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Abstract: Plants exposed to abiotic stressors show diverse physiological, biochemical, and molecular
responses. Biosynthesis of plant secondary metabolites—including essential oils—is a vital plant
defense mechanism. As these bioactive compounds are widely used in the pharmaceutical, cosmetic
and food industries, it is essential to understand how their production is affected in various envi-
ronments. While interaction between specific abiotic stressors such as salt stress has been widely
studied, relatively less information is available on how essential oil production is affected by toxic
contaminants. Present review intends to give an insight into the possible interaction between chemical
stress and essential oil production, with special regard to soil and air pollution. Available studies
clearly demonstrate that heavy metal induced stress does affect quantity and quality of EOs produced,
however, pattern seems ambiguous as nature of effect depends on the plant taxon and on the EO.
Considering mechanisms, genetic studies clearly prove that exposure to heavy metals influences the
expression of genes being responsible for EO synthesis.

Keywords: medicinal plants; essential oil production; soil pollution; atmospheric pollution; heavy
metal stress

1. Introduction

Heavy metal (HM) contamination of agricultural soils has become a major environ-
mental concern as potentially toxic compounds reduce the productivity of plants and pose
environmental health risks [1]. Heavy metals and metalloids are persistent pollutants
because they can accumulate in the soil if they are not taken up by plants or removed by
leaching [2]. Most frequently reported HMs include As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn [3].
Several heavy metals are essential for plant life in lower concentrations but become toxic at
higher quantities. Examples include B, Cu, Fe, Mg, Mn, Mo, Ni, and Zn [4]. On the other
hand, some HMs are highly toxic at almost all concentrations, including As, Cd, Cr, Hg,
and Pb [5].

Possible sources of soil pollution include industrial activities, fossil fuel burning, traffic,
mining, smelting, waste or wastewater disposal [6]. In addition, heavy metal pollution can
occur during agricultural practice, such as using heavy metal-enriched organic additives or
via irrigation using wastewater containing heavy metals in high concentrations [7].

A wide range of studies have reported that medicinal plants are exposed to heavy
metal pollution in their natural habitats, making collection and use for human consumption
unsafe. Karahan et al. reported increased heavy metal concentrations in medicinal plants
collected from Eastern Mediterranean Region of Turkey in habitats being impacted by
industrial activity or mining [8]. Atmospheric heavy metal contamination was monitored
in the study of Agoramoorthy et al. [9] in halophytic medicinal plants in Tamil Nadu
(India), demonstrating actual impact. Tomaszewska-Sowa et al. assessed heavy metal
load and subsequent accumulation of heavy metals in natural habitats in Poland [10]. The
study reported that some metals, e.g., Pb and Hg were found in elevated concentrations
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in rhizopheric soils and in some medicinal plants. Lead contamination was also found in
natural habitats in Serbia [11].

Considering the fact that medicinal plants are of global value [12], a wide range of
studies have been targeted to examine the relationship between heavy metal contamination
and plants’ responses. Most of the studies concentrate on possible accumulation of HMs in
the plants’ body [13], as it has been widely assumed this in turn poses human health risks
on consumers [14].

On the other hand, the response of plants is also of crucial importance. Secondary
metabolites (SMs), including essential oils, are playing a vital role in the plant’s defense
against environmental stressors, like chemical agents [15,16]. It is generally hypothesized
that heavy metal stress triggers the production of SMs [17]. Recent review has been written
with the aim to summarize studies and findings which enlighten the potential impact of
heavy metals posed chemical stress on the production and metabolism of essential oils.

2. Exposure Routes

HMs can enter the plants’ body via both root and foliar uptake. Comparing the two
exposure pathways, the soil-root transfer is the major process determining metal concentration
in the different organs of the plant [18]. In areas affected by industrial activity, mining or high
traffic, uptake via both pathways can occur simultaneously. However, the soil-root transfer
has been more thoroughly studied than the air-leaves-stem pathway [19,20].

2.1. Uptake from the Soil

HMs being present in the soil are first adsorbed onto the root surfaces, followed by the
passive penetration and diffusion along with water molecules. Another possible process
implies active transfer along a concentration gradient [21].

