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Abstract: Soil remediation for cadmium (Cd) toxicity is essential for successful tobacco cultivation
and production. Melatonin application can relieve heavy metal stress and promote plant growth;
however, it remains somewhat unclear whether melatonin supplementation can remediate the effects
of Cd toxicity on the growth and development of tobacco seedlings. Herein, we evaluated the effect of
soil-applied melatonin on Cd accumulation in tobacco seedlings, as well as the responses in growth,
physiological and biochemical parameters, and the expression of stress-responsive genes. Our results
demonstrate that melatonin application mitigated Cd stress in tobacco, and thus promoted plant
growth. It increased root fresh weight, dry weight, shoot fresh weight and dry weight by 58.40%,
163.80%, 34.70% and 84.09%, respectively, compared to the control. Physiological analyses also
showed significant differences in photosynthetic rate and pigment formation among the treatments,
with the highest improvements recorded for melatonin application. In addition, melatonin application
alleviated Cd-induced oxidative damage by reducing MDA content and enhancing the activities of
enzymatic antioxidants (CAT, SOD, POD and APX) as well as non-enzymatic antioxidants (GSH and
AsA). Moreover, confocal microscopic imaging confirmed the effectiveness of melatonin application in
sustaining cell integrity under Cd stress. Scanning Electron Microscopy (SEM) observations illustrated
the alleviative role of melatonin on stomata and ultrastructural features under Cd toxicity. The qRT-
PCR analysis revealed that melatonin application upregulated the expression of photosynthetic and
antioxidant-related genes, including SNtChl, q-NtCSD1, NtPsy2 and QntFSD1, in tobacco leaves.
Together, our results suggest that soil-applied melatonin can promote tobacco tolerance to Cd
stress by modulating morpho-physiological and biochemical changes, as well as the expression
of relevant genes.

Keywords: antioxidants; gas exchange attributes; melatonin; remediation; heavy metals; qRT-PCR;
florescence; Cd accumulation

1. Introduction

In recent years, heavy metal contamination has become increasingly severe due
to rapid industrialization and the land application of sludge waste [1]. Heavy metal-
contaminated sites are harmful not only to soil biota but also to plant cultivation and
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production, ultimately threatening ecological and food security [2]. High concentrations
of heavy metals in soil inhibit seed emergence, crop growth and development, and re-
duce crop yield by disrupting plant cellular functions and inducing oxidative damage in
plants [3]. Among the major toxic and mobile elements, cadmium (Cd) is recognized as
one of the most serious contaminants impacting agricultural lands and the environment [4].
According to an estimate, soil metal pollution sites are increasing at a rate of 16%, with Cd
toxicity contributing significantly to this rise [5]. In China, Cd toxicity in cropland soils
has become a major obstacle to achieving green agricultural goals [6]. Thus, managing
Cd-contaminated sites is crucial for promoting sustainable agricultural development.

Tobacco, an important member of the Solanaceae family, is cultivated as an annual
herbaceous plant [7]. It is a significant model and economic crop worldwide, including in
China, where it is cultivated in almost all provinces [8]. In China, approximately 1.01 million
hectares are dedicated to tobacco cultivation, producing around 2.13 million tons each
year [7]. Tobacco plays a significant role in the remediation of heavy metal-polluted sites
due to its high capability for metal uptake compared to other crops [9]. However, previous
studies have shown that tobacco is particularly susceptible to heavy metals accumulation,
especially Cd [10,11]. The elevated uptake of the metals poses a significant risk to human
health due to the inhalation of cigarette smoke. Moreover, excessive Cd uptake can impair
the plant’s metabolic functions, leading to reduced chlorophyll synthesis and an overall
decline in photosynthetic efficiency [12]. These physiological impacts are evident in stunted
seedling growth and decreased nutrient uptake under Cd toxicity. In addition, high Cd
levels in the rhizosphere and accumulation in plant tissues can disrupt the antioxidative
defense system, facilitating ROS-induced oxidative damage [8,10]. Collectively, these effects
lead to a significant reduction in tobacco agronomic yield and economic returns. Therefore,
remediating Cd-contaminated sites is critical to ensuring sustainable tobacco production
and improving overall soil and environmental health [12].

