Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions
Abstract
:1. Introduction
2. Results
2.1. Diurnal Variation in Water’s Physical and Chemical Variables During the Course of the Culture
2.2. Biomass Growth Rate and Nutrient Assimilation in the Raceway Ponds
2.3. Physiological and Functional Variables in Cultures Under Different Algal Density
2.3.1. In Situ Photosynthetic Activity
2.3.2. Ex Situ Photosynthetic Activity: Rapid Light Curves (RLC)
2.4. Physiological and Functional Variables in Acclimatized Thalli
2.5. Functional Relationship Between Variables
3. Discussion
3.1. Physical and Chemical Variables During the Culture
3.2. Effect of Algal Density on Biomass Growth Rate and Nutrient Assimilation
3.3. Effect of Algal Density on Physiological and Functional Variables
3.4. Effect of Algal Acclimatization on Physiological and Functional Variables
3.5. Functional Relationship Between Variables
4. Materials and Methods
4.1. Sampling
4.2. Experimental Conditions
4.3. Water Physical and Chemical Analysis
4.4. Biomass Growth Parameters and Physiological Variables Measurements
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bermejo, R.; Buschmann, A.; Capuzzo, E.; Cottier-Cook, E.; Fricke, A.; Hernández, I.; Hofmann, L.C.; Pereira, R.; van den Burg, S. State of Knowledge Regarding the Potential of Macroalgae Cultivation in Providing Climate-Related and Other Ecosystem Services: A Report of the Eklipse Expert Working Group on Macroalgae Cultivation and Ecosystem Services. 76 p. Available online: https://eklipse.eu/wpcontent/uploads/website_db/Request/MacroAlgae/EKLIPSE_DGMareReportPrintVersion_final.pdf (accessed on 10 August 2024).
- Duarte, C.M.; Bruhn, A.; Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 2021, 5, 185–193. [Google Scholar] [CrossRef]
- Charrier, B.; Abreu, M.H.; Araujo, R.; Bruhn, A.; Coates, J.C.; De Clerck, O.; Katsaros, C.; Robaina, R.R.; Wichard, T. Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytol. 2017, 216, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Jusadi, D.; Ekasari, J.; Suprayudi, M.A.; Setiawati, M.; Fauzi, I.A. Potential of Underutilized Marine Organisms for Aquaculture Feeds. Front. Mar. Sci. 2021, 7, 1250. [Google Scholar] [CrossRef]
- Massocato, T.F.; Robles-Carnero, V.; Vega, J.; Bastos, E.; Avilés, A.; Bonomi-Barufi, J.; Rörig, L.R.; Figueroa, F.L. Short-term nutrient removal efficiency and photosynthetic performance of Ulva pseudorotundata (Chlorophyta): Potential use for Integrated Multi-Trophic Aquaculture (IMTA). J. Appl. Phycol. 2023, 35, 233–250. [Google Scholar] [CrossRef]
- Massocato, T.F.; Robles-Carnero, V.; Moreira, B.R.; Castro-Varela, P.; Pinheiro-Silva, L.; Oliveira, W.d.S.; Vega, J.; Avilés, A.; Bonomi-Barufi, J.; Rörig, L.R.; et al. Growth, biofiltration and photosynthetic performance of Ulva spp. cultivated in fishpond effluents: An outdoor study. Front. Mar. Sci. 2022, 9, 1550. [Google Scholar] [CrossRef]
- Vega, J.; Schneider, G.; Moreira, B.R.; Herrera, C.; Bonomi-Barufi, J.; Figueroa, F.L. Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. Appl. Sci. 2021, 11, 5112. [Google Scholar] [CrossRef]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Kim, J.K.; Yarish, C.; Hwang, E.K.; Park, M.; Kim, Y. Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae 2017, 32, 1–13. [Google Scholar] [CrossRef]