Soil physico-chemical properties such as soil particle size, cation exchange capacity
affect metal availability to a great extent. Soil pH influences the solubility, bioavailability
and therefore, toxicity of HMs. At low pH, metals rather occur in more bioavailable
free ionic forms, at higher pH they form phosphates and carbonates which are barely
soluble [22]. Microbial activity can also modify the biosorption and bioavailability of heavy
metals [23].

Partitioning between organs will also influence the presence and potential toxic effects of
HMs. Olowoyo et al. measured the concentrations of different heavy metals (Fe, Mn, Zn, Cu,
Cr, Ni and Pb) in the roots, stems and leaves of Datura stramonium and Amaranthus spinosus,
reporting a diminishing order of all elements in the root-stem-leaves route [24]. Similar
pattern was reported by Tripathi et al. [25]. Heavy metals, however, can be translocated to
above-ground parts. Pehoiu et al. [26] measured heavy metal uptake and translocation in
medicinal plants such as Plantago major, or Taraxacum officinale, and found high amounts of
Cd, Mn and Pb in leaves.

2.2. Foliar Uptake

A relatively scarcely discussed exposure pathway is airborne contamination. Atmo-
spheric particulate matter (PM) is grouped according to aerodynamic diameter of particles
as coarse, fine, and ultrafine particles (UFPs) with aerodynamic diameters of 2.5 to 10 µm
(PM10), <2.5 µm (PM2.5), and <0.1 µm (PM0.1), respectively. While PM10 and PM2.5 frac-
tions are better known and characterized, UFP fate, composition and toxicity has become
an emerging issue quite recently. Particle size is an important aspect, as PM might bind
potentially toxic chemicals, including heavy metals. The smaller the more hazardous: as
fine particles have relatively bigger surface, they can bind relatively higher amount of con-
taminants. In a size-fractionated urban sample, Srivastava and Jain [27] demonstrated that
most of the metal mass (Mn, Cr, Cd, Pb, Ni, and Fe) were concentrated in the PM0.7 fraction.
Hu et al. assessed the foliar uptake of lead from nine-stage size-segregated aerosols and
found that the fine fractions enriched more Pb than the coarse fractions [28].
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Potential sources of atmospheric heavy metals include natural (such as forest fires) as
well as anthropogenic sources (mining, waste incineration, etc.) [29]. Another important
source of is brake dust [30]. Of potentially toxic elements, Pb and Cd are still dominant
components of atmospheric aerosol [31]. The presence of redoxiactive trace elements such as
Ni, Cr, Co, and As also contribute to the potential toxicity of atmospheric PM [32]. However,
heavy metal content of atmospheric PM shows a seasonal pattern; for example, Pb, which
is primarily derived from the anthropogenic source, occurs in elevated concentrations in
spring and winter [33].

In comparison to the soil-to-root transfer, uptake of heavy metals from atmospheric
fallout has been much less studied [34]. Plants are exposed to airborne particulates via dry
or wet deposition; in the latter case, particles are washed out by rain, snow or fog. Pan and
Wang [35] compared the significance of dry and wet deposition fluxes for a wide range of
heavy metals and found that for most of them, dry deposition was the dominant process.
However, in case of some HMs such as nickel, arsenic, lead, zinc, cadmium, the relative
contribution of wet and dry deposition fluxes varied by sampling sites. Wet deposition,
in general, strongly depends on the local pattern of precipitation [36] and shows seasonal
variability [37].

Metals contained in the deposited particles can be taken up via internalization through
the cuticle and penetration through stomatal openings [38]. Different species will show
varying efficiency in absorbing HMs as leaf morphology significantly influences the extent
plants capture and retain PM [39]. Most important morphological features are leaf size
and shape [40], roughness, the presence or absence of leaf hairs [41] and the presence and
thickness of epicuticular way layer [42].