In recent years, various agronomic measures, including nutrient management through
foliar sprays of micronutrients, controlled irrigation practices, and the cultivation of high-
tolerant crop cultivars, have been adopted to address Cd toxicity in cropland soils [13–15].
Melatonin, known as a stress-mitigating agent, is gaining attention for its ability to enhance
crop performance under heavy metal stress conditions [16]. As a natural compound, mela-
tonin has the potential to stimulate crop growth and development even in the presence of
biotic and abiotic stresses [17]. The improvement in plant growth observed with melatonin
application can be attributed to enhanced leaf photosynthesis, the higher accumulation
of osmoprotectants, and improved leaf senescence [18,19]. Similarly, enhanced seedling
growth has been positively correlated with improved leaf photosynthesis, as observed in
pepper seedlings exposed to chilling stress [20]. Moreover, the foliar application of mela-
tonin has been shown to substantially increase osmolyte accumulation, thereby enhancing
overall crop performance under low light conditions [21]. Improved crop growth under
melatonin treatment may also be associated with higher nutrient accumulation. Melatonin
also interacts with other plant hormones, balancing growth and stress responses to support
plant resilience in adverse environments. It has been shown that melatonin influences lignin
deposition in plants and enhances their structural integrity. Lignin, as a major constituent
of the plant cell wall, offers mechanical strength and protection against stress stimuli. Fur-
thermore, melatonin application promotes the activities of enzymes crucial for mitigating
the harmful effects of ROS and oxidative stress during stressful conditions [16]. Improved
physiological responses, along with increased enzymatic and non-enzymatic activities,
have been well documented under heat stress [22], chilling [20], arsenic [23], and nutrient
toxicity [24]. However, while the mitigating effects of melatonin on abiotic stresses have
been reported [25], the remediation potential of melatonin application on Cd-contaminated
sites requires more in-depth studies, particularly focusing on the physio-biochemical and
molecular aspects of the tobacco crop [26].

This study explored the influence of soil-applied melatonin on tobacco growth, Cd
uptake and translocation, photosynthetic and biochemical aspects, and related gene ex-
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pression. Our major objectives were: (1) to assess the growth responses of tobacco plants
under Cd toxicity following melatonin application; (2) to elucidate the physiological and
biochemical mechanisms by which soil-applied melatonin enhances tobacco resistance
to Cd toxicity; and (3) to determine the relative expression of genes related to photosyn-
thesis and enzymatic activities in tobacco exposed to Cd stress and melatonin treatment.
We hypothesized that soil-applied melatonin would mitigate Cd toxicity by limiting Cd
uptake and translocation in tobacco tissues, promoting seedling growth, and regulating
physio-biochemical indices.

2. Results
2.1. Growth Indices

Cd and melatonin application significantly affected the growth of tobacco plants
(Figures 1 and S1). Tobacco seedlings treated solely with Cd exhibited a decline in growth
indices, including seedling fresh and dry weight, compared to other treatments. Cd alone
reduced root fresh weight, root dry weight, shoot fresh weight and shoot dry weight by
32.39%, 38.59%, 22.95%, and 37.13%, respectively, lower than the control plants. On the
other hand, melatonin supplementation significantly improved these traits under both
control and Cd stress conditions. Specifically, melatonin application under Cd stress
improved root fresh weight, root dry weight, shoot fresh weight and shoot dry weight
by 58.40%, 163.80%, 34.70% and 84.09%, respectively, compared to the control treatment
without melatonin and Cd application. Overall, in terms of increasing growth traits, the
treatments were ordered as melatonin > melatonin + Cd > control > Cd.
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Figure 1. Effects of soil application of melatonin (Mel) on root fresh weight (FW; (A)), root dry weight
(DW; (B)), shoot fresh weight (C) and shoot dry weight (D) of tobacco under cadmium (Cd) stress.
The values of each parameter are means ± SE of three replicates. Similar letters show non-significant
difference among the treatments according to LSD test (p < 0.05).
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2.2. Photosynthetic Indices

There was a significant difference in photosynthetic indices, except Fv/Fm, among
the melatonin and Cd treatments (Figure 2). The Pn, Gs, Tr, Ci, and chlorophyll contents
of seedlings exposed only to Cd were significantly lower than those in the control and
melatonin-treated groups. Compared to control, Cd treatment decreased Pn, Gs, Tr, Ci, and
chlorophyll content by 55.17%, 73.61%, 37.06%, 15.69%, and 38.11%, respectively. However,
under Cd stress conditions, melatonin treatment significantly improved the values of these
traits by 91.60%, 121.05%, 65.87%, 21.07%, and 58.08%, respectively, compared to the control
group. These findings suggest that melatonin application enhances photosynthesis and
pigment formation in tobacco under Cd stress conditions.