- Monti, M.; Minocci, M.; Beran, A.; Iveša, L. First record of Ostreopsis cfr. ovata on macroalgae in the Northern Adriatic Sea. Mar. Pollut. Bull. 2007, 54, 598–601. [Google Scholar] [CrossRef]
- Akcali, I.; Kucuksezgin, F. A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas. Mar. Pollut. Bull. 2011, 62, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Baumann, H.A.; Morrison, L.; Stengel, D.B. Metal accumulation and toxicity measured by PAM—Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 2009, 72, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef] [PubMed]
- Dini, I. The Potential of Algae in the Nutricosmetic Sector. Molecules 2023, 28, 4032. [Google Scholar] [CrossRef] [PubMed]
- Zertuche-González, J.A.; Sandoval-Gil, J.M.; Rangel-Mendoza, L.K.; Gálvez-Palazuelos, A.I.; Guzmán-Calderón, J.M.; Yarish, C. Seasonal and interannual production of sea lettuce (Ulva sp.) in outdoor cultures based on commercial size ponds. J. World Aquac. Soc. 2021, 52, 1047–1058. [Google Scholar] [CrossRef]
- Fort, A.; Lebrault, M.; Allaire, M.; Esteves-Ferreira, A.A.; McHale, M.; Lopez, F.; Fariñas-Franco, J.M.; Alseekh, S.; Fernie, A.R.; Sulpice, R. Extensive Variations in Diurnal Growth Patterns and Metabolism Among Ulva spp. Strains. Plant Physiol. 2019, 180, 109–123. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Tenore, K.R. Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. J. Exp. Mar. Biol. Ecol. 1981, 53, 135–152. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Ryther, J.H. The Effects of Nitrogen and Seawater Flow Rate on the Growth and Biochemical Composition of Gracilaria foliifera var. angustissima in Mass Outdoor Cultures. Bot. Mar. 1979, 22, 529–538. [Google Scholar] [CrossRef]
- Chopin, T.; Robinson, S.M.C.; Troell, M.; Neori, A.; Buschmann, A.H.; Fang, J. Multitrophic Integration for Sustainable Marine Aquaculture. In Encyclopedia of Ecology; Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2008; pp. 2463–2475. [Google Scholar] [CrossRef]
- Neori, A.; Msuya, F.E.; Shauli, L.; Schuenhoff, A.; Kopel, F.; Shpigel, M. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. J. Appl. Phycol. 2003, 15, 543–553. [Google Scholar] [CrossRef]
- Buck, B.H.; Shpigel, M. ULVA: Tomorrow’s “Wheat of the sea”, a model for an innovative mariculture. J. Appl. Phycol. 2023, 35, 1967–1970. [Google Scholar] [CrossRef]
- Acién Fernández, F.G.; Gómez-Serrano, C.; Fernández-Sevilla, J.M. Recovery of Nutrients from Wastewaters Using Microalgae. Front. Sustain. Food Syst. 2018, 2, 59. [Google Scholar] [CrossRef]
- Pedro, A.S.; González-López, C.; Acién, F.; Molina-Grima, E. Outdoor pilot production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in raceway ponds. Algal Res. 2015, 8, 205–213. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, A.; Singh, Y.; Chen, W.H. Production of a sustainable fuel from microalgae Chlorella minutissima grown in a 1500 L open raceway ponds. Biomass Bioenergy 2021, 149, 106073. [Google Scholar] [CrossRef]
