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Abstract: Limited data are available on copper (Cu)–pH interaction-responsive genes and/or metabo-
lites in plant roots. Citrus sinensis seedlings were treated with 300 µM (Cu toxicity) or 0.5 µM (control)
CuCl2 at pH 3.0 or 4.8 for 17 weeks. Thereafter, gene expression and metabolite profiles were obtained
using RNA-Seq and widely targeted metabolome, respectively. Additionally, several related physio-
logical parameters were measured in roots. The results indicated that elevating the pH decreased
the toxic effects of Cu on the abundances of secondary metabolites and primary metabolites in
roots. This difference was related to the following several factors: (a) elevating the pH increased the
capacity of Cu-toxic roots to maintain Cu homeostasis by reducing Cu uptake and Cu translocation
to young leaves; (b) elevating the pH alleviated Cu toxicity-triggered oxidative damage by decreasing
reactive oxygen species (ROS) formation and free fatty acid abundances and increasing the ability to
detoxify ROS and maintain cell redox homeostasis in roots; and (c) increasing the pH prevented root
senescence and cell wall (CW) metabolism impairments caused by Cu toxicity by lowering Cu levels
in roots and root CWs, thus improving root growth. There were some differences and similarities in
Cu–pH interaction-responsive genes and metabolites between leaves and roots.

Keywords: Citrus sinensis; copper–pH interaction; transcriptome; widely targeted metabolome

1. Introduction

In plants, micronutrient copper (Cu) functions in a series of physiological processes,
including growth, nutrient and water uptake, chlorophyll biosynthesis, photosynthesis, cell
wall (CW) formation, nitrogen (N) and carbohydrate metabolisms, and protection against
oxidative stress [1–3]. Like other heavy metals (HMs), however, Cu can become toxic to
plants when it is present in excess [4]. Excess Cu in the soils of some old citrus orchards
is a major factor affecting yield and quality due to the extensive and long-term use of
Cu-containing fungicides and fertilizers [5,6].

Excessive Cu can impair plant uptake of nutrients and water and inhibit plant
growth [7,8]. After exposure to excessive Cu, the inhibition of root growth usually precedes
that of shoot growth because most Cu preferentially accumulates in roots [9]. However, the
growth of roots is not inherently more sensitive to excess Cu than shoots [10]. Root CWs
are the first physical barrier against Cu toxicity. Moreover, these materials can hinder Cu
from entering more sensitive targets. Cu toxicity-induced preferential accumulation of Cu
in roots is regarded as an adaptive strategy of plants [1,11]. Cu toxicity can also disturb
root CW metabolism, thereby reducing root growth [12,13].

Plant Cu tolerance heavily depends on soil acidity (pH) because soil Cu levels de-
crease with increasing pH [14]. In acidic soils, rhizosphere alkalization induced by roots
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leads to a decrease in Cu bioavailability, thus reducing plant exposure to Cu [5]. A high
pH in the growth matrix can lessen the inhibition of plant growth induced by Cu tox-
icity [1,7]. Nonetheless, most related studies have focused on investigating the effects
of Cu–pH interactions on plant growth; water and nutrient uptake; root exudates and
architecture; photosynthesis, pigments, CW components (CWCs), and nonstructural carbo-
hydrates (NCs) in leaves; and hormones and reactive oxygen species (ROS) formation and
detoxification in leaves and roots [1,2,15,16].

An integrated analysis of the transcriptome and metabolome provides a powerful
approach for revealing the mechanisms underlying plant tolerance to metals, including
Cu [12,17,18]. Recently, some researchers have used transcriptome and/or metabolome to
investigate Cu toxicity-responsive genes and/or metabolites in plants and have identified
some genes [probable Cu-transporting ATPase HMA5, basic helix–loop–helix protein 29 (bHLH29),
glutathione S-transferase (GST), protein FERRIC REDUCTASE DEFECTIVE 3 (FRD3), Cu
transporter (COPT) 2 (COPT2), COPT6, ZRT/IRT-like protein 1 (ZIP1), iron (Fe) superoxide
dismutase (SOD) 1 (FSD1), Cu/zinc (Zn) SOD 1 (CSD1), CSD2, laccase (LAC) 3 (LAC3), and
yellow stripe-like protein 7 (YSL7)], as well as metabolites [coumarins, luteolin, lignin, citrate,
glucose, salicylic acid (SA), putrescine, reduced glutathione (GSH), aminolevulinic acid
(5-ALA), raffinose, and nicotianamine (NA)] and/or metabolic pathways (phenylpropanoid
biosynthesis), that are possibly involved in Cu tolerance [12,17,19–24]. To our knowledge,
there are currently no reports on Cu–pH interaction-responsive genes and/or metabolites
in plant roots and/or leaves, except for a report from our laboratory [19]. To conclude,
limited reports are available on the molecular mechanisms through which increasing the
pH reduces Cu toxicity in higher plants.

In China, the soils of old citrus orchards often have a low pH and high bioavailability
of Cu [6,25]. In Pinghe, Fujian, 90.0% and 28.3% of Citrus grandis orchards had acidic soils
with a pH < 5.0 and excessive soil available Cu (> 6 µg g−1 DW), respectively [6]. In China,
49.1% and 42.5% of soils in citrus orchards had a pH < 4.8 and excess in available Cu,
respectively [25]. Recently, we examined Cu–pH interaction-responsive genes and metabo-
lites in Citrus sinensis leaves via an integrated analysis of physiology, transcriptome, and
metabolome, and identified some genes, metabolites, and/or metabolic pathways possibly
involved in the increased pH-mediated mitigation of leaf Cu toxicity [19]. In accordance
with the recent work, we used RNA-Seq and widely targeted metabolome to examine
Cu–pH interaction-responsive genes and metabolites in C. sinensis roots. Additionally, we
examined the impacts of Cu–pH interactions on root growth; the concentrations of NCs,
CW materials (CWMs), CWCs, total free amino acids (TFAAs), and total soluble proteins
(TSPs) in roots; and the concentrations of Cu in roots and CWs. The objectives were to
uncover the mechanisms of the increased pH-mediated mitigation of Cu toxicity in roots
at omics level and the links between transcriptome and metabolome; to identify genes,
metabolites, and/or metabolism pathways possibly involved in the raised pH-mediated
mitigation of Cu toxicity in roots; and to understand the differences and similarities in
Cu–pH interaction-responsive genes and metabolites between roots and leaves.

2. Results
2.1. Increasing the pH Reduced the Toxic Effects of Cu on Root Growth, the Cu Levels in Roots and
CWs, and the TFAA and TSP Levels in Roots

Cu toxicity reduced root growth less at pH 4.8 than at pH 3.0. Cu-treated seedlings
had sparse, thicker, and darker roots at pH 3.0, but not at pH 4.8 (Figure 1A).

Cu toxicity improved the Cu concentrations in roots and CWs by 651% and 784%,
respectively, at pH 3.0 and by 433% and 509%, respectively, at pH 4.8. Because Cu toxicity
increased the Cu content [tissue dry weight (DW) × Cu concentration] more in CWs than
in roots, the fraction of Cu in CWs in Cu-treated roots increased by 30% at pH 3.0 and 29%
at pH 4.8 (Figure 1B–D).
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Figure 1. Impacts of Cu–pH interactions on root growth (A), as well as the mean (±SE, n = 4) Cu
concentrations in roots (B) and root CWs (C) and Cu fraction in root CWs (D). Different letters above
the bars indicate a significant difference at p < 0.05.

