Correlation Analysis Among the Chemical Composition and Cytotoxic and Antioxidative Activities of a Tessaria absinthioides Decoction for Endorsing Its Potential Application in Oncology
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis
2.2. Determination of Total Phenolic Content and Antioxidative Activity
2.3. Determination of DETa Cytotoxic Acivity
2.4. Relationships Between the Bioactive Compound Content and Biological Properties
2.5. Principal Component Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material and Decoction Preparation
3.3. Chemical Analyses of the Acquired T. absinthioides Decoction
3.3.1. Determination of Phytochemical Profile and Quantification
3.3.2. Determination of Total Phenolic Content
3.4. Bioassays
3.4.1. Cytotoxicity Assay
3.4.2. Antioxidative Activity
3.5. Statistical Analysis
3.5.1. Pearson Correlation
3.5.2. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Specifications: Test Procedures and Acceptance Criteria for Herbal Substances, Herbal Preparations and Herbal Medicinal Products/Traditional Herbal Medicinal Products. Document No 2006. 2006. Available online: https://www.ema.europa.eu/en/specifications-test-procedures-acceptance-criteria-herbal-substances-herbal-preparations-herbal-medicinal-products-traditional-herbal-medicinal-products-scientific-guideline (accessed on 17 October 2024).
- Monagas, M.; Brendler, T.; Brinckmann, J.; Dentali, S.; Gafner, S.; Giancaspro, G.; Johnson, H.; Kababick, J.; Ma, C.; Oketch-Rabah, H.; et al. Understanding plant to extract ratios in botanical extracts. Front. Pharmacol. 2022, 13, 981978. [Google Scholar] [CrossRef]
- IARC Newsletter. 2024. Available online: https://www.iarc.who.int/wp-content/uploads/2024/05/IARCNewsletter_May2024.pdf (accessed on 17 October 2024).
- Chandra, S.; Gahlot, M.; Choudhary, A.N.; Palai, S.; de Almeida, R.S.; de Vasconcelos, J.E.; dos Santos, F.A.; de Farias, P.A.; Coutinho, H.D. Scientific evidences of anticancer potential of medicinal plants. Food Chem. Adv. 2023, 2, 100239. [Google Scholar] [CrossRef]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Nau, S.; Hochwald, S.N.; Xie, H.; Zhang, J. Anticancer properties and mechanisms of botanical derivatives. Phytomed. Plus 2023, 3, 100396. [Google Scholar] [CrossRef]
- Gnanaselvan, S.; Yadav, S.A.; Manoharan, S.P.; Pandiyan, B. Uncovering the anticancer potential of phytomedicine and polyherbal’s synergism against cancer—A review. Biointerface Res. Appl. Chem. 2023, 13, 356. [Google Scholar]
- Pasqualetti, V.; Locato, V.; Fanali, C.; Mulinacci, N.; Cimini, S.; Morgia, A.M.; Pasqua, G.; De Gara, L. Comparison between in vitro chemical and ex vivo biological assays to evaluate antioxidant capacity of botanical extracts. Antioxidants 2021, 10, 1136. [Google Scholar] [CrossRef]
- Vigliante, I.; Mannino, G.; Maffei, M.E. OxiCyan®, a phytocomplex of bilberry (Vaccinium myrtillus) and spirulina (Spirulina platensis), exerts both direct antioxidant activity and modulation of ARE/Nrf2 pathway in HepG2 cells. J. Funct. Foods 2019, 61, 103508. [Google Scholar] [CrossRef]
- Chugh, N.A.; Koul, A. Reactive Oxygen Species Mediated Cancer Progression and Metastasis: Amelioration by Botanicals. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects; Springer: Singapore, 2021; pp. 1–14. [Google Scholar]