- Shpigel, M.; Guttman, L.; Ben-Ezra, D.; Yu, J.; Chen, S. Is Ulva sp. able to be an efficient biofilter for mariculture effluents? J. Appl. Phycol. 2019, 31, 2449–2459. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Bonomi-Barufi, J.; Celis-Plá, P.S.M.; Nitschke, U.; Arenas, F.; Connan, S.; Abreu, M.H.; Malta, E.-J.; Conde-Álvarez, R.; Chow, F.; et al. Short-term effects of increased CO2, nitrate and temperature on photosynthetic activity in Ulva rigida (Chlorophyta) estimated by different pulse amplitude modulated fluorometers and oxygen evolution. J. Exp. Bot. 2021, 72, 491–509. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Korbee, N.; Abdala, R.; Jerez, C.G.; la Torre, M.L.-D.; Güenaga, L.; Larrubia, M.A.; Gómez-Pinchetti, J.L. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta). Mar. Pollut. Bull. 2012, 64, 310–318. [Google Scholar] [CrossRef]
- Aguilera, J.; Gálvez, M.V.D.; Conde, R.; Pérez-Rodríguez, E.; Viñegla, B.; Abdala, R.; Segovia, M.; Herrera, E.; Figueroa, F.L. Series temporales de medida de radiación solar ultravioleta y fotosintética en Málaga. Actas Dermo-Sifiliográficas 2004, 95, 25–31. [Google Scholar] [CrossRef]
- Green-Gavrielidis, L.A.; Thornber, C.S. Will Climate Change Enhance Algal Blooms? The Individual and Interactive Effects of Temperature and Rain on the Macroalgae Ulva. Estuaries Coasts 2022, 45, 1688–1700. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, X.; Gao, C.; Jiang, M.; Li, R.; Wang, Z.; Li, Y.; Fan, S.; Zhang, X. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera. Acta Oceanol. Sin. 2016, 35, 114–121. [Google Scholar] [CrossRef]
- Bews, E.; Booher, L.; Polizzi, T.; Long, C.; Kim, J.-H.; Edwards, M.S. Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: Implications for bioremediation of coastal watersheds. Mar. Pollut. Bull. 2021, 166, 112199. [Google Scholar] [CrossRef]
- Liu, J.; Tong, Y.; Xia, J.; Sun, Y.; Zhao, X.; Sun, J.; Zhao, S.; Zhuang, M.; Zhang, J.; He, P. Ulva macroalgae within local aquaculture ponds along the estuary of Dagu River, Jiaozhou Bay, Qingdao. Mar. Pollut. Bull. 2022, 174, 113243. [Google Scholar] [CrossRef] [PubMed]
- Beer, S.; Eshel, A. Photosynthesis of Ulva sp. II. Utilization of CO2, and HCO3− when submerged. Mar. Biol. Ecol. 1983, 70, 99–106. [Google Scholar]
- Axelsson, L.; Ryberg, H.; Beer, S. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ. 1995, 18, 439–445. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Conde-Álvarez, R.; Gómez, I. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth. Res. 2003, 75, 259–275. [Google Scholar] [CrossRef]
- Figueroa, F.; Israel, A.; Neori, A.; Martínez, B.; Malta, E.; Ang, P.; Inken, S.; Marquardt, R.; Korbee, N. Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): Responses to short-term stress. Aquat. Biol. 2009, 7, 173–183. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Santos, R.; Conde-Álvarez, R.; Mata, L.; Pinchetti, J.L.G.; Matos, J.; Huovinen, P.; Schuenhoff, A.; Silva, J. The use of chlorophyll fluorescence for monitoring photosynthetic condition of two tank-cultivated red macroalgae using fishpond effluents. Bot. Mar. 2006, 49, 275–282. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Álvarez-Gómez, F.; Bonomi-Barufi, J.; Vega, J.; Massocato, T.F.; Gómez-Pinchetti, J.L.; Korbee, N. Interactive effects of solar radiation and inorganic nutrients on biofiltration, biomass production, photosynthetic activity and the accumulation of bioactive compounds in Gracilaria cornea (Rhodophyta). Algal Res. 2022, 68, 102890. [Google Scholar] [CrossRef]