Cu toxicity reduced the levels of TFAAs and TSPs in roots by 70% and 71%, respectively,
at pH 3.0 and by 28% and 19%, respectively, at pH 4.8 (Figure 2).
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Figure 2. Effects of Cu–pH interactions on the mean (±SE, n = 4) concentrations of TFAAs (A) and
TSPs (B) in roots. Different letters above the bars indicate a significant difference at p < 0.05. AN,
amino nitrogen.

2.2. Increasing the pH Reduced Cu Toxicity-Induced Alterations in the Concentrations of NCs,
CWMs, and CWCs in Roots

Cu toxicity increased the glucose, fructose, and starch concentrations in roots more at
pH 3.0 than at pH 4.8. Cu toxicity decreased the sucrose concentration in roots at pH 3.0,
but not at pH 4.8. Cu toxicity did not significantly affect the glucose + fructose + sucrose
concentration in roots (Figure 3A–E).
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Figure 3. Impacts of Cu–pH interactions on the mean (±SE, n = 4) concentrations of glucose (A),
fructose (B), sucrose (C), glucose + fructose + sucrose (D), starch (E), CWMs (F), pectin (G), HC1
(H), HC2 (I), HC1 + HC2 (J), cellulose (K), and lignin (L) in roots. HC1, hemicellulose 1; HC2,
hemicellulose 2. Different letters above the bars indicate a significant difference at p < 0.05.

At pH 3.0, Cu toxicity increased the concentrations of CWMs, cellulose, and lignin
and decreased the concentrations of pectin, hemicellulose 1 (HC1), HC2, and HC1 + HC2
in roots. At pH 4.8, Cu toxicity increased the concentrations of CWMs and cellulose, but it
had no significant impact on the other five parameters in the roots (Figure 3F–L).

2.3. RNA-Seq, Mapping, Transcript Assembly, Functional Annotation, and Differentially
Expressed Genes (DEGs) in Roots

Twelve RNA-Seq libraries constructed from pH 4.8 + 0.5 µM Cu-treated roots (P5R),
pH 3.0 + 0.5 µM Cu-treated roots (P3R), pH 4.8 + 300 µM Cu-treated roots (P5CR), and
pH 3.0 + 300 µM Cu-treated roots (P3CR) were sequenced, yielding 43,936,214–56,963,646 raw
reads, 41,542,740–53,364,872 clean reads, and 6.23–8.00 G clean bases (Table S1). The
good correlation (r ≥ 0.98) between biological replicates per treatment indicated that the
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experiment had good reproducibility (Figure 4A). The lower error rate, low quality, and
reads containing poly-N and adaptor sequences, as well as the higher clean read number,
Q20, and Q30 (Table S1), suggested that the RNA-Seq data were of high quality. A total of
18,730 known and 1392 novel genes were identified in the roots (Table S2).
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maps (B–E), volcano plots (F–I), Venn diagram (J), and HCA (K) of DEGs identified in R3R vs. P5R,
P3CR vs. P3R, P5CR vs. P5R, and P3CR vs. P5CR.

We obtained 775, 1457, 2000, and 1472 upregulated (580, 589, 1387, and 961 down-
regulated) genes in P3R vs. P5R, P3CR vs. P3R, P5CR vs. P5R, and P3CR vs. P5CR,
respectively (Figure 4B–I). Among the 5752 DEGs isolated in this study, 281, 430, 1386, and
804 DEGs were isolated only from P3R vs. P5R, P3CR vs. P3R, P5CR vs. P5R, and P3CR vs.
P5CR, respectively. Only 89 DEGs were simultaneously isolated in the four comparison
groups (Figure 4J). Hierarchical cluster analysis (HCA) revealed that the DEGs were highly
separated among the four treatments (P3R, P5R, P3CR, and P5CR) but clustered together
among the three biological replicates of each treatment (Figure 4K).

As shown in Tables S3 and S4, 701 and 1158 DEGs were enriched in 123 and
136 KEGG pathways, respectively, with 23 and 21 significantly enriched pathways at
p < 0.05 in P3CR vs. P3R and P5CR vs. P5R, respectively. The top three enriched KEGG
pathways were biosynthesis of secondary metabolites (SMs; ko01110), phenylpropanoid
biosynthesis (ko00940), and MAPK signaling pathway—plant (ko04016) for P3CR vs.
P3R, and phenylpropanoid biosynthesis, biosynthesis of SMs, and flavonoid biosynthesis
(ko00941) for P5CR vs. P5R.
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In P3CR vs. P3R, 1346, 1240, and 1383 DEGs were enriched in 205 GO terms in cel-
lular component (CC) with 10 significantly enriched GO terms at p < 0.05, 1652 GO terms
in biological process (BP) with 170 significantly enriched GO terms, and 574 GO terms
in molecular function (MF) with 111 significantly enriched GO terms. The top three
enriched GO terms were apoplast (GO:0048046), nucleosome (GO:0000786), and protein–
DNA complex (GO:0032993) for CC; plant-type hypersensitive response (GO:0009626), host
programmed cell death induced by symbiont (GO:0034050), and secondary metabolic pro-
cess (GO:0019748) for BP; and oxidoreductase activity, oxidizing metal ions (GO:0016722),
monooxygenase activity (GO:0004497), and heme binding (GO:0020037) for MF (Table S5).

In P5CR vs. P5R, 2209, 2052, and 2294 DEGs were enriched in 259 GO terms in
CC with 13 significantly enriched GO terms, 2007 GO terms in BP with 309 significantly
enriched GO terms, and 653 GO terms in MF with 139 significantly enriched GO terms.
The top three enriched GO terms were apoplast, intrinsic component of plasma mem-
brane (GO:0031226), and integral component of plasma membrane (GO:0005887) for CC;
secondary metabolic process, plant-type secondary CW biogenesis (GO:0009834), and
phenylpropanoid metabolic process (GO:0009698) for BP; and oxidoreductase activity, oxi-
dizing metal ions (GO:0016722), heme binding (GO:0020037), and transmembrane signaling
receptor activity (GO:0004888) for MF (Table S6).

2.4. Validation of qRT-PCR

As shown in Figure S1, the expression patterns of the 32 DEGs obtained by RNA-
Seq were well matched with the data obtained by qRT-PCR. A positive and significant
correlation existed between the RNA-Seq and qRT-PCR data. Thus, the RNA-Seq data
were reliable.

2.5. Root Metabolite Profiles and Differentially Abundant Metabolites (DAMs)

As shown in Table S7, 820 metabolites were detected in P5R, P3R, P5CR, and/or
P3CR, including (class I) 88 amino acids (AAs) and AA derivatives (AADs), 101 lipids,
60 nucleotides and derivatives (NDs), 64 organic acids (OAs), 53 flavonoids, 161 pheno-
lic acids (PAs), 79 alkaloids, 92 lignans and coumarins, 29 terpenoids, 4 quinones, and
89 other metabolites.

We observed good correlations (r ≥ 0.98) between any two biological replicates per
treatment (Figure S2A), suggesting that our metabolome data were reliable. Principal com-
ponent analysis (PCA) and HCA indicated that metabolites were highly separated among
the samples—namely, P3R, P5R, P3CR, P5CR, and quality control (QC) sample (Mix)—but
clustered together in the three biological replicates of each treatment (Figure S2B,C), sug-
gesting that Cu toxicity and/or low pH had significant influences on metabolite abundances
in roots.