3. Potential Toxic Effects of HMs

According to Feki et al. [43], phytotoxic effects of HMs are grouped as (1) physiological
responses, including the inhibition of photosynthesis, as well as plant growth inhibition;
(2) biochemical responses, including producing reactive oxygen species, resulting in oxida-
tive stress and modification of the antioxidant enzymes activities and (3) molecular effects,
represented basically by the modification of the expression of metals stress responsive genes.

The most generally reported symptom in heavy metal stressed medicinal plants is
reduced growth (reviewed by Maleki et al. [44]). Growth impairment can be associated
with the damage of photosynthetic processes. Also, the presence of heavy metals can
reduce nutrient availability: Al-Rashedy for example experimentally demonstrated in soils
treated with cobalt and nickel, uptake of sodium and potassium decreased in spearmint
(Mentha spicata L.) [45]. Nutrient deficiency, naturally, can result in lower growth rate.

Sytar et al. [46] discuss that the inhibition of photosynthesis is one of the major effects,
affecting both light and dark reactions. Toxicity symptoms of HM exposure involve the
decline of photosynthetic activity and decrease in the photosynthetic pigments’ (chlorophyll
a, b and carotene) concentrations [47]. The potential harmful effects of HM pollution were
depending on the length of exposure in the experiment of Dinu et al. [48]. Mint seedlings
were exposed for two metal mixtures (As+Cd and As+Cd+Ni+Pb). After one month
of exposure, test plants showed an increased chlorophyll content in the As+Cd+Ni+Pb
treatment, but the tendency changed by the end of the total exposure of three months.
Symptoms of phytotoxicity, such as chlorosis and leaves’ loss were detected.

One major mechanism of HMs phytotoxicity is the overproduction of reactive oxygen
species (ROS) which induce oxidative stress in plants. Plants have developed an efficient
antioxidative defense system that includes both enzymatic components such as superoxide
dismutase, catalase, peroxidases, and glutathione reductase as well as non-enzymatic ones
such as ascorbic acid (reviewed by Mansoor et al. [49]).

The levels of these enzymes are expected to increase in case of HM induced stress.
Biswas et al. [50] experimentally showed the increased levels of antioxidant enzyme ac-
tivities such as guaiacol peroxidase (GPX), superoxide dismutase (SOD) and ascorbate
peroxidase (APX) in the medicinal plant Centella asiatica (L.) Urban (asiatic pennywort or
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brahmi) cultivated in soils polluted with cadmium and lead. However, in case of excess
contamination load, the activity of some enzymes involved in defense responses can be
disrupted [51]. Increase in the activity of non-enzymatic antioxidants under heavy metal
stress was also reported, as part of detoxification processes [52,53].

4. Effects of Heavy Metals on Essential Oil Production

The number of studies specifically targeted to assess EO concentrations and/or com-
position in plants exposed to heavy metal stress is rather limited. The following chapter
intends to give a summary of these works. In laboratory experiments, performance of test
plants was assessed in different cultivating media, with the emphasis of experimentally
treating soil with a pre-set concentration series of HMs or their combination. Lab-scale
studies also include the assessment of potentially toxic soil samples brought to the labora-
tory. Actual field studies where toxic symptoms of essential oil-bearing plants grown in
contaminated environments are evaluated will be discussed separately.

4.1. Lab-Scale Studies

Most studies address cadmium (Cd), lead (Pb), and copper (Cu) as they are considered
the most widespread heavy metal contaminants in agricultural soils [54]. Pirooz et al. [55]
(2022) treated 50-day-old sage (Salvia officinalis L.) plantlets with various concentrations
of CuSO4 (0, 100, 200, 400, and 800 µM). CuSO4 was added to half-strength Hoagland’s
solution used for watering the plantlets. Treatment up to 200 µM elucidated the increase
in total essential oil production. Similarly, watering with 40 mM solution of CuSO4 was
used in the study of Es-sbihi et al. [56]. This concentration was preliminary assessed and
elucidated phytotoxicity, resulting in growth inhibition. Treated S. officinalis plants showed
significant (16.66%) increase in EO yield as compared to control.