Plants 2024, 13, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Effects of soil application of melatonin (Mel) on photosynthesis (Pn; (A)), stomatal con-
ductance (gs; (B)), transpiration rate (Tr; (C)), intracellular CO2 concentration (Ci; (D)), chlorophyll 
florescence (Fv/Fm; (E)) and chlorophyll content (F) in tobacco seedlings under cadmium (Cd) 
stress. The values of each parameter are means ± SE of three replicates. Similar letters show 
non-significant difference among treatments according to LSD test (p < 0.05). 

2.3. Cadmium Accumulation 
Cd accumulation in roots and shoots as well as the bioconcentration factor (BCF) for 

both organs was significantly affected by Cd and melatonin treatments (Figure 3). Under 
Cd stress, melatonin application greatly reduced Cd accumulation in roots and shoots by 
27.54% and 34.35%, respectively, lower than the sole Cd treatment. Similarly, tobacco 
seedlings treated solely with Cd showed an increase in BCF in roots and shoots. None-
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Figure 2. Effects of soil application of melatonin (Mel) on photosynthesis (Pn; (A)), stomatal con-
ductance (gs; (B)), transpiration rate (Tr; (C)), intracellular CO2 concentration (Ci; (D)), chlorophyll
florescence (Fv/Fm; (E)) and chlorophyll content (F) in tobacco seedlings under cadmium (Cd) stress.
The values of each parameter are means ± SE of three replicates. Similar letters show non-significant
difference among treatments according to LSD test (p < 0.05).
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2.3. Cadmium Accumulation

Cd accumulation in roots and shoots as well as the bioconcentration factor (BCF)
for both organs was significantly affected by Cd and melatonin treatments (Figure 3).
Under Cd stress, melatonin application greatly reduced Cd accumulation in roots and
shoots by 27.54% and 34.35%, respectively, lower than the sole Cd treatment. Similarly,
tobacco seedlings treated solely with Cd showed an increase in BCF in roots and shoots.
Nonetheless, melatonin application under Cd stress markedly decreased BCFs by 25.46%
and 43.20% in roots and shoots, respectively, compared to the Cd only treatment.
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Figure 3. Effects of soil application of melatonin (Mel) on bioconcentration factor of root (BCFroot;
(A)) and shoot (BCFshoot; (B)), cadmium (Cd) concentration in root (C) and shoot (D) of tobacco
seedling under Cd stress. The values of each parameter are means ± SE of three replicates. Similar
letters show non-significant differences among treatments according to LSD test (p < 0.05).

2.4. Reactive Oxygen Species and Confocal Imaging

Compared with the control and melatonin groups, sole Cd supplementation sub-
stantially increased MDA, H2O2, O2

•− contents and EL in shoots (Figure 4). However,
melatonin application significantly decreased these values, especially when applied alone
or under Cd stress conditions. In Cd-treated plants, melatonin supplementation decreased
MDA, H2O2 and O2

•− contents and EL by 35.87%, 25.79%, 26.91% and 30.93%, respectively,
compared with the Cd-only group. The effectiveness of our treatments in reducing these
indices ranked as follows: melatonin < melatonin + Cd < control < Cd.

In addition, confocal visualization for dihydroethidium (DHE) staining was carried
out to assess ROS production in tobacco leaves (Figure 5). Confocal images showed
intense fluorescence for the sole Cd treatment, indicating high accumulation of O2

•−.
On the other hand, melatonin application under Cd stress showed relatively reduced
fluorescence, suggesting lower accumulation of O2

•− compared to the sole Cd treatment.
These observations demonstrate the high efficacy of melatonin application in reducing ROS
accumulation in tobacco leaves.
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However, melatonin application led to a significant further increase in the activities of 
these enzymes, boosting CAT, SOD, POD and APX activities by 57.30%, 15.26%, 15.67% 

Figure 4. Effects of soil application of melatonin (Mel) on malondialdehyde (MDA; (A)), hydrogen
peroxides (H2O2; (B)), superoxide anion radical (O2

•−; (C)), and electrolyte leakage (EL; (D)) in
tobacco seedling under cadmium (Cd) stress. The values of each parameter are means ± SE of three
replicates. Similar letters show non-significant difference among treatments according to LSD test
(p < 0.05).

Plants 2024, 13, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 4. Effects of soil application of melatonin (Mel) on malondialdehyde (MDA; (A)), hydrogen 
peroxides (H2O2; (B)), superoxide anion radical (O2•−; (C)), and electrolyte leakage (EL; (D)) in tobacco 
seedling under cadmium (Cd) stress. The values of each parameter are means ± SE of three replicates. 
Similar letters show non-significant difference among treatments according to LSD test (p < 0.05). 