The current study detected 10 upregulated [6 primary metabolites (PMs) and 4 SMs]
and 59 downregulated (31 PMs and 28 SMs), 179 upregulated (46 PMs and 133 SMs)
and 155 downregulated (80 PMs and 75 SMs), 75 upregulated (31 PMs and 44 SMs) and
79 downregulated (45 PMs and 34 SMs), and 156 upregulated (38 PMs and 118 SMs) and
186 downregulated (100 PMs and 86 SMs) metabolites in P3R vs. P5R, P3CR vs. P3R, P5CR
vs. P5R, and P3CR vs. P5CR, respectively. These DAMs fell into the following categories
(class I): AADs, OAs, lipids, NDs, PAs, flavonoids, quinones, lignans and coumarins,
alkaloids, terpenoids, and others (Figure 5 and Table S8). HCA revealed that the DAMs
were clustered together in three biological replicates of each treatment but were highly
separated between the two treatments in each comparison group (Figure S2D–G).

A total of 490 DAMs were detected in P3R vs. P5R, P3CR vs. P3R, P5CR vs. P5R,
and/or P3CR vs. P5CR, while only 10 common DAMs (mws0671, MWS4296, Qmgp082709,
Qmgp082711, Qmgp082713, mws0884, Zmnn011624, pmb2940, pmp001270, and mws1409)
were detected in the four comparison groups. A total of 8, 49, 33, and 66 DAMs were
detected only in P3R vs. P5R, P3CR vs. P3R, P5CR vs. P5R, and P3CR vs. P5CR, respectively
(Figure 5B; Table S8).
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As shown in Tables S9 and S10, a total of 105 and 40 DAMs were annotated to 75 and
65 KEGG pathways, respectively, with 4 and 6 significantly enriched KEGG pathways at
p < 0.05 in P3CR vs. P3R and P5CR vs. P5R, respectively. The top three enriched KEGG
pathways were purine metabolism (ko00230), biosynthesis of cofactors (ko01240), and
nucleotide metabolism (ko01232) for P3CR vs. P3R and carbon fixation in photosynthetic
organisms (ko00710), carbapenem biosynthesis (ko00332), and porphyrin metabolism
(ko00860) for P5CR vs. P5R.

2.6. An Integrated Analysis of Transcriptomic and Metabolomic Data

The current study obtained more DEGs than DAMs (Figures 4 and 5) and more
enriched KEGG pathways for DEGs than for DAMs (Figure 6A–D) for P3R vs. P5R, P3CR
vs. P3R, P5CR vs. P5R, and P3CR vs. P5CR. There were 25, 64, 58, and 68 commonly
enriched KEGG pathways between DEGs and DAMs and 23, 27, 26, and 21 significantly
enriched KEGG pathways, respectively, with p < 0.05 for DEGs and/or DAMs in P3R vs.
P5R, P3CR vs. P3R, P5CR vs. P5R, and P3CR vs. P5CR, respectively. However, only one
common significantly enriched pathway, glutathione metabolism (ko00480), was detected
for the DEGs and DAMs in P5CR vs. PCR and P3CR vs. P5CR (Figure 6E–H). Cu–pH
interactions had great impacts on the overall transcriptomic and metabolomic variation
(Figure 6I–L).
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tered; outside of the lines, genes and/or metabolites were significantly altered; blue dots (quad-
rants 1, 3, 7 and 9) represent both DEGs and DAMs; black dots (quadrant 5) represent unaltered 
both genes and metabolites; green dots (quadrants 2 and 8) represent DAMs with unaltered genes; 
and red dots (quadrants 4 and 6) represent DEGs with unaltered metabolites. 

Figure 6. Venn diagrams of all enriched KEGG pathways for DEGs and DAMs (A–D), statistics
of all enriched KEGG pathways for DEGs and/or DAMs with p < 0.05 (E–H), and an overview of
transcriptomic and metabolomic variation (I–L) in P3R vs. P5R (A,E,I), P3CR vs. P3R (B,F,J), P5CR
vs. P5R (C,G,K), and P3CR vs. P5CR (D,H,L). For the (I-L), black dotted lines represent the threshold
values for DEGs and DAMs; within the lines, genes and/or metabolites were not significantly altered;
outside of the lines, genes and/or metabolites were significantly altered; blue dots (quadrants 1, 3,
7 and 9) represent both DEGs and DAMs; black dots (quadrant 5) represent unaltered both genes
and metabolites; green dots (quadrants 2 and 8) represent DAMs with unaltered genes; and red dots
(quadrants 4 and 6) represent DEGs with unaltered metabolites.



Plants 2024, 13, 3054 9 of 22

Metabolite–gene networks were constructed to model the synthetic and regulatory
characteristics of DEGs and DAMs. Figures S3 and S4 showed the metabolite-gene Pearson
correlation network representing DEGs and DAMs related to phenylpropanoid biosynthe-
sis, glutathione metabolism, and cysteine and methionine metabolism (ko00270) in P3CR
vs. P3R and P5CR vs. P5R. Many factors associated with phenylpropanoid biosynthesis
were activated in P3CR vs. P3R and P5CR vs. P5R, especially in the former.

2.7. Comparison of Cu–pH Interaction-Responsive Genes and Metabolites Between Leaves
and Roots

In the corresponding comparison group, we obtained more total, upregulated, and
downregulated DEGs (DAMs) and more enriched KEGG pathways (GO terms) in roots
than in leaves (Figures S5 and S6). This difference might be due to the preferential ac-
cumulation of Cu in Cu-exposed roots [7]. There were 6 (1), 76 (10), 37 (2), and 90 (16)
common DEGs (DAMs) between P3R vs. P5R and pH 3.0 + 0.5 µM Cu-treated leaves (P3L)
vs. pH 4.8 + 0.5 µM Cu-treated leaves (P5L), P3CR vs. P3R and pH 3.0 + 300 µM Cu-treated
leaves (P3CL) vs. P3L, P5CR vs. P5R and pH 4.8 + 300 µM Cu-treated leaves (P5CL) vs.
P5L, and P3CR vs. P5CR and P3CL vs. P5CL, respectively. Among these common DEGs
(DAMs), 2 (0), 30 (5), 25 (1), and 24 (4) DEGs (DAMs) exhibited opposite trends between
P3R vs. P5R and P3L vs. P5L, P3CR vs. P3R and P3CL vs. P3L, P5CR vs. P5R and P5CL vs.
P5L, and P3CR vs. P5CR and P3CL vs. P5CL, respectively (Figure S5).

There were 28 (6), 85 (31), 46 (18), and 78 (48) commonly enriched KEGG pathways for
DEGs (DAMs) between P3R vs. P5R and P3L vs. P5L, P3CR vs. P3R and P3CL vs. P3L,
P5CR vs. P5R and P5CL vs. P5L, and P3CR vs. P5CR and P3CL vs. P5CL, respectively.
There were 336, 831, 504, and 958 commonly enriched GO terms in BP; 46, 102, 73, and
97 commonly enriched GO terms in CC; and 97, 291, 184, and 306 commonly enriched
GO terms in MF between P3R vs. P5R and P3L vs. P5L, P3CR vs. P3R and P3CL vs. P3L,
P5CR vs. P5R and P5CL vs. P5L, and P3CR vs. P5CR and P3CL vs. P5CL, respectively
(Figure S6).

Additionally, Cu–pH interaction-responsive metabolites and genes exhibited other
differences and similarities between leaves and roots. For example, we identified more
DEGs in P5CR vs. P5R than in P3CR vs. P3R; more upregulated than downregulated DEGs
in P3R vs. P5R, P3CR vs. P3R, P5CR vs. P5R, and P3CR vs. P5CR; and more upregulated
than downregulated SMs in P3CR vs. P3R. However, the opposite was true for leaves.
More upregulated (downregulated) than downregulated (upregulated) metabolites were
detected in P3CR vs. P3R (P3CR vs. P5CR), but fewer upregulated (downregulated) than
downregulated (upregulated) metabolites were detected in P3CL vs. P3L (P3CL vs. P5CL)
(Figure S5). We detected more decreased than increased free fatty acids (FFAs), glycerol
esters, AADs, and NDs in P5CR vs. P5R (Table S8), but only increased AADs and NDs
were detected in P5CL vs. P5L [16].