Elzaawely et al. [57] experienced reduction in the total EO yield when shell ginger
(Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm., family Zingiberaceae) plants were sprayed
with 500 mM copper sulphate (CuSO4), though some components showed increase such as
1,8-cineol, linalool, camphor, borneol, or cuminaldehyde. Moderate Cu and Zn treatment
had a stimulating effect on major components of EO in pennyroyal (M. pulegium L.), namely
pulegone, cis-isopulegone, a-pinene, sabinene, 1,8-cineol and thymol [58].

Babashpour-Asl et al. [59] used irrigation with Cd solution (4 mg/L, and 8 mg/L,
1250 mL in each pot) to treat coriander (Coriandrum sativum L.) and found that the lower
Cd concentration (4 mg/L) increased EO production.

Different treatment method was used in the study of Fattahi et al. [60], where soil was
pre-treated using Cd (0, 5, 10, 20 mg/kg soil) and Pb (0, 100, 200, 400 mg/kg soil). Both
Cd and Pb had a stimulating effect on total EO production of the test plant, sweet basil
(Ocimum basilicum L.). However, when analyzing the effect on the composition of EOs,
the authors found that both Cd and Pb increased the concentration of some EOs such as
octanol, linalool while decreased other compounds like α-pinene. Similarly, stimulating
effect was demonstrated in the study of Poursaeid et al. [61]. EO yield, especially main
compounds of the essential oil like estragole, linalool and geranial of O. basilicum increased
upon the treatment with 25, 75, 100, and 150 µM Cd in a dose-dependent manner.

Mohammed et al. [62] irrigated different mint cultivars (peppermint, Mentha x piperita
L. and curly mint, M. spicata var. crispa L.) with different concentrations of Cd reaching
soil levels of 15, 30, and 45 mg/kg. In case of 15 mg/kg level, EO production increased
in both test plants. All treatments, however, triggered phytotoxic effects such as growth
impairment and reduction in total chlorophyll content. Cd and Pb also elucidated higher
EO production in O. basilicum L. in the study of Youssef [63], upon treatment with 5, 10,
15, 20, 25 ppm Cd and 100, 350, 750, 1000, 1500 ppm Pb. On the contrary, lemon balm test
plants (Melissa officinalis L.) were exposed to 10, 20, and 30 mg/kg of soil Cd in a chronic,
3 months test [64]. In addition to growth and morphological impairments, EO production
significantly decreased. Authors concluded that both structural and functional damage
could have damaged EO producing mechanisms.
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Irrigation with Cd and Pb was used for treatment in the study of Amirmoradi et al.,
in concentrations 10, 20, 40, 60, 80, 100 ppm for Cd and 100, 300, 600, 900, 1200, 1500 ppm
for Pb [65]. Essential oil content of the test plant M. piperita decreased with increasing
concentrations of Cd and Pb, phytotoxic symptoms also appeared. Similar treatments
with Cd were applied in the study of Azimychetabi et al., also using M. piperita as model
plant [66]. Constituents of peppermint oil showed different behavior: pulegone and
menthofuran quantities increased, whereas menthol content decreased.

Kunwar et al. [67] applied Pb in 500, 600, 750, 900 mg/kg, Cu in 270, 300, 500,
700 mg/kg and Cd in 6, 10, 20, 30 mg/kg concentrations, also comparing the response
of two plants, M. spicata and O. basilicum. In O. basilicum, total EO production increased,
including the main component, linalool, while methyl chavicol yield decreased. In case of
the other plant examined, M. spicata, no significant change was found. Sulastri and Tam-
pubolon [68] also investigated the effect of Cd, using different species (Vetiveria zizanioides,
Cymbopogon citratus, C. nardus, Curcuma xanthorrhiza, Pogostemon cablin, and Alpinia galanga).
Striking species-dependent differences were found: while V. zizanioides showed an app.
100% increase in EO yield, the other species showed much lower or no response.

Sá et al. [69] cultivated spearmint (M. crispa) on experimentally treated soil, using 900,
1800, 3600, 7200, and 9000 mg/kg of Pb. At higher Pb levels, essential oil yield significantly
increased, also, its chemical composition was affected. The concentration of the major compo-
nent of M. crispa essential oil, carvone, reached as much as 90% in Pb-contaminated soils.