- Jerez, C.G.; Malapascua, J.R.; Sergejevová, M.; Masojídek, J.; Figueroa, F.L. Chlorella fusca (Chlorophyta) grown in thin-layer cascades: Estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal. Res. 2016, 17, 21–30. [Google Scholar] [CrossRef]
- Figueroa, F.; Conde-Álvarez, R.; Barufi, J.B.; Celis-Plá, P.; Flores, P.; Malta, E.; Stengel, D.; Meyerhoff, O.; Pérez-Ruzafa, A. Continuous monitoring of in vivo chlorophyll a fluorescence in Ulva rigida (Chlorophyta) submitted to different CO2, nutrient and temperature regimes. Aquat. Biol. 2014, 22, 195–212. [Google Scholar] [CrossRef]
- Mata, L.; Schuenhoff, A.; Santos, R. A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. J. Appl. Phycol. 2010, 22, 639–644. [Google Scholar] [CrossRef]
- Mata, L.; Santos, R. Cultivation of Ulva rotundata (Ulvales, Chlorophyta) in raceways using semi-intensive fishpond effluents: Yield and biofiltration. In Proceedings of the 17th International Seaweed Symposium, Cape Town, South Africa, 28 January–2 February 2001; pp. 237–242. [Google Scholar]
- Msuya, F.E.; Neori, A. Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. J. Appl. Phycol. 2008, 20, 1021–1031. [Google Scholar] [CrossRef]
- Msuya, F.E.; Kyewalyanga, M.S.; Salum, D. The performance of the seaweed Ulva reticulata as a biofilter in a low-tech, low-cost, gravity generated water flow regime in Zanzibar, Tanzania. Aquaculture 2006, 254, 284–292. [Google Scholar] [CrossRef]
- Río, M.J.D.; Ramazanov, Z.; García-Reina, G. Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia 1996, 326–327, 61–66. [Google Scholar]
- Neori, A.; Cohen, I.; Gordin, H. Ulva lactuca Biofilters for Marine Fishpond Effluents II. Growth Rate, Yield and C:N Ratio. Bot. Mar. 1991, 34, 483–490. [Google Scholar] [CrossRef]
- Vandermeulen, H.; Gordin, H. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: Mass culture and treatment of effluent. J. Appl. Phycol. 1990, 2, 363–374. [Google Scholar] [CrossRef]
- Debusk, T.; Ryther, J.; Hanisak; Williams, L. Effects of seasonality and plant density on the productivity of some freshwater macrophytes. Aquat. Bot. 1981, 10, 133–142. [Google Scholar] [CrossRef]
- Bruhn, A.; Dahl, J.; Nielsen, H.B.; Nikolaisen, L.; Rasmussen, M.B.; Markager, S.; Olesen, B.; Arias, C.; Jensen, P.D. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour. Technol. 2010, 102, 2595–2604. [Google Scholar] [CrossRef]
- Neori, A.; Shpigel, M.; Ben-Ezra, D. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 2000, 186, 279–291. [Google Scholar] [CrossRef]
- Henley, W.J.; Levavasseur, G.; Franklin, L.A.; Lindley, S.T.; Ramus, J.; Osmond, C.B. Diurnal responses of photosynthesis and fluorescence in Ulva rotundata acclimated to sun and shade in outdoor culture on JSTOR [Internet]. Mar. Ecol. Prog. Ser. 1991, 75, 19–28. Available online: https://www.jstor.org/stable/24825806 (accessed on 23 August 2024). [CrossRef]