 
Figure 5. Tobacco leaves stained using dihydroethidium dye for O2•– under control, cadmium (Cd), 
and melatonin (Mel) + Cd conditions. 

2.5. Enzymatic and Non-Enzymatic Antioxidants 
Compared with the control, significantly higher activities of antioxidative enzymes, 

including CAT, POD, SOD and APX, were observed for the sole Cd group (Figure 6). 
However, melatonin application led to a significant further increase in the activities of 
these enzymes, boosting CAT, SOD, POD and APX activities by 57.30%, 15.26%, 15.67% 

Figure 5. Tobacco leaves stained using dihydroethidium dye for O2
•− under control, cadmium (Cd),

and melatonin (Mel) + Cd conditions.



Plants 2024, 13, 3049 7 of 17

2.5. Enzymatic and Non-Enzymatic Antioxidants

Compared with the control, significantly higher activities of antioxidative enzymes,
including CAT, POD, SOD and APX, were observed for the sole Cd group (Figure 6).
However, melatonin application led to a significant further increase in the activities of these
enzymes, boosting CAT, SOD, POD and APX activities by 57.30%, 15.26%, 15.67% and
116.78%, respectively, in Cd-treated seedlings compared to the control group. Analyses of
non-enzymatic activities showed that sole Cd treatment significantly increased GSH and
AsA values compared to the control group (Figure 7). However, melatonin supplementation
further enhanced GSH and AsA activities, with marked improvements in the Cd-treated
group. Under Cd stress, melatonin application increased GSH activity by 176.73% and AsA
activity by 137.11% compared to the control treatment without melatonin and Cd.
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Figure 6. Effects of soil application of melatonin (Mel) on catalase (CAT; (A)), superoxide dismutase
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2.6. SEM Analysis

Cd accumulation in above-ground plant parts can damage the leaf epidermis and
stomata (Figure 8). SEM analysis was performed to analyze the influence of melatonin
supplementation on guard cells and stomatal aperture. Recognizable effects were ob-
served on the leaf epidermis, with melatonin application prominently affecting guard cell
structure and stomatal aperture (Figure 8). Cd ion accumulation significantly reduced
stomatal opening, with most stomata undergoing complete closure due to plasmolysis of
the stomatal cells.

2.7. Response of Chlorophyll and Antioxidative Genes to Melatonin Application

There was a significant difference in the expression of pigment and antioxidative
genes among the melatonin and Cd treatments. Both Cd and melatonin applications
significantly influenced the expression of the SNtChl, q-NtCSD1, NtPsy2, and QntFSD1
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genes in tobacco leaves (Figure 9). The highest expression levels of these genes were
observed with melatonin application under Cd stress, followed by sole melatonin and Cd
applications, compared to the control group. In Cd-treated plants, melatonin application
enhanced the expressions of SNtChl, q-NtCSD1, NtPsy2, and QntFSD1 genes by 104.91%,
37.66%, 64%, and 91.07%, respectively, compared to the control group.
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(AsA; (B)) content in tobacco seedlings under cadmium (Cd) stress. The values of each parameter are
means ± SE of three replicates. Similar letters show non-significant differences among treatments
according to LSD test (p < 0.05).
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2.8. Mantel Analysis

A mantel correlation was performed to analyze relationships among the recorded
parameters. As shown in Figure 10, seedling fresh and dry weights were positively cor-
related with photosynthesis, chlorophyll content and fluorescence. These growth indices
also demonstrated a strong positive association with both enzymatic and non-enzymatic
antioxidants. Leaf gas exchange indices, such as Pn, gs, Tr and Ci, were positively correlated
with growth traits. Growth traits were strongly and positively associated with antioxi-
dant enzyme activities but negatively associated with ROS and MDA content. Leaf gas
exchange traits and chlorophyll fluorescence demonstrated a strong negative association
with stress indicators.
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3. Discussion