Cu toxicity increased lignin accumulation in root and leaf CWs at pH 3.0 but not
at pH 4.8 (Figure 3) [19]. Increasing the pH alleviated Cu toxicity-induced alterations in
metabolite abundances, and Cu toxicity increased low–pH interaction-induced alterations
in metabolite abundances and gene expression levels in roots and leaves (Figures S5 and S6).
We detected more downregulated than upregulated PMs and more upregulated than
downregulated SMs in P3CR vs. P5CR and P3CL vs. P5CL (Table S8) [19].

3. Discussion
3.1. Increasing the pH Conferred Root Cu Tolerance

The current study showed that increasing the pH decreased the toxic effects of Cu
on root growth (Figure 1). Additionally, Cu toxicity had a smaller impact on most root
parameters at pH 4.8 than at pH 3.0. Indeed, Cu toxicity significantly affected 22 out of
23 parameters in roots at pH 3.0 but only 14 parameters at pH 4.8 (Figures 1–3). Our finding
that Cu toxicity increased Cu levels in roots and root CWs more strongly at pH 3.0 than at
pH 4.8 (Figure 1) might be responsible for the increased pH-mediated amelioration of Cu
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toxicity. The preferential immobilization of Cu in Cu-exposed root CWs may prevent Cu
from entering more sensitive targets, thereby conferring plant Cu tolerance [26]. However,
the increased pH-mediated amelioration of Cu toxicity could not be explained in this way
alone since the Cu fraction in CWs was greater in P3CR than in P5CR. The increase in Cu
immobilization in root CWs agreed with the increased Cu detoxification requirement since
P3CR accumulated more Cu than P5CR (Figure 1). Additionally, we detected fewer Cu
toxicity-responsive metabolites in roots at pH 4.8 than at pH 3.0 (Figure 5A). Taken together,
these findings showed that increasing the pH decreased the toxic effects of Cu on roots.
Interestingly, we screened more Cu toxicity-responsive genes in roots at pH 4.8 than at pH
3.0 (Figure 4A), implying that Cu toxicity led to more extensive gene reprogramming in
roots at pH 4.8 than at pH 3.0, thus improving root Cu tolerance.

3.2. Roots Displayed a Greater Capacity to Maintain Cu Homeostasis at pH 4.8 Than at pH 3.0

In addition to improving Cu immobilization in root CWs, plants have developed
different strategies to maintain Cu homeostasis [3,9,12]. In Arabidopsis, AtHMA5 has a role
in excess Cu export from the cytosol across the plasma membrane (PM) and in loading
Cu into the xylem for root-to-shoot Cu translocation or Cu detoxification in roots [27,28].
Li et al. [29] reported that Cu hypertolerance in Silene vulgaris was correlated with the
upregulated expression of two HMA5 paralogs, SvHMA5I and SvHMA5II. Overexpression
of one of the two genes conferred Cu tolerance in Arabidopsis. Shi et al. [30] reported that
apple calli transformed with apple HMA5 (MdHMA5)-RNAi or overexpressing MdHMA5
had decreased or increased Cu tolerance, respectively, accompanied by increased or reduced
Cu concentrations in calli. In Arabidopsis, AtATX1 plays a vital role in Cu homeostasis by
delivering Cu to AtHMA5 [31]. Dai et al. [32] showed that overexpression of the peanut YSL
gene (AhYSL3.1) conferred Cu tolerance to tobacco and rice, accompanied by a reduction
in the Cu concentration in Cu-exposed young leaves. Zn supplementation mitigated
Cu toxicity in oat (Avena sativa), lettuce (Lactuca sativa) [33], and duckweed (Spirodela
polyrhiza) [34] by decreasing Cu uptake. The upregulation of ZIP1 (orange1.1t03274 and
orange1.1t03275) in P5CR vs. P5R implied that increasing the pH improved Zn uptake,
thus reducing Cu uptake in Cu-exposed seedlings and conferring citrus Cu tolerance [7].
Overall, we isolated 22 (30) upregulated and 5 (9) downregulated genes involved in Cu
homeostasis in P3CR vs. P3R (P5CR vs. P5R) (Table S11). Increasing the pH improved
the capacity of Cu-exposed roots to maintain Cu homeostasis (Figure 1), which could be
explained at least partially by the upregulation of HMA5 (Cs5g03780, Cs5g03790, and
Cs5g03800), YSL1 (Cs5g01560; the homolog of Arabidopsis YSL3), and ZIP1 in P5CR vs. P5R
and the downregulation of the Cu transport protein ATX1 (Cs2g08850) in P3CR vs. P3R.

3.3. Increasing the pH Mitigated Cu Toxicity-Induced CW Impairment and Senescence of Roots

We found that Cu toxicity improved the CWM concentration in roots, thus increasing
the Cu fraction in root CWs (Figure 1). The increase in the Cu fraction in Cu-exposed
root CWs was consistent with the increased demand for Cu immobilization in CWs and
hindered the entry of Cu into the more sensitive cytoplasm [1]. The Cu toxicity-induced
increase in the CWM concentration was mainly due to elevated cellulose and lignin levels
in P3CR vs. P3R and increased cellulose levels in P5CR vs. P5R (Figure 3). Our results
suggested that the Cu toxicity-induced upregulation of cellulose resulted from elevated
biosynthesis and decreased degradation in P3CR vs. P3R and from increased biosynthesis
in P5CR vs. P5R (Table S12). The greater accumulation of cellulose in P3CR vs. P3R than in
P5CR vs. P5R might be caused by decreased degradation and decreased dilution due to
reduced growth because Cu toxicity decreased root growth more at pH 3.0 than at pH 4.8
(Figure 1). Cellulose synthase (CesA) and cellulose synthase-like (Csl) proteins are involved
in the biosynthesis of cellulose and most hemicellulosic polysaccharides [35]. Transgenic
Arabidopsis plants overexpressing CesA6-like genes displayed increased cellulose con-
centrations and CW thicknesses [36]. TRICHOME BIREFRINGENCE is necessary for the
biosynthesis of cellulose in Arabidopsis [37]. Endoglucanase plays a role in cellulose hydroly-
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sis [38]. The upregulation of CesA (Cs2g04590, Cs4g01990, and Cs5g29200), Csl (Cs5g01970,
Cs9g08730, and Cs9g08760), and protein trichome birefringence-like (Cs6g08690) genes and
the downregulation of endoglucanase 8 (Cs2g17090) in P3CR vs. P3R and the upregulation
of CesA (Cs2g04590, Cs4g01990, and Cs5g29200), Csl (Cs3g09000, Cs4g08560, Cs5g25090,
Cs9g08730, Cs9g08750, and Cs9g08760), and protein trichome birefringence-like (Cs2g15690
and Cs6g08690) genes in P5CR vs. P5R might contribute to the Cu toxicity-induced accu-
mulation of cellulose in roots, thereby increasing CW thickness.