- Henley, W.J. Measurement and Interpretation of Photosynthetic Light-Response Curves in Algae in the Context of Photoinhibition and Diel Changes. J. Phycol. 1993, 29, 729–739. [Google Scholar] [CrossRef]
- Wilhelm, C.; Becker, A.; Toepel, J.; Vieler, A.; Rautenberger, R. Photophysiology and primary production of phytoplankton in freshwater. Physiol. Plant. 2004, 120, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Savvashe, P.; Mhatre-Naik, A.; Pillai, G.; Palkar, J.; Sathe, M.; Pandit, R.; Reddy, C.; Lali, A.M. High yield cultivation of marine macroalga Ulva lactuca in a multi-tubular airlift photobioreactor: A scalable model for quality feedstock. J. Clean. Prod. 2021, 329, 129746. [Google Scholar] [CrossRef]
- Zou, D. The effects of severe carbon limitation on the green seaweed, Ulva conglobata (Chlorophyta). J. Appl. Phycol. 2014, 26, 2417–2424. [Google Scholar] [CrossRef]
- Fort, A.; McHale, M.; Cascella, K.; Potin, P.; Usadel, B.; Guiry, M.D.; Sulpice, R. Foliose Ulva Species Show Considerable Inter-Specific Genetic Diversity, Low Intra-Specific Genetic Variation, and the Rare Occurrence of Inter-Specific Hybrids in the Wild. J Phycol. 2021, 57, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.; Figueroa, F.L.; Vega, J.; Chaves, P.; Álvarez-Gómez, F.; Korbee, N.; Bonomi-Barufi, J. Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: Cosmeceutical applications. Algal Res. 2020, 49, 101956. [Google Scholar] [CrossRef]
- Vega, J.; Bonomi-Barufi, J.; Gómez-Pinchetti, J.L.; Figueroa, F.L. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar. Drugs 2020, 18, 659. [Google Scholar] [CrossRef]
- Vega, J.; Álvarez-Gómez, F.; Güenaga, L.; Figueroa, F.L.; Gómez-Pinchetti, J.L. Antioxidant activity of extracts from marine macroalgae, wild-collected and cultivated, in an integrated multi-trophic aquaculture system. Aquaculture 2020, 522, 735088. [Google Scholar] [CrossRef]
- Ramírez, T.; Cortés, D.; Mercado, J.; Vargas-Yañez, M.; Sebastián, M.; Liger, E. Seasonal dynamics of inorganic nutrients and phytoplankton biomass in the NW Alboran Sea. Estuar. Coast. Shelf Sci. 2005, 65, 654–670. [Google Scholar] [CrossRef]
- Pinchetti, J.L.G.; Fernández, E.d.C.; Díez, P.M.; Reina, G.G. Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). J. Appl. Phycol. 1998, 10, 383–389. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Bueno, A.; Korbee, N.; Santos, R.; Mata, L.; Schuenhoff, A. Accumulation of Mycosporine-like Amino Acids in Asparagopsis armata Grown in Tanks with Fishpond Effluents of Gilthead Sea Bream, Sparus aurata. J. World Aquac. Soc. 2008, 39, 692–699. [Google Scholar] [CrossRef]
- Cabello-Pasini, A.; Aguirre-Von-Wobeser, E.; Figueroa, F.L. Photoinhibition of photosynthesis in Macrocystis pyrifera (Phaeophyceae), Chondrus crispus (Rhodophyceae) and Ulva lactuca (Chlorophyceae) in outdoor culture systems. J. Photochem. Photobiol. B Biol. 2000, 57, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Hanelt, D.; Figueroa, F.L. Physiological and Photomorphogenic Effects of Light on Marine Macrophytes; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–23. [Google Scholar]