Species-dependent sensitivity was found in the study of Prasad et al. [70]. 30.0 and
60.0 mg/kg soil of chromium and lead concentrations were assessed on the production
and chemical profile of essential oil of three Mentha species (M. piperita, M. arvensis, and
M. citrata). The essential oil yield of M. arvensis and M. citrata was significantly reduced
by both applications while that of M. piperita was significantly increased. Zheljazkov
et al. [1] prepared soil samples with Cd, Pb, Cu and their combination for cultivation of dill
(Anethum graveolens L., cv. Hercules), peppermint (Mentha x piperita L., cv. Mitchum), and
basil (Ocimum basilicum L., cv. Broad Leaf Italian). Treatment reduced the menthol content
in the peppermint oil and reduced the total oil content in basil, also, copper applied at the
highest concentration of 150 mg/L reduced oil content in dill.

Nabi et al. [71] investigated the effects of nickel (Ni) on menthol mint (M. arvensis
L.). Plantlets were transplanted into soil treated with Ni, the concentrations were set
at 20, 40, 60, 80, and 100 mg/kg Ni of soil. A clear Janus-faced effect was experienced:
stimulation of essential oil production in case of the lowest (20 mg/kg of soil) concentration
but inhibition at higher concentrations. Effect on different EO production, however, was
not unambiguous: while production of menthol, the main constituent of mint oil, was
already reduced in the lowest concentration as compared to the control, menthone and
menthyl acetate concentrations were increased in the lower concentrations.

Arsenic (As) treatment was performed by Biswas et al. [72], applying disodium hy-
drogen arsenate [Na2HAsO4·7H2O] reaching 10, 50, 150 mg/kg As soil concentrations.
Dose-dependent change in total EO production in O. basilicum was experienced: increase in
10 and 50 mg/kg concentrations but decrease at the higher, 150 mg/kg concentration. Dif-
ferent EO components showed contradictory tendencies: linalool, the main EO compound
increased but others such as 1,8-cineol and methyl eugenol decreased.

Other studies measured EO content in test plants cultivated in soils treated with
complex mixture of heavy metals. No change in the essential oil composition was reported
by Scora and Chang [73] when peppermint (M. piperita) was grown on sewage sludge-
treated soils containing Cd, Cr, Cu, Ni, Pb, and Zn. Pandey et al. [74] grew palmarosa
(Cymbopogon martinii (Roxb.) Wats.) plants (family Poaceae) on tannery sludge polluted
soil, potentially exposed to Cr, Ni, Pb and Cd stress. No change was observed in EO yield.

Gautam and Agrawal [75] used lemongrass (Cymbopogon citratus (D.C.) Stapf.) (family
Poaceae) plants to assess the potential effect of heavy-metal containing red mud. Red mud
was mixed with sewage sludge amended soil at different concentrations (5, 10 and 15%
w/w). The two lower doses had positive effect on total EO yield.
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4.2. Field Experiments

Field experiments have also been conducted, mainly to evaluate if essential oil-bearing
plants can be cultivated in areas affected by anthropogenic pollution. These studies compare
the general performance of these plants to reference sampling areas, parameters assessed
include growth, yield and EO yield. However, number of such studies is very limited,
and they cover only a few medicinal plant species. Zheljazkov et al. [76] did not find
significant differences between EO content of Lavandula angustifolia Mill in field experiments,
comparing lavander grown in control site and near a non-ferrous metals combine factory,
on heavily polluted soils.

Gharib et al. [77] compared EO content of wild mint (M. longifolia) collected from
polluted and unpolluted sections of River Nile (Egypt). Not only EO yield was higher in
the polluted canals but also, antioxidant activity of EO was more pronounced as measured
by the free radical 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. However, different compo-
nents of the EO showed different tendency: plants grown in polluted environment showed
increased menthone but decreased pulegone content.