Remediation of Cd-contaminated sites, particularly through organic methods, is a hot
topic of research because Cd poses detrimental effects on soil environments and agronomic
crop yields [27,28]. As such, the application of phytohormones has gained considerable
attention as a means to enhance remediation efforts against Cd pollution. Melatonin, as
a growth stimulator, offers numerous benefits to plant growth and development under
stress conditions [28]. It enhances seedling tolerance to Cd stress by improving growth,
as well as physiological and biochemical indices. In this work, our results indicated
that Cd stress significantly inhibited the growth of tobacco seedlings. However, the soil
application of melatonin notably promoted seedling growth under Cd stress conditions.
Similarly, numerous published reports demonstrated the negative consequences of Cd
on the seedling growth of many species [29]. On the other hand, melatonin application
has been widely shown to enhance plant growth under HM stresses. For example, Sun
et al. [30] reported that melatonin application markedly enhanced sunflower growth under
chromium toxicity, which might be associated with ionic homeostasis and better scavenging
ability. In another study, Altaf et al. [31] reported the positive effects of melatonin on
vanadium-exposed watermelon seedlings, where significant improvements in growth
indices were observed. These improvements were associated with reduced accumulation
of metal ions and the increased biosynthesis of melatonin under stress conditions. Similarly,
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Charoenphun et al. [20] demonstrated that melatonin improved the growth performance of
pepper seedlings, potentially due to modulated N metabolism and the activity of chelating
agents under arsenic toxicity. In line with our results, improved plant growth under
melatonin application in Cd-stressed tomatoes was reported by Song et al. [32], with the
improvement linked to enhanced physiological indices. Altogether, improved seedling
growth under melatonin treatment can be explained in several ways: first, melatonin
application effectively adjusts root configuration and improves ionic homeostasis under
HM toxicity [16,28,33], enhancing nutrient absorption and utilization, which supports
seedling growth through modified root structure. Second, melatonin facilitates the secretion
of organic acid anions, reducing the uptake of metal ions [34]. Third, it improves nutrient
accumulation in stressful environments [35].

The photosynthetic balance of plants is crucial for their survival, particularly under
stress conditions. Cd stress has negative consequences on plant physiological indices, as
reported in this study. Under Cd stress, the higher accumulation of Cd in plants tissues, par-
ticularly in leaves, leads to an inhibited supply of assimilates and impaired leaf functions.
Our results demonstrate that sole Cd application drastically reduced chlorophyll pigment
formation and leaf photosynthetic rates. According to Tan et al. [12], reduced photosynthe-
sis under Cd stress is mainly linked to its damaging effects on light-harvesting complexes.
On the other hand, Song et al. [32] reported that Cd disrupted chloroplast structure and
reduced chlorophyll synthesis, which, in turn, led to decreased photosynthesis. Moreover,
Cd negatively affected stomatal conductance and intercellular CO2 concentration, thereby
inadequately fulfilling the prerequisites for photosynthesis [36]. Also, under Cd stress, a
strong association between nonstomatal limitations and leaf photosynthetic rates has been
well reported (Song et al. [32]; Figure 10). On the other hand, melatonin application under
both control and Cd stress conditions noticeably improved physiological traits in tobacco.
Charoenphunet al. [20] similarly reported active photosynthetic processes in pepper under
melatonin treatment. According to Yang et al. [28], the improved photosynthetic rates in
melatonin-treated leaves were linked to its role in maintaining the integrity of D1 protein,
which is an essential component of photosystem II. Additionally, Sun et al. [37] reported
that melatonin facilitates the accumulation of mineral ions, which enhances the function of
antioxidative enzymes, supports photosynthesis, and delays leaf aging under stress condi-
tions. According to Altaf et al. [38], melatonin supplementation maintained the activity of
photosynthetic machinery, which was associated with reduced damage to the thylakoid
membrane. Enhanced pigment formation and photosynthesis under melatonin application
has been well documented in response to Cu stress by Rai et al. [39] and Cd stress by Kano
et al. [40]. Herein, to gain further insights into the physiological mechanisms improved by
melatonin, we assessed the expressions of several relevant genes, including SNtChl and
NtPsy2. The soil application of melatonin significantly upregulated the expression of these
genes in tobacco under Cd stress. Similarly, Altaf et al. [31] demonstrated that melatonin
exposure led to the high expression of photosynthetic-related genes, such as CB12 and
CAB7, in pepper seedlings. The active role of these genes in chlorophyll pigment formation
has been well documented by Ahmad et al. [41].