In Elsholtzia splendens, the higher Cu adsorption capacity of pectin in CWs has been
shown to be responsible for the greater Cu tolerance [11]. Silencing of a rice wall-associated
kinase gene (OsWAK11) by RNAi decreased Cu tolerance by reducing Cu accumulation in
CW pectin and hemicellulose due to an enhanced degree of pectin methyl esterification
(DPM) and an elevated Cu accumulation in the cytoplasm [39]. DPM in Arabidopsis was
negatively correlated with the activity of pectin methylesterase (PME) [40]. We isolated
one upregulated (orange1.1t00214) and three downregulated (Cs9g14450, Cs5g33410, and
orange1.1t01727) PMEs in P3CR vs. P3R and four upregulated (Cs1g16560, Cs2g16380,
Cs6g11440, and orange1.1t01085) and one downregulated (Cs4g06670) PME in P5CR vs.
P5R (Table S12), implying that Cu toxicity improved and lessened DPM in P3CR vs. P3R
and P5CR vs. P5R, respectively. Colzi et al. observed that in Silene paradoxa, the tolerant
population had a greater DPM than the sensitive population, which might reduce Cu
binding to the root CWs, thereby ensuring a low concentration of apoplastic Cu and possibly
reducing symplastic Cu uptake by root cells [41]. Taken together, these findings showed
that Cu toxicity led to reduced pectin and hemicellulose concentrations (Figure 3G–J) and
elevated pectin methyl esterification in roots treated with a pH of 3.0, thus decreasing
Cu tolerance.

Overexpression of two maize R2R3-MYB transcription factor genes (ZmMYB31 and
ZmMYB42) in A. thaliana and maize led to a decrease in lignin concentration in transgenic
plants due to downregulated expression of caffeic acid 3-O-methyltransferase (COMT)
genes [42]. Cinnamoyl CoA reductase (CCR) is involved in regulating carbon flux into
lignin. Transgenic tobacco plants with greatly reduced CCR activity displayed a strong
decrease in lignin concentration [43]. The lignin concentration was reduced by 15% in
shikimate O-hydroxycinnamoyltransferase (HCT)-silenced Nicotiana benthamiana stems [44].
4-Coumarate:CoA ligase (4CL) plays a vital role in controlling carbon flow into differ-
ent branch pathways of phenylpropanoid metabolism. At4CL1 and At4CL2 function
in the biosynthesis of lignin and in the formation of phenolic compounds other than
flavonoids [45]. The lignin concentration was higher in transgenic soybean lines over-
expressing the cinnamyl alcohol dehydrogenase (CAD) gene from wild soybean than in
wild-type plants [46]. In plants, LAC participates in the formation of lignin polymers.
Upregulation of CsiLAC4 in C. sinensis led to an increase in the level of lignin in the xylem
CWs [47]. Peroxidase (PER) catalyzes the final step in lignin biosynthesis. A transgenic
carrot line overexpressing a rice cationic peroxidase gene (OsPrx114) exhibited increased
lignin biosynthesis in the outer periderm tissues of tap roots [48]. Thus, the upregulation of
sixteen COMT, three CCR, five HCT, one 4CL, seventeen CAD, twelve LAC, and four PER
genes in P3CR vs. P3R might contribute to the Cu toxicity-induced accumulation of lignin
in pH 3.0-treated roots (Figure 3L and Table S12). The increased accumulation of lignin in
P3CR vs. P3R could also be caused by decreased dilution due to decreased root growth
(Figure 1). Additionally, we screened three (six) upregulated and one (five) downregulated
gene related to CW thickening (GO:0052386) in P3CR vs. P3R (P5CR vs. P5R) (Table S12).
These results suggested that Cu toxicity led to increased CW thickness and hardness, thus
inhibiting root growth at pH 3.0 but not at pH 4.8 (Figure 1) [49].

Zhu et al. [50] reported that a xyloglucan endotransglucosylase/hydrolase protein 31
(XTH31) T-DNA insertional mutant of Arabidopsis had reduced root growth and hemi-
cellulose concentration. As shown in Table S12, we identified eight upregulated and one
downregulated XTH in P5CR vs. P5R and two upregulated and one downregulated XTH in
P3CR vs. P3R. The upregulation of XTHs in P5CR vs. P5R might contribute to the elevated



Plants 2024, 13, 3054 12 of 22

pH-mediated alleviation of root growth inhibition and hemicellulose reduction caused by
Cu toxicity.

To conclude, we obtained more DEGs related to CW metabolism in P5CR vs. P5R than
in P3CR vs. P3R (Table S12). Increasing the pH might alleviate the toxic effects of Cu on
root CW and growth by reprogramming genes related to CW metabolism more extensively.
These findings agreed with our result that Cu toxicity might accelerate root senescence at
pH 3.0 but not at pH 4.8 (Table S13).

3.4. Increasing the pH Mitigated the Toxic Effects of Cu on Primary Metabolism in Roots

The effects of Cu toxicity on the concentrations of NCs (Figure 3A–E) and the abun-
dances of OAs, saccharides, and alcohols (Table S8) in roots were greater at 3.0 than at pH
4.8. However, we obtained 33 (44) upregulated and 18 (35) downregulated genes related to
starch and sucrose metabolism (ko00500), tricarboxylic acid (TCA) cycle (ko00020), glycoly-
sis/gluconeogenesis (ko00010), pyruvate metabolism (ko00620), and pentose phosphate
(Pi) pathway (PPP, ko00030) in P3CR vs. P3R (P5CR vs. P5R) (Table S14). Our findings
indicated that increasing the pH prevented Cu toxicity-triggered alterations in carbohy-
drate abundances in roots by reprogramming genes related to carbohydrate metabolism
more extensively.

Stressed plants often suffer from energy deficit. Carbohydrates can serve as energy
sources and antioxidants [22]. Yusuf et al. [51] reported that glucose-mediated alleviation of
cucumber Cu toxicity involved improved nutrient uptake and reduced oxidative damage.
TCA cycle participates in the oxidation of respiratory substrates to drive ATP biosynthesis.
PPP can provide NADPH to yield GSH and ascorbate (ASC), which are involved in ROS
scavenging [52]. Additionally, we identified eleven (three) upregulated and four (eight)
downregulated genes in P3CR vs. P3R (P5CR vs. P5R) involved in oxidative phosphory-
lation (ko00190) and ATP biosynthetic process (GO:0006754) (Table S14). Taken together,
these findings suggested that energy (ATP) formation might be increased in P3CR vs. P3R
but not in P5CR vs. P5R. The greater increase in total NCs (Figure 3 and Table S8) and
ATP production in P3CR vs. P3R was consistent with the increased need for energy and
ROS removal.

Cu-triggered release of OAs by roots is considered an adaptive mechanism of plants
to Cu toxicity by boosting Cu immobilization in roots and lowering Cu uptake and phy-
totoxicity [5,53]. In C. sinensis seedlings, Yang et al. [54] indicated that increasing the pH
boosted the levels of OAs in roots and subsequently promoted their release by roots, thus
alleviating aluminum (Al) toxicity. The increased accumulation of OAs in P5CR vs. P5R
implied that increasing the pH might increase the Cu toxicity-induced exudation of OAs
by roots, thereby mitigating Cu toxicity.

Macromolecules in senescing organs are degraded, and nutrients are redistributed to
nutrient-demanding young organs. We found that excess Cu upregulated the degradation
of N-containing compounds in roots at pH 3.0 but less at pH 4.8 (Table S15). These
findings agreed with the results that 41 (24) upregulated and 76 (35) downregulated N-
containing compounds were identified in P3CR vs. P3R (P5CR vs. P5R) (Table S16). The
downregulation of N compounds in P3CR vs. P3R and P5CR vs. P5R implied that Cu
toxicity improved N remobilization efficiency (NRE) to address Cu toxicity-induced N
reduction, especially at pH 3.0 [7]. Our results suggested that increasing the pH prevented
Cu toxicity-induced increases in protein and AA degradation and decreases in protein and
AA biosynthesis (Table S15), thereby improving protein and AA levels in roots (Figure 2B
and Table S8). In conclusion, Cu toxicity increased NRE in roots to cope with the Cu
toxicity-induced reduction in N uptake, especially at low pH. An increase in pH increased
the levels of N, proteins, and AAs in Cu-exposed roots.

