hydrolysis | - | - | - |
Test Microorganisms | Inhibition Zone, mm | |||||
---|---|---|---|---|---|---|
Sample | “Stanley” Plum | “Stendesto” Plum–Apricot Hybrid | ||||
Extraction | Free | Alkaline Hydrolysis | Acid Hydrolysis | Free | Alkaline Hydrolysis | Acid Hydrolysis |
B. subtilis ATCC 6633 | 8 | - | 8 | 11 | - | - |
B. cereus NCTC 11145 | 8 | - | 8 | 10 | - | 8 |
St. aureus ATCC 25923 | - | - | - | - | - | - |
L. monocytogenes NBIMCC 8632 | - | - | 8 | 8 | - | - |
E. faecalis ATCC 29212 | - | - | - | 10 | - | - |
S. enteritidis ATCC 13076 | - | - | - | 10 | - | - |
K. pneumoniae ATCC 13883 | - | - | - | 8 | - | - |
E. coli ATCC 25922 | 8 | 8 | 8 | 10 | 8 | 8 |
P. vulgaris ATCC 6380 | - | - | - | 8 | - | - |
P. aeruginosa ATCC 9027 | - | - | 8 | 10 | - | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaylova, D.; Desseva, I.; Tumbarski, Y.; Popova, A.; Pandova, S.; Lante, A. Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits. Plants 2024, 13, 2936. https://doi.org/10.3390/plants13202936
Mihaylova D, Desseva I, Tumbarski Y, Popova A, Pandova S, Lante A. Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits. Plants. 2024; 13(20):2936. https://doi.org/10.3390/plants13202936
Chicago/Turabian StyleMihaylova, Dasha, Ivelina Desseva, Yulian Tumbarski, Aneta Popova, Svetla Pandova, and Anna Lante. 2024. "Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits" Plants 13, no. 20: 2936. https://doi.org/10.3390/plants13202936
APA StyleMihaylova, D., Desseva, I., Tumbarski, Y., Popova, A., Pandova, S., & Lante, A. (2024). Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits. Plants, 13(20), 2936. https://doi.org/10.3390/plants13202936