- Hendrickson, L.; Furbank, R.T.; Chow, W.S. A Simple Alternative Approach to Assessing the Fate of Absorbed Light Energy Using Chlorophyll Fluorescence. Photosynth. Res. 2004, 82, 73–81. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Domínguez-González, B.; Korbee, N. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar. Environ. Res. 2014, 97, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, F.; Barufi, J.B.; Malta, E.; Conde-Álvarez, R.; Nitschke, U.; Arenas, F.; Mata, M.; Connan, S.; Abreu, M.; Marquardt, R.; et al. Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: Biochemical composition. Aquat. Biol. 2014, 22, 177–193. [Google Scholar] [CrossRef]
- Longstaff, B.J.; Kildea, T.; Runcie, J.W.; Cheshire, A.; Dennison, W.C.; Hurd, C.; Kana, T.; Raven, J.A.; Larkum, A.W. An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynth. Res. 2002, 74, 281–293. [Google Scholar] [CrossRef]
- Cabello-Pasini, A.; Figueroa, F.L. Effect of Nitrate Concentration on the Relationship Between Photosynthetic Oxygen Evolution and Electron Transport Rate in Ulva rigida (Chlorophyta) 1. J. Phycol. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Eilers, P.; Peeters, J. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 1988, 42, 199–215. [Google Scholar] [CrossRef]
- Grasshoff, K.; Ehrhardt, M.; Kremling, K. Methods of Seawater Analysis, 2nd ed.; Weinheim: New York, NY, USA, 1983. [Google Scholar]
- Morillas-España, A.; Lafarga, T.; Gómez-Serrano, C.; Acién-Fernández, F.G.; González-López, C.V. Year-long production of Scenedesmus almeriensis in pilot-scale raceway and thin-layer cascade photobioreactors. Algal Res. 2020, 51, 102069. [Google Scholar] [CrossRef]
- Shpigel, M.; Guttman, L.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Harpaz, S. Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) biofilter system as a protein supplement in gilthead seabream (Sparus aurata) diet. Aquaculture 2017, 481, 112–118. [Google Scholar] [CrossRef]
- Castro, R.; Piazzon, M.; Zarra, I.; Leiro, J.; Noya, M.; Lamas, J. Stimulation of turbot phagocytes by Ulva rigida C. Agardh polysaccharides. Aquaculture 2005, 254, 9–20. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Gouveia, A.; Rema, P.; Matos, J.; Gomes, E.F.; Pinto, I.S. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2006, 252, 85–91. [Google Scholar] [CrossRef]
- García-Márquez, J.; Rico, R.M.; Sánchez-Saavedra, M.d.P.; Gómez-Pinchetti, J.L.; Acién, F.G.; Figueroa, F.L.; Alarcón, F.J.; Moriñigo, M.; Abdala-Díaz, R.T. A short pulse of dietary algae boosts immune response and modulates fatty acid composition in juvenile Oreochromis niloticus. Aquac. Res. 2020, 51, 4397–4409. [Google Scholar] [CrossRef]
- Abdala-Díaz, R.T.; García-Márquez, J.; Rico, R.M.; Gómez-Pinchetti, J.L.; Mancera, J.M.; Figueroa, F.L.; Alarcón, F.J.; Martínez-Manzanares, E.; Moriñigo, M.Á. Effects of a short pulse administration of Ulva rigida on innate immune response and intestinal microbiota in Sparus aurata juveniles. Aquac. Res. 2021, 52, 3038–3051. [Google Scholar] [CrossRef]
- Rico, R.M.; Tejedor-Junco, M.T.; Tapia-Paniagua, S.T.; Alarcón, F.J.; Mancera, J.M.; López-Figueroa, F.; Balebona, M.C.; Abdala-Díaz, R.T.; Moriñigo, M.A. Influence of the dietary inclusion of Gracilaria cornea and Ulva rigida on the biodiversity of the intestinal microbiota of Sparus aurata juveniles. Aquac. Int. 2015, 24, 965–984. [Google Scholar] [CrossRef]