Our results suggested that the upregulation of FFAs in P3CR vs. P3R [sixteen upregu-
lated (five saturated + eleven unsaturated) FAs and five downregulated unsaturated FAs;
Table S8] might be caused by decreased dilution due to reduced growth (Figure 1) and/or
increased biosynthesis, as indicated by eleven upregulated and nine downregulated genes
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involved in FA biosynthetic process (GO:0006633; Table S17), and that the downregulation
of unsaturated FAs in P5CR vs. P5R [four upregulated (three saturated + one unsaturated)
FAs and twelve downregulated unsaturated FAs; Table S8] might result from reduced
biosynthesis, as indicated by four downregulated genes involved in unsaturated FA biosyn-
thetic process (GO:0006636) and elevated degradation (oxidation), as indicated by fifteen
upregulated and three downregulated genes involved in FA degradation (ko00071) and
six upregulated and three downregulated genes involved in FA oxidation (GO:0019395;
Table S17). Additionally, we detected one upregulated and one downregulated glycerol
ester and six upregulated (five lysophosphatidylcholines (LysoPCs) and one lysophos-
phatidylethanolamine (LysoPE)) and nine downregulated (seven LysoPCs + two LysoPEs)
phospholipids (PLs) in P3CR vs. P3R, and one upregulated and seven downregulated
glycerol esters and five upregulated and three downregulated LysoPCs in P5CR vs. P5R
(Table S8). The downregulation of glycerol ester in P5CR vs. P5R was caused by increased
oxidation, as indicated by six upregulated and four downregulated genes involved in lipid
oxidation (GO:0034440; Table S17), while the downregulation of PLs in P3CR vs. P3R was
caused by increased catabolism (oxidation), as indicated by eighteen upregulated and four
downregulated genes involved in lipid catabolic process (GO:0016042) and three upreg-
ulated and one downregulated gene involved in lipid oxidation (GO:0034440; Table S17).
Lipid peroxidation is partly due to an increase in the FFA substrate for lipoxygenase [55].
The increased pH-mediated alleviation of oxidative damage in Cu-exposed roots [2] might
involve reduced FFA accumulation.

Cu toxicity reduced the P level in C. sinensis roots, and the P level in Cu-exposed roots
was greater at pH 4.8 than at pH 3.0 [7]. In plants, P remobilization of organic P (PLs)
contributes to the maintenance of P homeostasis [56]. As shown in Tables S8 and S16, we
detected fewer upregulated than downregulated P compounds (PLs) in P3CR vs. P3R, but
the reverse was the case in P5CR vs. P5R, suggesting that more organic P was converted
into available Pi to maintain Pi homeostasis in Cu-exposed roots at pH 3.0 but not at pH 4.8.
These findings agreed with the report that the P level in Cu-toxic roots was much lower at
pH 3.0 than at pH 4.8 [7].

Our results indicated that elevating the pH decreased the Cu toxicity-induced de-
creases in NDs (Table S8). Interestingly, we identified more upregulated genes than down-
regulated genes or similar upregulated and downregulated genes involved in nucleotide
biosynthetic process (GO:0009165) but fewer upregulated genes than downregulated genes
or similar upregulated and downregulated genes involved in nucleotide catabolic process
(GO:0009166) in P3CR vs. P3R and P5CR vs. P5R (Table S18). These findings suggested
that Cu toxicity-induced alterations in ND abundances could not be regulated at the
transcriptional level.

3.5. Increasing the pH Decreased the Toxic Effects of Cu on SMs in Roots

Our results indicated that increasing the pH mitigated the increase in the biosynthesis
and abundances of root SMs, phenylpropanoids, phenolic compounds, and lignans and
coumarins caused by Cu toxicity (Figure S3; Tables S8 and S19–S21). Notably, SA was
upregulated in P3CR vs. P3R but not in P5CR vs. P5R (Table S8). This finding agreed with
the result obtained by targeted metabolomics, in which the level of SA was upregulated in
P3CR vs. P3R but not in P5CR vs. P5R [15]. Zhang et al. reported that the overexpression
of protein SAR DEFICIENT 1 (SARD1) led to increased levels of free SA and total SA in
Arabidopsis, suggesting that SARD1 plays a key role in SA biosynthesis by regulating the
expression of SID2, which encodes isochorismate synthase [57]. The upregulation of SA
in P3CR vs. P3R might be caused by increased biosynthesis, as indicated by upregulated
SARD1 (Cs7g27120) involved in SA biosynthetic process (GO:0009697; Table S19), and
decreased dilution due to reduced growth (Figure 1), rather than by reduced catabolism,
as indicated by five upregulated genes involved in SA catabolic process (GO:0046244;
Table S19). Additionally, we identified 21 (16) upregulated and 4 (6) downregulated genes
involved in the biosynthesis of various alkaloids (ko00960, ko00950, and ko0090; Table S19)
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and 23 (5) upregulated and 13 (9) downregulated alkaloids in P3CR vs. P3R (P5CR vs. P5R)
(Table S8), suggesting that Cu toxicity increased the biosynthesis of alkaloids and their
accumulation in P3CR vs. P3R but not in P5CR vs. P5R. A Cu toxicity-induced increase in
alkaloids has been observed in C. grandis roots [12]. Similarly, increasing the pH decreased
the toxic effects of Cu on terpenoids, as indicated by five (zero) upregulated and nine (eight)
downregulated terpenoids in P3CR vs. P3R (P5CR vs. P5R) (Table S8). The downregulation
of terpenoids might be caused by increased degradation in P3CR vs. P3R, as indicated
by 2 upregulated genes involved in terpenoid catabolic process (GO:0016115; Table S19),
and by decreased biosynthesis in P5CR vs. P5R, as indicated by 17 upregulated and 21
downregulated genes involved in terpenoid biosynthetic process (GO:0016114; Table S19).

In addition to scavenging ROS, SMs participate in the detoxification of Cu toxicity
through the chelation (immobilization) of Cu [58]. The endophytic Bacillus altitudinis WR10
enhanced wheat tolerance to excess Cu by upregulating phenylpropanoid biosynthesis and
antioxidant capacity and reducing H2O2 accumulation in roots [4]. Increased accumulation
of lignin in roots leads to increased CW thickness, thus forming a physical barrier to hin-
der the adverse impacts of excess Cu. Overexpression of caffeoyl-CoA O-methyltransferase
(CCoAOMT), LAC10, and peroxidase 7 conferred Cu tolerance on rice [59], tobacco [60], and
Arabidopsis [61], respectively, by improving the immobilization of Cu in CWs and/or reduc-
ing Cu uptake under Cu toxicity due to increased lignin biosynthesis and accumulation.
Mostofa and Fujita [62] indicated that SA-mediated alleviation of rice Cu toxicity involved
increased immobilization of Cu in roots and decreased oxidative damage in leaves and
roots. Chen et al. [63] reported that exogenous putrescine enhanced Populus cathayana
tolerance to Cu toxicity by reducing foliar Cu concentrations and oxidative damage. Shad
et al. [64] reported that exogenous coumarin alleviated manganese (Mn) toxicity-induced
decrease in growth in Sesamum indicum plants by reducing Mn concentrations, electrolyte
leakage, and the accumulation of ROS and MDA in roots and leaves. The foliar application
of betaine increased maize tolerance to cadmium (Cd) toxicity by repressing Cd uptake
and translocation to shoots and mitigating oxidative damage in roots and shoots [65]. A
recent study suggested that the Cu-induced release of phenolic compounds was involved
in C. sinensis Cu tolerance [5]. The increased accumulation of SMs implied that Cu toxicity
might trigger the release of SMs by roots, especially at low pH.