Sole cadmium treatment also facilitated oxidative damage by causing an imbalance
between ROS production and the activities of antioxidative enzymes (Figure 6). Under Cd
toxicity, excessive accumulation of ROS in plant cells can agitate cell membrane integrity
and disrupt its function. Moreover, excessive ROS production is a leading cause of lipid
peroxidation and impaired pigments’ development [21]. However, melatonin supplemen-
tation is known to help maintain the balance between ROS production and enzymatic
activities. In this work, melatonin application significantly improved both enzymatic and
non-enzymatic activities, while it decreased ROS production and MDA content in tobacco
seedlings exposed to Cd stress (Figures 4–6). Similar results were reported by Yu et al. [42],
who found that melatonin application significantly decreased ROS production in rice
seedlings under salt stress. Melatonin effectively mitigates the toxic effects of cadmium [28].
Recently, Malik et al. [18] depicted that melatonin application improved antioxidant ac-
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tivities, thereby facilitating redox homeostasis and mitigating oxidative stress induced by
chromium toxicity. These studies underscore the important role of melatonin in alleviating
the adverse effects of heavy metals, including Cd stress, on the plant antioxidant system.
In line with these findings, our study indicates that melatonin application improves Cd
tolerance in tobacco by improving antioxidative activities and reducing ROS accumulation.
This is further supported by gene expression data and confocal imaging showing higher
ROS accumulation under Cd stress. Furthermore, published reports have shown that
Cd stress can elevate GSH and AsA levels, which are critical for cellular redox buffer-
ing [43]. It has also been well documented that elevated GSG levels accelerate the synthesis
of chelator proteins, which are essential for maintaining ROS balance in plant cells [44].
Herein, Cd stress increased GSH levels in tobacco leaves, and melatonin supplementation
further increased GSH activity. Similar results were reported in previous studies, where Xu
et al. [45] observed a significant increase in GSH activity in Siegesbeckia orientalis (L.) and
Wang et al. [46] in Malus domestica under Cd toxicity with melatonin application. For these
mechanisms, numerous genes play regulatory roles to enhance plant defense. In this study,
melatonin application under Cd stress resulted in the expression of the Cu/Zn superoxide
dismutase gene NtCSD1 and the superoxide dismutase genes NtFSD1a/b/c. These findings
align with those of Fu et al. [47], who reported increased expressions of the NtSOD, NtPOD,
and NtAPX genes under salt stress.

4. Materials and Methods
4.1. Experimentation and Treatments

In this work, the tobacco variety Qingxue 103, cured in our laboratory, was utilized.
Initially, plants were grown in a growth room until reaching the three-leaf stage. Later, they
were transferred to a greenhouse and grown in soil-filled pots, each containing 8 kg of soil.
One healthy seedling was grown in each pot. The experimental soil (with the following
properties: bulk density = 1.24 ± 0.2 g·c−3; SOM = 11.96 ± 0.89 g·kg−1; available N, P and
K were 52.99 ± 2.38, 22.28 ± 1.31, and 96.98 ± 4.60 mg·kg−1, respectively) was collected
from the Agronomic Field Research Area stationed at the north campus of Northwest A&F
University, China. A 2 mm sample of sieved air-dried soil, collected from various spots,
was used for pot filling. The spiking of the potted soil was done using cadmium sulfate
at 30 mg kg−1 soil. Melatonin (MEL), bought from a local market, was applied starting
about 16 days prior to transplanting, with a concentration of 100 µmol, applied four times
at four-days intervals. The treatments designated for this work were as follows: control
(CK), sole Cd, sole Mel, and Cd + Mel. For the Ck group, only irrigation was supplemented,
without Cd and Mel. These treatments, with three replicates each, were arranged according
to a completely randomized design. The experimental pots with transplanted tobacco
seedlings were kept in a greenhouse at Northwest A&F University, under a light intensity
of 500–530 µmol m−1 s−1 and 70–72% relative humidity. Approximately 70% of the field
capacity was maintained throughout the growth phase. These tobacco seedlings were
allowed to grow for about 60 days after transplanting, after which they were harvested to
obtain the required parameters.

4.2. Determination of Growth Indices

Harvested plants from each treatment were separated into roots, shoots and leaves.
Immediately, their fresh weights were taken considering 1/10,000 weighing balance. Later,
the samples were initially dried with absorbent paper and subsequently oven-dried at
65 ◦C until a constant weight was achieved.

4.3. Photosynthetic Traits Measurements

The procedure quoted by Wang et al. [48] was followed to appraise photosynthesis pa-
rameters, considering fourth true leaves (three replications; from the uppermost expanded
leaves) after 60 days of stress treatments. The state-of-the-art portable LI 6800 fluorimeter
(LI-COR, Lincoln, NE, USA) system was operated to take the values of Pn, Ci, Tr and Gs.