Givianrad and Hashemi [78] measured different components (monoterpene hydrocar-
bons, oxygenated monoterpenes; sesquiterpene hydrocarbons and oxygenated sesquiter-
penes) in Tanacetum polycephalum Sch.Bip. (family Asteraceae) grown at increasing differ-
ences from Veshnaveh-Qom mine (Iran). With increasing distance, the concentration of
each group also increased. Main heavy metals components measured in the soil samples
were Cu and Ag.

Table 1 summarizes literature conducted both lab-scale and in the field, assessing the
impact of different heavy metals and/or environmental pollution on EO production of
different medicinal plants.

Table 1. Summary of lab-scale and field studies.

Reference Plant HM Examined/Nature of Study

Pirooz et al. 2022 [55] Salvia officinalis L. Cu, lab-scale

Es-sbihi et al. 2020 [56] S. officinalis L. Cu, lab-scale

Elzaawely et al. 2007 [57] Alpinia zerumbet (Pers.) B.L.Burtt and R.M.Sm. Cum lab-scale

Lajayer et al. 2017 [58] Mentha pulegium L. Cu, Zn, lab-scale

Babashpour-Asl et al. 2022 [59] Coriandrum sativum L. Cd, lab-scale

Fattahi et al. 2019 [60] Ocimum basilicum L. Cd, Pb, lab-scale

Poursaeid et al. 2021 [61] O. basilicum L. Cd, lab-scale

Mohammed et al. 2024 [62] Mentha piperita L., M. spicata var. crispa L. Cd, lab-scale

Youssef 2021 [63] O. basilicum L. Cd, Pb, lab-scale

Kilic and Kilic 2017 [64] Melissa officinalis L. Cd, lab-scale

Amirmoradi et al. 2012 [65] M. piperita L. Cd, Pb, lab-scale

Azimychetabi et al. 2021 [66] M. piperita L. Cd, lab-scale

Kunwar et al. 2015 [67] M. spicata L., O. basilicum L. Cd, Cu, Pb, lab-scale

Sulastri and Tampubolon 2019 [68]

Vetiveria zizanioides (L.) Nash, Cymbopogon
citratus (DC.) Stapf, C. nardus (L.) Rendle,

Curcuma xanthorrhiza Roxb., Pogostemon cablin
(Blanco) Benth., Alpinia galanga (L.) Willd.

Cd, lab-scale

Sá et al. 2015 [69] M. crispa L. Pb, lab-scale

Prasad et al. 2010 [70] M. piperita L., M. arvensis L., M. citrata Ehrh. Cd, Pb, lab-scale
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Table 1. Cont.

Reference Plant HM Examined/Nature of Study

Zheljazkov et al. 2006 [1] Anethum graveolens L., Mentha piperita L.,
O. basilicum L. Cd, Pb, Cu

Nabi et al. 2020 [71] M. arvensis L. Ni, lab-scale

Biswas et al. 2015 [72] O. basilicum L. As, lab-scale

Scora and Chang 1997 [73] M. piperita L. Cd, Cr, Cu, Ni, Pb, Zn sewage
sludge-treated soils

Pandey et al. 2015 [74] Cymbopogon martinii (Roxb.) Wats. Cr, Ni, Pb, Cd, tannery sludge
polluted soil

Gautam and Agrawal 2017 [75] Cymbopogon citratus (DC.) Stapf. Red mud mixed with sewage
sludge amended soil

Zheljazkov et al. 1996 [76] Lavandula angustifolia Mill. Field experiment

Gharib et al. 2021 [77] Mentha longifolia (L.) Huds. Field experiment

Givianrad and Hashemi 2014 [78] Tanacetum polycephalum Sch.Bip. Field experiment

4.3. Assessment of Atmospheric Heavy Metal Pollution

Basile et al. [79] compared the chemical composition of feijoa (Feijoa sellowiana Berg.,
family Myrtaceae) oils from plants growing in a control site to plants collected from a
site exposed to air pollution (situated in Naples, Italy). Antioxidant compounds like
limonene, (E)-β-ocimene, α-terpineol, β-caryophyllene, etc. were found in significantly
higher concentrations in polluted samples. Judzentiene et al. [80] used the composition of
the essential oils in the needles of Scots pine (Pinus sylvestris L.) as an indicator to assess the
effect of different factories in Lithuania. In general, industrial emissions caused definitive
response, but in different ways. Pollution from the oil refinery and the cement factory
increased the production of shorter-chain terpenes while the nitrogen fertilizer factory
increased the production of longer-chain terpenes.