Taken together, these results indicated that the observed greater accumulation of SMs,
especially PAs (SA), alkaloids (betaine and putrescine), lignin, and coumarins, in P3CR vs.
P3R might be an adaptive strategy to Cu toxicity to cope with the elevated need for Cu and
ROS detoxification. Increasing the pH decreased the Cu toxicity-induced alterations of SMs
in the roots.

3.6. Increasing the pH Mitigated Cu Toxicity-Induced Oxidative Damage in Roots

Fe is a component of several antioxidant enzymes, including Fe-SOD, catalase (CAT),
and ASC peroxidase (APX). Fe deficiency increases plant vulnerability to oxidative dam-
age [66]. A study showed that Cu toxicity reduced Fe uptake by roots and root-to-shoot Fe
translocation in citrus seedlings [67]. Transcription factor FER-LIKE IRON DEFICIENCY-
INDUCED TRANSCRIPTION FACTOR (FIT or BHLH29) plays a vital role in controlling Fe
uptake. In Arabidopsis, Fe levels in roots and shoots were lower in fit1 mutant plants than in
wild-type plants [68]. Durrett et al. [69] indicated that FRD3-mediated transport of citrate
into the root vasculature was key for the translocation of Fe to shoots and that overexpres-
sion of FRD3 conferred Arabidopsis Al tolerance by increasing Al-stimulated secretion of
citrate by roots. The upregulation of FIT (Cs8g15600) and FRD3 (Cs7g01770) in P5CR vs.
P5R agreed with our reports that under Cu toxicity, increasing the pH improved Fe uptake
and translocation to shoots [7], as well as the activities of SOD, CAT, and APX in roots [2];
our findings that Cu toxicity downregulated the expression of SOD [Fe] chloroplastic (FSD;
Cs7g19250) in roots at pH 3.0 but not at pH 4.8; and the above inference that increasing
the pH improved Cu toxicity-stimulated exudation of OAs. Protein disulfide isomerase
(PDI) and protein disulfide isomerase-like protein (PDIL) catalyze the reduction, formation,
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or isomerization of disulfide bonds. PDI also has Cu-binding activity. Overexpression
of a PDIL gene conferred rice mercury (Hg) tolerance through alleviating Hg-induced
oxidative damage due to reduced ROS formation and elevated activities of antioxidant
enzymes, concentrations of GSH, and ratios of GSH/oxiglutathione (GSSG) in roots and
leaves [70]. The upregulation of protein disulfide-isomerase 5-4 (orange1.1t04754) in P5CR vs.
P5R agreed with our finding that GSH abundance was reduced in P3CR vs. P3R but not
in P5CR vs. P5R (Table S8). Overexpression of an Arabidopsis Nudix hydrolase (AtNUDX2)
conferred tolerance to oxidative stress in stressed Arabidopsis cells [71]. A study showed
that increasing the pH alleviated excess Cu-induced oxidative damage and decrease in the
GSH/GSSG ratio by decreasing the ROS formation and improving the antioxidant capacity
of leaves and roots [2]. Therefore, the upregulation of protein disulfide-isomerase 5-4, NUDX2
(Cs2g19230), FRD3, and FIT in P5CR vs. P5R (Table S22) might confer citrus Cu tolerance
by reducing Cu uptake, phytotoxicity, and translocation to shoots; increasing Fe uptake
and translocation to shoots; and alleviating Cu toxicity-induced oxidative damage in roots.
GSTs are involved in the quenching of reactive molecules by the addition of GSH and the
detoxification of Cu. Overexpression of GST (NT107) conferred Cu tolerance to Dianthus
superplants by increasing phytochelatin (PC) biosynthesis and Cu accumulation. A higher
level of PC biosynthesis might contribute to the sequestration and detoxification of excess
Cu [72]. Overexpression of GST/glutathione peroxidase enhanced the growth of transgenic
tobacco plants under stress but decreased the GSH/GSSG ratio [73]. We identified ten (nine)
upregulated and two (twelve) downregulated genes related to the GST activity in P3CR
vs. P3R (P5CR vs. P5R) (Table S22), which agreed with our findings that the GSH/GSSG
ratio was decreased in P3CR vs. P3R but not in P5CR vs. P3R (Table S8) and our previous
report that Cu toxicity increased the root PC concentration more at pH 3.0 than at pH 4.8
and that Cu toxicity reduced the root GSH/GSSG ratio at pH 3.0 but not at pH 4.8 [2]. The
upregulation of GSTs in P3CR vs. P3R agreed with the increased need for Cu sequestration
and detoxification (Figure 1B).

Through the biosynthesis of sulfur (S)-containing compounds (GSH and cysteine),
S metabolism plays a vital role in the tolerance of plants to Cu toxicity and oxidative
stress [2,74]. We found that increasing the pH alleviated the Cu toxicity-induced reduction
in S compounds (Table S16), thereby conferring root Cu tolerance. This agreed with the
report that increasing the pH mitigated the Cu toxicity-induced decrease in the activities of
eight S metabolism-related enzymes and the concentration of GSH in roots [2]. Notably,
L-cysteine was downregulated in P5CR vs. P5R but unaltered in P3CR vs. P3R (Table S8).
In plants, cysteine synthase (CS) catalyzes the final step in the biosynthesis of L-cysteine,
a precursor for the biosynthesis of different S-containing compounds. Transgenic soybean
plants overexpressing CS displayed increased accumulation of cysteine in seeds [75]. Choi
et al. indicated that CS could protect plants against toxic O3 gas, probably by overaccumu-
lating S-rich antioxidants (cysteine and GSH) [76]. A study from our laboratory indicated
that CS activity was reduced in P3CR vs. P3R but not in P5CR vs. P5R and that CS activity
in Cu-exposed roots decreased with decreasing pH [2]. These findings suggested that
cysteine biosynthesis might decrease and increase in P3CR vs. P3R and P5CR vs. P5R,
respectively. Thus, the decrease in cysteine in P5CR vs. P5R was caused by increased
utilization due to increased biosynthesis of the other S-containing compounds rather than
by decreased biosynthesis, while the unaltered cysteine level in P3CR vs. P3R might be
caused by decreased utilization due to decreased biosynthesis of the other S-containing
compounds and/or decreased dilution due to decreased growth (Figure 1). Interestingly,
we identified one (Cs3g11490) and two (Cs3g11490 and Cs3g11520) upregulated CS genes in
P3CR vs. P3R and P5CR vs. P5R, respectively (Table S22), implying that posttranscriptional
regulation might influence CS activity in roots.

Vitamins have good antioxidant potential. We detected three upregulated (acitretin,
N-(β-D-glucosyl) nicotinate, and pyridoxine-5′-phosphate) and four downregulated (nicoti-
namide, D-pantothenic acid, biotin, and pyridoxal) vitamins in P3CR vs. P3R and one
downregulated (biotin) vitamin in P5CR vs. P5R (Table S8). A study showed that Cu toxic-
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ity increased the ASC and dehydroascorbate (DHA) concentrations and had no significant
impact on the ASC/DHA ratio in roots at pH 4.8, but it decreased these three parameters
at pH 3.0 [2]. Obviously, increasing the pH prevented the toxic effects of Cu on ASC
and other vitamin metabolisms, thereby maintaining vitamin homeostasis. Tahjib-Ul-Arif
et al. [74] reported that GSH and ASC lessened the toxic effects of Cu on rice growth and
photosynthetic pigments by increasing N and water uptake and lowering Cu uptake and
oxidative damage.