- García, I.B.; Ledezma, A.K.D.; Montaño, E.M.; Leyva, J.A.S.; Carrera, E.; Ruiz, I.O. Identification and Quantification of Plant Growth Regulators and Antioxidant Compounds in Aqueous Extracts of Padina durvillaei and Ulva lactuca. Agronomy 2020, 10, 866. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Hussein, M.H.; El-Naggar, N.E.; Karim-Eldeen, M.A.; Alamer, K.H.; Saleh, M.A.; Al Masoudi, L.M.; Sharaf, E.M.; El-Azeem, R.M.A. Promoting Effect of Soluble Polysaccharides Extracted from Ulva spp. on Zea mays L. Growth. Mol. 2022, 27, 1394. [Google Scholar] [CrossRef]
- Sekhouna, D.; Kies, F.; Elegbede, I.; Matemilola, S.; Zorriehzahra, J.; Hussein, E.K. Use of two green algae Ulva lactuca and Ulva intestinalis as bio-fertilizers. Sustain. Agri. Food Environ. Res. 2021, 9, 1394. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Korbee, N.; Abdala-Díaz, R.; Álvarez-Gómez, F.; Gómez-Pinchetti, J.L.; Acién, F.G. Growing algal biomass using wastes. Bioassays Adv. Methods Appl. 2018, 99–117. [Google Scholar]
- La Barre, S.S.; Bates, S.; Neveux, N.; Bolton, J.J.; Bruhn, A.; Roberts, D.A.; Ras, M. The Bioremediation Potential of Seaweeds: Recycling Nitrogen, Phosphorus, and Other Waste Products. In Blue Biotechnology; La Barre, S., Bates, S.S., Eds.; Wiley: Hoboken, NJ, USA, 2018; Available online: https://onlinelibrary.wiley.com/doi/10.1002/9783527801718.ch7 (accessed on 26 September 2024). [CrossRef]
- Nielsen, M.M.; Bruhn, A.; Rasmussen, M.B.; Olesen, B.; Larsen, M.M.; Møller, H.B. Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J. Appl. Phycol. 2011, 24, 449–458. [Google Scholar] [CrossRef]
- Acién, F.G.; Gómez-Serrano, C.; Morales-Amaral, M.M.; Fernández-Sevilla, J.M.; Molina-Grima, E. Wastewater treatment using microalgae: How realistic a contribution might it be to significant urban wastewater treatment? Appl. Microbiol. Biotechnol. 2016, 100, 9013–9022. [Google Scholar] [CrossRef]
- Posada, J.A.; Brentner, L.B.; Ramirez, A.; Patel, M.K. Conceptual design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Res. 2016, 17, 113–131. [Google Scholar] [CrossRef]
- Posadas, E.; Bochon, S.; Coca, M.; García-González, M.; García-Encina, P.; Muñoz, R. Microalgae-based agro-industrial wastewater treatment: A preliminary screening of biodegradability. J. Appl. Phycol. 2014, 26, 2335–2345. [Google Scholar] [CrossRef]
- Duarte, C.M.; Wu, J.; Xiao, X.; Bruhn, A.; Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 2017, 4, 245020. [Google Scholar] [CrossRef]
- Maulu, S.; Hasimuna, O.J.; Haambiya, L.H.; Monde, C.; Musuka, C.G.; Makorwa, T.H.; Munganga, B.P.; Phiri, K.J.; Nsekanabo, J.D. Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Front. Sustain. Food Syst. 2021, 5, 609097. [Google Scholar] [CrossRef]
Culture Density | SGR (% Day−1) | Biomass Production (kg FW) | Growth Rate (g FW m−2 Day−1) | Growth Rate (g DW m−2 Day−2) | Biomass Production (kgFW/mg N) | Biomass Production (kg FW/mg P) |
---|---|---|---|---|---|---|
0.6 kg m−2 | 5.94 | 7.7 | 36.7 | 6.23 | 0.611 | 8.280 |
0.8 kg m−2 | 4.9 | 8.2 | 38.1 | 6.48 | 0.651 | 8.817 |
1.0 kg m−2 | 4.07 | 8.3 | 39.1 | 6.64 | 0.659 | 8.925 |