Nivinskiene et al. [81] analyzed the composition of essential oils of small-leaved
linden (Tilia cordata Mill.) blossom collected in reference sites vs. in urban environment
of Vilnius (Lithuania). The percentage of oxygenated compounds (such as monoterpenes,
sesquiterpenes, etc.) was higher in the ecologically clean localities. Hubai et al. [82] treated
O. basilicum plants with the aqueous extract of atmospheric PM, simulating wet deposition.
Eugenol content of the treated sample was not affected, but linalool content showed a
statistically significant increase after the treatment.

It should be noted, however, that in urban environments atmospheric particulate
matter binds a wide range of potentially toxic compounds in addition to heavy metals.
Polycyclic aromatic compounds are the most widely studied, as these compounds have well-
documented phyotoxicity and accumulation potential [83]. Plants exposed to atmospheric
pollution will most likely respond to the complex mixture of contaminants, in addition to
heavy metals.

5. Possible Mechanisms

The presence of heavy metals in the medicinal plants’ environment definitely influ-
ences essential oil production. However, there is very scarce literature discussing the
potential mechanisms behind. Figueiredo et al. [84] suggest that the emission of volatiles
is part of the defense mechanisms of plants. In general, secondary metabolites play a
well-documented role in counteracting ROS stress [85]. Bibbiani et al. [86] detected a wide
range of volatile organic compounds in the volatilome of the mint Tetradenia riparia exposed
to Zn stress. These VOCs included important essential oils like methanol, considered as
adaptive response by the authors.
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The most important definite proof is the study of Azimychetabi et al. [66]. M. piperita
test plants exposed to increasing soil Cd concentrations showed alterations in essential
oil content, in parallel with the reduction in the expression of menthone reductase and
pulegone reductase genes and increase in the expression of menthofuran synthase. Mode
of action of HMs on EO synthesis is illustrated in Figure 1.
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6. Bioaccumulation

A wide range of studies have investigated the accumulation of different heavy metals in
medicinal herbs. Bioaccumulation—the uptake and steady-state storage of contaminants—is
considered a serious hazard for potential consumers, including humans. Some studies have
even reported human health problems associated with the consumption of HM-contaminated
herbal medicines [87]. Chen et al. [88] reviews a wide range of health effects reported in associ-
ation with the occurrence of selected heavy metals in medicinal herbs. The study summarizes
1902 samples belonging to 118 different medicinal herbs. Several human health issues have
been reported according to the review, including (but not restricted to) dermatitis, gastrointesti-
nal symptoms such as bleeding, kidney or liver damage, toxic effects on the immune system.
Luo et al. [89] conducted a thorough study analyzing 1773 samples collected worldwide,
these samples belonged to 86 different kinds of commonly used herbs. Several toxic metals
occurred in over-limit concentrations, such as Pb in 5.75% of the samples, followed by
Cd (4.96%), As (4.17%), Hg (3.78%), and Cu (1.75%). Bioaccumulation of hazardous HMs
can occur in both herbal plants collected from their natural habitats [90] or cultivated,
depending on vicinity to potential pollution sources [91].

Plants have developed tolerance mechanisms to heavy metals taken up from the
soil such as exclusion and accumulation (reviewed by Sarma et al. [92]). In the case of
accumulated HMs, cells maintain the intracellular heavy metal ions, but in a detoxified
form, for example in metal-binding peptides. Exclusion implies that HMs are later removed
by leaf fall, therefore plants can get rid of these potentially toxic materials. In addition,
so-called excluder plants retain certain HMs such as Pb in the root system preventing
further transfer to the shoots [93].