In conclusion, increasing the pH caused more extensive reprogramming of genes
related to ROS detoxification and cell redox homeostasis in Cu-exposed roots (Table S22) to
cope with oxidative stress. The increased pH-mediated alleviation of oxidative damage
in Cu-exposed roots involved reduced Cu accumulation and ROS production and an
enhanced ability to detoxify ROS and maintain cell redox homeostasis.

4. Materials and Methods
4.1. Plant Materials

The culture and Cu–pH treatments of ‘Xuegan’ [Citrus sinensis (L.) Osbeck] seedlings
were performed according to the previous methods [19]. Six weeks after seed germination,
uniform seedlings were transferred to 6 L plots (two plants per pot) containing sand.
Seedlings were cultivated in a greenhouse under natural conditions at Fujian Agriculture
and Forestry University, Fuzhou, China (119◦14′ E, 26◦5′ N). Starting from the seventh
week after transplanting, each pot was supplied six times weekly with ~500 mL of freshly
prepared nutrient solution at a CuCl2 concentration of 300 µM (Cu toxicity) or 0.5 µM
(control or non-Cu toxicity) and a pH of 4.8 (high) or 3.0 (low) until leaking. The nutrient
solution was adjusted to pH 4.8 or 3.0 with 1 M HCl. In this study, 300 µM Cu was used
as the Cu toxicity treatment because it led to a significant but not excessive inhibition of
‘Xuegan’ seedling growth at pH 3.0, while it did not significantly inhibit seedling growth at
pH 4.8 [7]. Yuda and Okamoto [77] reported that citrus plants were insensitive to acidic
soils. A study from our laboratory showed that pH 3.0 slightly decreased the growth of
‘Xuegan’ seedlings; pH 4.0 hardly decreased seedling growth; and seedling growth reached
its maximum at pH 5.0 [78]. The high-pH setting of 4.8 was to prevent Cu precipitation.
Twenty pots per treatment were assigned to a completely randomized design. Seventeen
weeks after the pH–Cu treatments, approximately 0.5 cm long white root apexes were
harvested at noon, immediately frozen in liquid N2, and subsequently stored in a −80 ◦C
freezer until the extraction of metabolites and RNA. The nonsampled seedlings were
subjected to Cu and CWM assays.

4.2. Assays of NCs, TFAAs, TSPs, CWM Extraction, CWCs, and Cu

Soluble sugars were extracted thrice with 80% (v/v) ethanol at 80 ◦C. Glucose, fructose,
and sucrose in the supernatant and starch in the pellet were measured spectrophotometri-
cally via an enzymatic method [22].

TFAAs were determined by the ninhydrin colorimetric method [5].
TSPs were assayed according to the methods of Bradford [79] after extraction with

50 mM phosphate buffer (pH 7.0).
Extraction of CWMs and assay of CWCs (pectin, HC1, HC2, lignin, and cellulose)

were performed according to Zhang et al. [19].
Cu concentrations in roots and root CWs were assayed with a PinAAcle 900 F atomic

absorption spectrometer (PerkinElmer Singapore Pte Ltd., Singapore).

4.3. Root RNA-Seq and qRT-PCR Validation

Equal amounts of frozen roots of four seedlings from four pots were pooled as one
biological replicate. Twelve samples were subsequently sent to Wuhan MetWare Biotech-
nology Co., Ltd. (Wuhan, Hubei, China), for RNA extraction and RNA-Seq using the
HiSeq Illumina platform (Illumina Inc., San Diego, CA, USA) as described previously [19].
High-quality clean reads, filtered by fastp v0.19.3, were mapped to the reference genome
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of C. sinensis v1.0 (http://citrus.hzau.edu.cn/orange/download/index.php, accessed on
7 May 2022) by HISAT v2.1.0. Transcript assembly, functional annotation, and screening
of DEGs were performed according to the previous methods [17]. The screening criteria
for DEGs were |log2(fold change)| > 1 and a false discovery rate (FDR) < 0.05 using
DESeq2 v1.22.1.

Thirty-two DEGs were randomly selected for qRT-PCR validation. Forward and
reverse primers were designed using Primer PREMIER version 5.0 (Premier Biosoft Interna-
tional, CA, USA) (Table S23). qRT-PCR was performed in two technical replicates × three
biological replicates using U4/U6 small nuclear ribonucleoprotein PRP31 (PRPF31; Cs7g08440)
and actin (Cs1g05000) as internal standards.

4.4. Widely Targeted Metabolome in Roots

Twelve samples were sent to Wuhan MetWare Biotechnology Co., Ltd. (Wuhan,
Hubei, China) for widely targeted metabolome via the UPLC-ESI-MS/MS system (UPLC,
SHIMADZU Nexera X2, www.shimadzu.com.cn/; MS, Applied Biosystems 4500 Q TRAP,
www.appliedbiosystems.com.cn/, accessed on 7 May 2022). The screening criteria for
DAMs were a |log2(fold change)| > 1 and a variable importance in projection (VIP) > 1
in the orthogonal projections to latent structures discriminant analysis (OPLS-DA). The
functions of the DAMs were annotated using the KEGG compound database (http://www.
kegg.jp/kegg/compound/, accessed on 2 June 2022) and MetWare metabolite database [20].

4.5. Integrated Analysis of Metabolome and Transcriptome

An integrated analysis was performed as described previously [20] after the two
datasets were converted to log2 values. Pearson correlation coefficients (PCCs) > 0.80
and corresponding p-values (PCCPs) < 0.05 were used to screen the data for the integ-
rated analysis.

4.6. Statistical Analysis

All data were subjected to two-way ANOVA (two (Cu levels) × two (pH)) and LSD
test at p < 0.05 using a DPS of 7.05 (Hangzhou RuiFeng Information Technology Co. Ltd.,
Hangzhou, China). PCA, OPLS-DA, and HCA were performed using R (base package,
version 3.5.0), R (MetaboAnalystR; version 1.0.1), and R (ComplexHeatmap; version 2.8.0),
respectively, after the data were normalized [20].

5. Conclusions

Our results demonstrated that increasing the pH reduced the toxic effects of Cu on the
abundances of PMs and SMs in roots. This difference was related to the following several
factors: (a) increasing the pH improved the capacity of Cu-exposed seedlings (roots) to
maintain Cu homeostasis by reducing Cu uptake and Cu translocation to young leaves;
(b) increasing the pH decreased Cu toxicity-triggered oxidative damage by reducing ROS
formation and the abundances of FFAs and enhancing the ability to detoxify ROS and main-
tain cell redox homeostasis; and (c) increasing the pH decreased the Cu toxicity-induced
impairment of CW metabolism and senescence by decreasing the Cu levels in the roots and
root CWs, thereby promoting root growth (Figure 7). Several genes (HMA5, YSL1, ZIP1,
protein disulfide-isomerase 5-4, NUDX2, FRD3, and BHLH29), metabolites (SA, betaine, pu-
trescine, coumarins, GSH, ASC, and lignin), and/or metabolic pathways (phenylpropanoid
biosynthesis) might play a role in root Cu tolerance. Additionally, we observed some
differences and similarities in Cu–pH interaction-responsive genes and metabolites be-
tween leaves and roots. To conclude, this study may provide novel information on the
mechanisms underlying the elevated pH-mediated alleviation of Cu toxicity in roots and
provide a theoretical basis for the development of new technologies to reduce Cu toxicity
in plants.

http://citrus.hzau.edu.cn/orange/download/index.php
www.shimadzu.com.cn/
www.appliedbiosystems.com.cn/
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/compound/
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