Plants 2024, 13, 3049 12 of 17

Measurements were taken in the morning between 10 and 11 a.m. on clear weather days,
with the system maintained at a light intensity of 1000 µmol m−2 s−1. Moreover, a carbon
dioxide concentration of 400 cm3 m3 was provided to the system. Chlorophyll fluorescence,
expressed as the ratio of variable to maximum fluorescence (Fv/Fm), was measured using
a fluorimeter (model, Hudson, TX, USA). Seedlings were subjected to a 30 min dark period
prior to measuring the maximum quantum efficiency of PSII (Fv/Fm = (Fm − Fo)/Fm).
For pigment determination, 0.5 g of leaves (from three replicates) were assimilated in a 95%
ethanol solution. After centrifuged (3000× g) for 12 min, the filtrated solution was used
to obtain the supernatant, which was further analyzed spectrophotometrically at 663 and
645 nm wavelengths.

4.4. Reactive Oxygen Species Quantification and Confocal Visualization

The method quoted by Pilz et al. [49] was followed to determine MDA content and
ROS levels. First, MDA content, as an indicator of lipid peroxidation, was quantified from
shoot tissues and analyzed using a microplate reader at 532 and 600 nm wavelengths [50].
Next, ROS levels, including H2O2 and O2

•− , were calculated using kit-based methods.
For H2O2 and O2

•− , analyzing kits, namely, Cat No. BC3590 and Cat No. BC 1295,
respectively, were used according to manufacturer’s instructions. Later, using a photometric
microplate reader (model UV-2600), the absorbances were evaluated at 415 nm and 530 nm
wavelengths, respectively. Moreover, the laser confocal microscopy technique was used to
perform in vivo O2

•− visualization. For that, a fluorescent probe was used, as previously
recommended [51]. Briefly, small slivers of shoot tissue were prepared and initially washed
with distilled water. The clean segments were then submerged in dihydroethidium solution
(10 µM DHE was dissolved in 10 mM Tris-HCl buffer, pH 7.4 at 37 ◦C darkness for 30 min)
for 1 h at normal temperature in the dark. Afterward, PBS solution was used to wash the
samples thrice before being placed on the microscope slides. Coverslips were then used for
visualization under a confocal microscope. Excitation with PMT detection (518 nm) was set
at 500–600 nm [51].

4.5. Determibation of Enzymatic and Non-Enzymatic Antioxidants

The procedure described by Foster et al. [52] was followed to ascertain antioxidative
activities. Tobacco leaves were collected and used immediately after harvest. These samples
were ground and emulsified in phosphate buffer (50 mM). After centrifugation at 10,000× g
for 25 min, the obtained supernatant was collected for further analyses. For the SOD
enzyme assay, firstly, a reaction solution with phosphate buffer (0.5 M), methionine, and
tetrazolium blue solution (750 µM) was developed. After adding EDTA solution, riboflavin
(20 µM) and deionized water, about 3 mL of the reaction solution was taken and mixed
with the supernatant. The test tubes containing the working solution were kept under
light conditions for 25 min. A control group with 20 µL buffer and 3 mL of SOD reaction
solution was considered for comparison. Later, the absorbance of both groups was taken
at a 560 nm wavelength, spectrophotometrically. Lastly, the SOD activity was considered,
corresponding to the following equation:

SOD activity = (Aa + Ab) × V/W × 30 × Aa

Here, Aa and Ab show the absorbance rates for the control and sample tubes, re-
spectively. V, W and T are the extraction solution volume, sample mass and light time,
respectively.

For POD activity, initially, supernatant from the enzymatic solution was added to
2.5 mL guaiacol solution. Later, H2O2 solution was added before placing the solution in
a water bath for 20 min. Finally, distilled water was added to the working solution, and
the absorbance was recorded spectrophotometrically at 470 nm. The values were obtained
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following the equation below, considering the absorbance value of the blank sample tube
(Ao) along with the values for the control and sample solutions:

POD activity = [(Aa + Ab)/(Ao − Aa)] × W × T × 100

Here, T is the reaction time.
For CAT determination, about 200 mL of phosphate buffer was used to prepare the

reaction solution. Next, a working solution was prepared by adding H2O2 solution to
the obtained supernatant. Later, keeping PBS solution as a control, the absorbance of the
working and control groups was recorded at 240 nm wavelength, with absorbance values
taken at 40 s intervals (△A). The below equation was used for CAT activity (U g−1 min−1):

CAT = △A/(mass sample × 100)

For APX activity, the reaction solution was prepared according to the previously
reported method of Nakano et al. [53]. Furthermore, the modified method quoted by
Griffith et al. [54] was considered for assessing GST activity. Firstly, fresh tobacco leaves
were extracted in phosphate buffer (PB) and EDTA solutions. Next, the extracted solution
was centrifuged at 10,000× g for 20 min. Then, the reaction solution was obtained by
combining the enzyme extract with PB solution, CDNB, and GSH. This solution was then
used to record the absorbance at 340 nm. The method quoted by Ahanger et al. [55] was
followed to determine AsA content. Accordingly, using the enzyme extract, the absorbance
was measured at a 530 nm wavelength.