- Paschoalinotto, B.H.; Dias, M.I.; Pinela, J.; Pires, T.C.; Alves, M.J.; Mocan, A.; Calhelha, R.C.; Barros, L.; Ineu, R.P.; Ferreira, I.C. Phytochemical characterization and evaluation of bioactive properties of tisanes prepared from promising medicinal and aromatic plants. Foods 2021, 10, 475. [Google Scholar] [CrossRef]
- Aboushanab, S.A.; Shevyrin, V.A.; Melekhin, V.V.; Andreeva, E.I.; Makeev, O.G.; Kovaleva, E.G. Cytotoxic activity and phytochemical screening of eco-friendly extracted flavonoids from Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep and Trifolium pratense L. Flowers Using HPLC-DAD-MS/HRMS. AppliedChem 2023, 3, 119–140. [Google Scholar] [CrossRef]
- Bhajan, C.; Soulange, J.G.; Sanmukhiya VM, R.; Olędzki, R.; Harasym, J. Phytochemical Composition and Antioxidant Properties of Tambourissa ficus, a Mauritian Endemic Fruit. Appl. Sci. 2023, 13, 10908. [Google Scholar] [CrossRef]
- Mazumder MA, R.; Tolaema, A.; Chaikhemarat, P.; Rawdkuen, S. Antioxidant and anti-cytotoxicity effect of phenolic extracts from Psidium guajava Linn. leaves by novel assisted extraction techniques. Foods 2023, 12, 2336. [Google Scholar] [CrossRef] [PubMed]
- Madaleno, I.; Delatorre-Herrera, J. Medicina popular de Iquique, Tarapacá. Idesia (Arica) 2013, 31, 67–78. [Google Scholar] [CrossRef]
- Torres-Carro, R.; Isla, M.I.; Thomas-Valdes, S.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G.; Alberto, M.R. Inhibition of pro-inflammatory enzymes by medicinal plants from the Argentinean highlands (Puna). J. Ethnopharmacol. 2017, 205, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Campos-Navarro, R.; Scarpa, G. The cultural-bound disease “empacho” in Argentina. A comprehensive botanico-historical and ethnopharmacological review. J. Ethnopharmacol. 2013, 148, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Persia, F.A.; Rinaldini, E.; Carrión, A.; Hapon, M.B.; Gamarra-Luques, C. Evaluation of cytotoxic and antitumoral properties of Tessaria absinthioides (Hook & Arn) DC, “pájaro bobo”, aqueous extract. Medicina 2017, 77, 283–290. [Google Scholar]
- Sosa-Lochedino, A.; Hapon, M.B.; Gamarra-Luques, C. A systematic review about the contribution of the genus Tessaria (Asteraceae) to cancer study and treatment. Uniciencia 2022, 36, 467–483. [Google Scholar] [CrossRef]
- Gómez, J.; Simirgiotis, M.J.; Lima, B.; Gamarra-Luques, C.; Bórquez, J.; Caballero, D.; Feresin, G.E.; Tapia, A. UHPLC–Q/Orbitrap/MS/MS fingerprinting, free radical scavenging, and antimicrobial activity of Tessaria absinthiodes (Hook. & Arn.) DC. (Asteraceae) lyophilized decoction from argentina and chile. Antioxidants 2019, 8, 593. [Google Scholar] [CrossRef]
- Quesada, I.; de Paola, M.; Alvarez, M.S.; Hapon, M.B.; Gamarra-Luques, C.; Castro, C. Antioxidant and anti-atherogenic properties of Prosopis strombulifera and Tessaria absinthioides aqueous extracts: Modulation of NADPH oxidase-derived reactive oxygen species. Front. Physiol. 2021, 12, 662833. [Google Scholar] [CrossRef]
- Rey, M.; Kruse, M.S.; Magrini-Huamán, R.N.; Gómez, J.; Simirgiotis, M.J.; Tapia, A.; Feresin, G.E.; Coirini, H. Tessaria absinthioides (Hook. & arn.) DC. (Asteraceae) decoction improves the hypercholesterolemia and alters the expression of LXRs in rat liver and hypothalamus. Metabolites 2021, 11, 579. [Google Scholar] [CrossRef]