Accumulation of heavy metals in O. basilicum has been reported by several authors:
Cd, Cr, and Pb [94]; Cd, Cr, Pb, and As [19]. No increased concentration of these metals
was documented, however, in the essential oils of such plants [61,95].

Lal et al. [96] assessed essential oil yield, accumulation of heavy metals in lemon
grass (Cymbopogon flexuosus) cultivated under various irrigation regimes of primary treated
wastewater containing Cd, Cr, Ni and Pb. These metals showed a tendency to accumulate
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in the plants, however, no accumulation was found in the essential oils. Gautam and
Agrawal [75] measured heavy metal content of Cymbopogon citratus plants and their EOs
when test plants were grown on a soil mixture containg red mud in different ratios. While
the plants accumulated Fe, Zn, Cu, Cd, Ni and Pb in higher amounts than the safe limit for
medicinal plants, no such accumulation was measured in the EO samples.

Lydakis-Simantiris et al. [97] cultivated three medicinal plant species (Matricaria re-
cutita, /family Asteraceae/, Thymus vulgaris and Salvia officinalis, /family Lamiaceae/)
in heavy metal polluted soils. The study applied nitrate salts of Cd, Pb, and Ni through
irrigation, reaching the final concentrations of the metals in the soil as Cd 1, 3, 10, 30 ppm,
Pb 60, 180, 600, 1800 ppm, and Ni 20, 60, 200, 600 ppm. While significant accumulation was
experienced in the plant tissues, essential oils remained unaffected.

Zheljakov et al. [1] measured Cd, Pb, Cu levels in EOs of A. graveolens, M. x piperita
and O. basilicum and reported no detectable accumulation. Authors also stress that such
plants can be grown in Cd, Pb, and Cu enriched soils without significant impairment
of essential oil composition and quality. Angelova et al. [98] conducted a field study on
an agricultural fields contaminated by metal works near Plovdiv (Bulgaria). Lavander
(Lavandula angustifolia L.) accumulated Pb, Zn and Cd but these HMs were not transferred
in the essential oils. The study proved that lavender can be grown for phytoremediation of
contaminated soils.

These studies clearly indicate that although heavy metal accumulation can be a serious
risk affecting the consumption of the medicinal herb itself, EOs remain intact. Collection
of essential oil-bearing plants often occurs in contaminated habitats, however, their EO
yield can be utilized for human consumption. Lydakis-Simantiris et al. [97] suggest that
such plants can be successfully grown on heavy metal polluted areas but exclusively for
EO production.

7. Concluding Remarks

Plants are known to show a wide range of symptoms when exposed to heavy metal
stress, from growth impairment to biochemical markers such as changes in antioxidant
enzymes concentrations. The production of essential oils, which plays an important part
in the plants’ defense mechanisms, seems to be impacted by heavy metals of known
phytotoxicity. However, reported studies seem to be ambiguous and no clear tendency
can be observed. Changes in the essential oil content of exposed medicinal plants—both
in quantitative and qualitative—are strongly dependent on the type of the plant as well
as the type of the EO itself. The picture is even more complicated as in some cases,
lower HM concentrations increased but high concentrations decreased EO production,
suggesting the damage to EO metabolism. Considering the relatively limited number of
published works which in turn have targeted a limited variety of medicinal plants, two main
conclusions can be drawn now. When mechanisms are to be explained, it has been proven
that heavy metals already express their effects on the level of genes being responsible for EO
synthesis, influencing the expression of genes. Secondly, several studies addressed in this
review have been conducted to assess if medicinal plants used for essential oil production
could be cultivated in heavy metal enriched soils providing suitable alternatives to edible
crops. Evaluation of bioaccumulation indicates that such plants can take up heavy metals in
considerable quantities, but it does not contaminate their essential oils. The main risk, however,
is that cultivation of collection of essential oil-bearing plants in contaminated environments
will result in the change of composition and/or quantity of their EO yield in an unpredictable
way. Unfortunately, the range of plants investigated is small, which makes extrapolations
even more limited, also suggesting the gaps further research should fill in.
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