4.6. Measurements of Cd Concentration

Tobacco roots and shoots were collected and cleaned initially with pure water and
then with 5 mM calcium dichloride. The cleaned samples were dried at 70 ◦C and then
ingested in 2 mL HNO3 at high temperature. This process continued until the root and
shoot tissues became transparent. Later, double-distilled water was used to dilute the
solution to 10 mL. This diluted solution was used to determine Cd concentrations on
plasma atomic emission spectroscopy.

4.7. Analysis of Scanning Electron Microscopy

Fresh tobacco leaves were taken from the control, Cd and combined Cd and melatonin
treatments. After removing their veins, the leaves were soaked in glutaraldehyde solution
along with phosphate buffer (PB). This process continued for about 5 h. Later, washing was
performed three times using the solely PB solution. Then, these samples were homogenized
in OsO4 and PB solutions for 2–3 h following three-fold washing again with solely PB.
Later, dehydration was done with different concentrations of ethanol prior to double
dehydration with alcohol. Lastly, these samples were observed under SEM after coating
with gold–palladium in ion sputter mode, as quoted earlier by Shuvaeva et al. [56].

4.8. qRT-PCR Analysis

Leaves of tobacco plants subjected to control, sole Cd, melatonin, and their combined
treatments were considered for the extraction of total RNA using the Total RNA Kit. Firstly,
a NanoDrop spectrophotometer was used to assess the quantity, quality, and probity of
RNA. Later, Rescript II RT SuperMix reverse transcriptase was considered to obtain the
first strand of cDNA, which was produced from 1 µg of total RNA with 20 µL reaction
volume. Next, 96-well blocks on a CFX96 Touch Real-Time PCR System were considered
to perform quantitative real-time PCR. For this, 2 × SYBR Premix UrTaq II was used
with a total reaction volume of 20 µL, as described previously by Piaxao et al. [57]. In
total, three reactions were conducted for individual samples. The NtActin gene served
as a housekeeping gene and the 2−∆∆CT approach was considered to evaluate the relative
expressions of the target genes.
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4.9. Statistical Analysis

One-way analysis of variance was performed to study the impacts of melatonin and
Cd treatments on tobacco seedlings and attained values of the recorded traits. The means
of three replicates plus standard errors are presented in this work. These means were
compared using the least significant difference (LSD) test (p-value = 0.05) in SPSS software
(version 22.0) [58]. Graphical presentation was performed in Origin software (Model 2021),
whereas mantel analysis was performed in R-studio.

5. Conclusions

In this work, the remediation effects of soil-applied melatonin on Cd toxicity were
assessed. Cd treatment alone had severe effects on the growth, physiological and biochem-
ical indices of tobacco seedlings. However, soil-applied melatonin markedly improved
seedling phenotype, enhancing growth, pigment formation and photosynthetic rates. More-
over, melatonin supplementation reduced oxidative damage by maintaining a balance
between ROS production and antioxidant activity under Cd stress. The positive influence
of melatonin on photosynthesis and enzymatic activities was further supported by the high
expression of relevant genes under Cd stress. Our results indicate that soil-applied mela-
tonin exerts numerous beneficial effects on tobacco performance under Cd stress. Overall,
this study proposes exploring melatonin as a potential enhancer of phytoremediation,
aiming to improve plant tolerance, pollutant uptake, and antioxidant defenses. Melatonin
application could increase phytoremediation efficiency by strengthening plants’ resilience
and pollutant accumulation capabilities. However, the remediation mechanisms of mela-
tonin supplementation, particularly at the molecular level, warrant further investigation to
fully elucidate its role in alleviating Cd toxicity in tobacco. Moreover, future studies should
explore the dose–response relationship of melatonin under different soil Cd concentrations
and investigate its long-term effects on soil health and microbial communities in tobacco
cultivation systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
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