- Rey, M.; Kruse, M.S.; Gómez, J.; Simirgiotis, M.J.; Tapia, A.; Coirini, H. Ultra-High-Resolution Liquid Chromatography Coupled with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry Analysis of Tessaria absinthioides (Hook. & Arn.) DC.(Asteraceae) and Antioxidant and Hypocholesterolemic Properties. Antioxidants 2023, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; Sharma, M.; Singh, R.; Sharma, U. Plant-based natural product chemistry: An overview of the multistep journey involved in scientific validation of traditional knowledge. Stud. Nat. Prod. Chem. 2024, 80, 327–377. [Google Scholar]
- Said, Z.B.-O.S.; Arkoub-Djermoune, L.; Bouriche, S.; Brahmi, F.; Boulekbache-Makhlouf, L. Supplementation species effect on the phenolic content and biological bioactivities of the decocted green tea. N. Afr. J. Food Nutr. Res. 2024, 8, 202–215. [Google Scholar] [CrossRef]
- Jiang, H.; Li, M.; Du, K.; Ma, C.; Cheng, Y.; Wang, S.; Nie, X.; Fu, C.; He, Y. Traditional Chinese Medicine for adjuvant treatment of breast cancer: Taohong Siwu Decoction. Chin. Med. 2021, 16, 129. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Hsiao, C.-H.; Tzang, B.-S.; Hsu, T.-C. In vitro and in vivo effects of traditional Chinese medicine formula T33 in human breast cancer cells. BMC Complement. Altern. Med. 2019, 19, 211. [Google Scholar] [CrossRef]
- Liu, M.; Fan, J.; Wang, S.; Wang, Z.; Wang, C.; Zuo, Z.; Chow, M.S.; Shi, L.; Wen, Z.; Huang, Y. Transcriptional profiling of Chinese medicinal formula Si-Wu-Tang on breast cancer cells reveals phytoestrogenic activity. BMC Complement. Altern. Med. 2013, 13, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.-P. Evaluation of estrogenic potential of Shu-Gan-Liang-Xue Decoction by dual-luciferase reporter based bioluminescent measurements in vitro. J. Ethnopharmacol. 2009, 126, 345–349. [Google Scholar] [CrossRef]
- León, L.G.; Donadel, O.J.; Tonn, C.E.; Padrón, J.M. Tessaric acid derivatives induce G2/M cell cycle arrest in human solid tumor cell lines. Bioorg. Med. Chem. 2009, 17, 6251–6256. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef] [PubMed]
- Fossatelli, L.; Maroccia, Z.; Fiorentini, C.; Bonucci, M. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. Int. J. Mol. Sci. 2023, 25, 251. [Google Scholar] [CrossRef] [PubMed]
- Gastaldello, G.H.; Cazeloto, A.C.V.; Ferreira, J.C.; Rodrigues, D.M.; Bastos, J.K.; Campo, V.L.; Zoccal, K.F.; Tefé-Silva, C. Green Propolis Compounds (Baccharin and p-Coumaric Acid) Show Beneficial Effects in Mice for Melanoma Induced by B16f10. Medicines 2021, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Zhou, S.; Yang, S. Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int. J. Mol. Sci. 2019, 20, 465. [Google Scholar] [CrossRef]
- Ahsan, H.; Islam, S.U.; Ahmed, M.B.; Lee, Y.S. Role of Nrf2, STAT3, and Src as molecular targets for cancer chemoprevention. Pharmaceutics 2022, 14, 1775. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef]
- Khojasteh, A.; Mirjalili, M.H.; Alcalde, M.A.; Cusido, R.M.; Eibl, R.; Palazon, J. Powerful plant antioxidants: A new biosustainable approach to the production of rosmarinic acid. Antioxidants 2020, 9, 1273. [Google Scholar] [CrossRef]
- Tajner-Czopek, A.; Gertchen, M.; Rytel, E.; Kita, A.; Kucharska, A.Z.; Sokół-Łętowska, A. Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives. Antioxidants 2020, 9, 412. [Google Scholar] [CrossRef]
- Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules 2022, 27, 6545. [Google Scholar] [CrossRef]
- Tošović, J.; Bren, U. Antioxidative action of ellagic acid—A kinetic DFT study. Antioxidants 2020, 9, 587. [Google Scholar] [CrossRef]
- Wang, W.; Le, T.; Wang, W.; Yu, L.; Yang, L.; Jiang, H. Effects of key components on the antioxidant activity of black tea. Foods 2023, 12, 3134. [Google Scholar] [CrossRef] [PubMed]
- Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The Study of antioxidant components in grape seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Bellumori, M.; Cecchi, L.; Bartolomei, M.; Bollati, C.; Clodoveo, M.L.; Corbo, F.; Arnoldi, A.; Mulinacci, N. Extra virgin olive oil phenol extracts exert hypocholesterolemic effects through the modulation of the LDLR pathway: In Vitro and cellular mechanism of action elucidation. Nutrients 2020, 12, 1723. [Google Scholar] [CrossRef] [PubMed]
- Donadel, O.J.; Guerreiro, E.; María, A.O.; Wendel, G.; Enriz, R.D.; Giordano, O.S.; Tonn, C.E. Gastric cytoprotective activity of ilicic aldehyde: Structure–activity relationships. Bioorg. Med. Chem. Lett. 2005, 15, 3547–3550. [Google Scholar] [CrossRef] [PubMed]
- Soto, V.C.; A Caselles, C.; Silva, M.F.; Galmarini, C.R. Onion hybrid seed production: Relation with nectar composition and flower traits. J. Econ. Èntomol. 2018, 111, 1023–1029. [Google Scholar] [CrossRef]
- Ferreyra, S.; Bottini, R.; Fontana, A. Tandem absorbance and fluorescence detection following liquid chromatography for the profiling of multiclass phenolic compounds in different winemaking products. Food Chem. 2020, 338, 128030. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Piñeiro, M.; Martinez-Peinado, N.; Barrera, P.; Sosa, M.; Bastida, J.; Alonso-Padilla, J.; Feresin, G.E. Candimine from Hippeastrum escoipense (Amaryllidaceae): Anti-Trypanosoma cruzi activity and synergistic effect with benznidazole. Phytomedicine 2023, 114, 154788. [Google Scholar] [CrossRef]
- Heldrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Luna, L.; Simirgiotis, M.J.; Lima, B.; Bórquez, J.; Feresin, G.E.; Tapia, A. UHPLC-MS metabolome fingerprinting: The isolation of main compounds and antioxidant activity of the andean species Tetraglochin ameghinoi (Speg.) Speg. Molecules 2018, 23, 793. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0003269796902924 (accessed on 17 October 2024). [CrossRef]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996. [Google Scholar]
Compounds (n = 22) | 2017 | 2018 | 2019 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Apigenin D | 3.03 | 0.27 | 5.9 | 0.41 | 3.71 | 0.18 | 2.63 | 0.49 |
Caffeic acid F | 22.65 | 1.93 | 1.01 | 0.05 | 0.46 | 0.03 | 1.74 | 0.06 |
Caftaric acid F | 75.74 | 2.90 | 5.80 | 0.14 | 3.82 | 0.17 | 7.69 | 0.30 |
Catechin D | 4.91 | 0.40 | 1.47 | 0.26 | 9.90 | 0.53 | 2.41 | 0.06 |
Chlorogenic acid D | 11.10 | 1.12 | 13.10 | 0.73 | 8.37 | 0.61 | 10.27 | 0.96 |
Ellagic acid F | 3.50 | 0.31 | 4.03 | 0.46 | 0.18 | 0.01 | 11.89 | 0.48 |
Epicatechin F | 0.16 | 0.01 | 0.22 | 0.01 | 0.14 | 0.01 | 0.35 | 0.01 |
Ferulic acid F | 0.44 | 0.02 | 0.21 | 0.01 | 0.24 | 0.01 | 0.11 | 0.02 |
Gall-gallate F | 0.88 | 0.04 | 0.96 | 0.03 | 0.58 | 0.01 | 1.90 | 0.03 |