Culture Density | Fv/Fm | ETRmax (µmol m−2 s−1) | αETR (µmol Electrons/µmol Photons) | Ek (µmol Photons m−2 s−1) | NPQmax | ETRmax/NPQmax |
---|---|---|---|---|---|---|
0.6 kg m−2 | 0.62 ± 0.010 B | 89.02 ± 12.16 A | 0.22 ± 0.008 A | 412.00 ± 44.79 B | 0.74 ± 0.074 C | 120.01 ± 15.34 A |
0.8 kg m−2 | 0.63 ± 0.010 B | 90.51 ± 11.62 A | 0.22 ± 0.034 A | 352.81 ± 15.23 B | 1.41 ± 0.044 B | 64.31 ± 27.03 B |
1.0 kg m−2 | 0.68 ± 0.007 A | 94.82 ± 5.69 A | 0.18 ± 0.009 A | 512.46 ± 36.22 A | 1.51 ± 0.028 A | 62.69 ± 4.79 B |
Culture Density | SGR (% Day−1) | Biomass Production (kg FW) | Growth Rate (g FW m−2 Day−1) | Growth Rate (g DW m−2 Day−1) | Biomass Production (kg FW/mg N) |
---|---|---|---|---|---|
Pre−acclimatized | 4.07 | 8.30 | 38.10 | 6.48 | 0.66 |
Post−acclimatized | 4.80 | 10.1 | 47.62 | 8.10 | 0.79 |
Algae Condition | Fv/Fm | ETRmax (µmol m−2 s−1) | αETR (µmol Electrons /µmol Photons) | Ek (µmol Photons m−2 s−1) | NPQmax | ETRmax/NPQmax (µmol m−2 s−1) |
---|---|---|---|---|---|---|
Pre−acclimation | 0.680 ± 0.007 B | 94.89 ± 5.69 B | 0.180 ± 0.009 B | 512.460 ± 36.221 B | 1.510 ± 0.028 A | 62.69 ± 4.79 B |
Post−acclimation | 0.740 ± 0.006 A | 184.73 ± 28.52 A | 0.230 ± 0.009 A | 852.340 ± 99.315 A | 0.750 ± 0.027 B | 245.98 ± 45.85 A |
Species | Tank Volume (L) | Stocking Density (kg FW m−2) | Growth (g L−1 Day−1) | Water Exchange (L Day−1) | Growth Rate (g DW m−2 Day−1) | References |
---|---|---|---|---|---|---|
U. compressa | 3000 | 0, 6–1 | 0.37–0.48 | 0 | 6,23–8 | This study |
U. pseudorotundata | 200 | 1.2 | Not | 0 | 7.5–8 | [6] |
U. lactuca | 800 | 1–3 | 0.32–0.17 | 0 | 25–13 | [26] |
U. rigida | 110 | 1.9 | Not | 2, 4–96 | 44–73 | [42] |
U. rigida | 1900 | 1.9 | Not | 14, 4 | 48 | [43] |
U. lactuca | 600 | 1 | 0.19–0.63 | 34 | 11–38 | [44] |
U. reticulata | 40 | 1 | 1.35–2.3 | 2040 | 46 | [45] |
U. rigida | 750 | 2.5 | 0.09–0.32 | 2–12 | 40 | [46] |
U. lactuca | 600 | 2–6 | 0.24–0.42 | 4–16 | 55 | [47] |
U. lactuca | 600 | 1 | Not | 4–8 | 55 | [48] |
U. lactuca | 1700 | 1 | Not | 1–24 | 45–16 | [49] |
U. lactuca | 600 | 1–8 | 0.37–0.16 | 12 | 12, 32 | [50] |
U. lactuca | 600 | 1.5 | 0.39 | 2 | 21, 3 | [51] |
U. lactuca | 900–1700 | 1 | 0.26–0.64 | 14–56 | 19 | [21] |
SGR (%) | ETRmax (µmol m−2 s−1) | ETRmax/NPQmax (µmol m−2 s−1) | NUR (µmol N g−1 DW h−1) | |
---|---|---|---|---|
SGR (%) | − | −0.2689 | 0.8147 * | 0.9969 * |
ETRmax | − | − | 0.0772 | −0.2605 |
ETRmax/NPQmax | − | − | − | 0.8353 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-Carnero, V.; Sesmero, R.; Figueroa, F.L. Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions. Plants 2024, 13, 3038. https://doi.org/10.3390/plants13213038
Robles-Carnero V, Sesmero R, Figueroa FL. Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions. Plants. 2024; 13(21):3038. https://doi.org/10.3390/plants13213038
Chicago/Turabian StyleRobles-Carnero, Victor, Rafael Sesmero, and Felix L. Figueroa. 2024. "Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions" Plants 13, no. 21: 3038. https://doi.org/10.3390/plants13213038
APA StyleRobles-Carnero, V., Sesmero, R., & Figueroa, F. L. (2024). Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions. Plants, 13(21), 3038. https://doi.org/10.3390/plants13213038