Ginnalin A F | 8.87 | 0.76 | 4.11 | 0.43 | 1.51 | 0.28 | 7.09 | 0.81 |
Hesperetin F | 6.53 | 0.08 | 3.57 | 0.14 | 2.30 | 0.10 | 1.96 | 0.02 |
Luteolin D | 7.29 | 1.2 | 8.38 | 0.41 | 11.95 | 0.53 | 4.56 | 0.06 |
Myricetin F | 3.17 | 0.13 | 2.35 | 0.09 | 0.92 | 0.13 | 8.33 | 0.07 |
Naringin F | 26.34 | 0.68 | 21.39 | 0.55 | 1.92 | 0.15 | 44.43 | 0.96 |
OH-tyrosol F | 0.16 | 0.01 | 0.15 | 0.01 | 0.10 | 0.01 | 0.63 | 0.04 |
p-Coumaric acid D | 0.73 | 0.02 | 3.28 | 0.16 | 0.03 | 0.01 | 2.20 | 0.06 |
Quercetin F | 2.06 | 0.15 | 1.51 | 0.43 | 1.84 | 0.09 | 2.35 | 0.35 |
Quercetin-3-gluc F | 5.83 | 0.40 | 36.68 | 2.64 | 1.47 | 0.17 | 45.32 | 1.41 |
Rosmarinic acid F | 31.22 | 2.25 | 20.91 | 0.40 | 5.14 | 0.10 | 93.22 | 1.51 |
Tessaric acid M | 326.71 | 5.19 | 559.53 | 6.13 | 190.01 | 2.74 | 29.80 | 1.85 |
trans-Piceatannol F | 0.17 | 0.01 | 2.65 | 0.05 | 1.27 | 0.03 | 1.50 | 0.02 |
Vanillic acid D | 0.37 | 0.04 | 0.58 | 0.01 | 0.48 | 0.03 | 0.35 | 0.02 |
Compound | Apigenin | CQA | p-coum ac. | Tessaric ac. | Vanillic ac. | Cytotoxicity |
---|---|---|---|---|---|---|
apigenin | 1 | 0.63 | 0.57 | 0.87 | 0.96 | 0.74 |
CQA | 0.63 | 1 | 0.83 | 0.76 | 0.41 | 0.98 |
p-coumaric ac. | 0.57 | 0.83 | 1 | 0.43 | 0.39 | 0.73 |
tessaric ac. | 0.87 | 0.76 | 0.43 | 1 | 0.77 | 0.89 |
vanillic ac. | 0.96 | 0.41 | 0.39 | 0.77 | 1 | 0.54 |
cytotoxicity | 0.74 | 0.98 | 0.73 | 0.89 | 0.54 | 1 |
Compound | Caff | Caft | Ella | Epi | Gall | Gin | Myr | Nar | O-t | Que | Ros | DPPH | FRAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Caffeic ac. | 1 | 1 | −0.14 | −0.34 | −0.19 | 0.75 | −0.06 | 0.16 | −0.23 | 0.26 | −0.06 | 0.56 | 0.17 |
Caftaric ac. | 1 | 1 | −0.14 | −0.34 | −0.64 | −0.52 | −0.57 | −0.77 | −0.48 | −0.01 | −0.56 | 0.56 | 0.16 |
Ellagic ac. | −0.14 | −0.14 | 1 | 0.98 | 1 | 0.55 | 0.99 | 0.95 | 0.97 | 0.67 | 0.98 | 0.74 | 0.36 |
Epicatechin | −0.34 | −0.34 | 0.98 | 1 | 0.98 | 0.37 | 0.94 | 0.87 | 0.96 | 0.90 | 0.94 | 0.58 | 0.28 |
Galloc-gall | −0.19 | −0.64 | 1 | 0.98 | 1 | 0.50 | 0.99 | 0.92 | 0.98 | 0.68 | 0.99 | 0.71 | 0.39 |
Ginnalin A | 0.75 | −0.52 | 0.55 | 0.37 | 0.50 | 1 | 0.59 | 0.77 | 0.43 | 0.59 | 0.58 | 0.96 | 0.29 |
Myricetin | −0.06 | −0.57 | 0.99 | 0.94 | 0.99 | 0.59 | 1 | 0.93 | 0.98 | 0.78 | 1 | 0.78 | 0.51 |
Naringin | 0.16 | −0.77 | 0.95 | 0.87 | 0.92 | 0.77 | 0.93 | 1 | 0.86 | 0.64 | 0.93 | 0.89 | 0.28 |
OH-tyrosol | −0.23 | −0.48 | 0.97 | 0.96 | 0.98 | 0.43 | 0.98 | 0.86 | 1 | 0.76 | 0.98 | 0.65 | 0.54 |
Quercetin | 0.26 | −0.01 | 0.67 | 0.90 | 0.68 | 0.59 | 0.78 | 0.64 | 0.76 | 1 | 0.79 | 0.74 | 0.91 |
Rosmar. ac | −0.06 | −0.56 | 0.98 | 0.94 | 0.99 | 0.58 | 1 | 0.93 | 0.98 | 0.79 | 1 | 0.78 | 0.52 |
FRAP | 0.56 | 0.56 | 0.74 | 0.58 | 0.71 | 0.96 | 0.78 | 0.89 | 0.65 | 0.74 | 0.78 | 1 | 0.42 |
DPPH | 0.17 | 0.16 | 0.36 | 0.28 | 0.39 | 0.29 | 0.51 | 0.28 | 0.54 | 0.91 | 0.52 | 0.42 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascual, L.I.; Luna, L.; González, R.E.; Ortiz, J.E.; Gomez-Gomez, L.; Donadel, O.J.; Hapon, M.B.; Feresin, G.E.; Gamarra-Luques, C. Correlation Analysis Among the Chemical Composition and Cytotoxic and Antioxidative Activities of a Tessaria absinthioides Decoction for Endorsing Its Potential Application in Oncology. Plants 2024, 13, 3062. https://doi.org/10.3390/plants13213062
Pascual LI, Luna L, González RE, Ortiz JE, Gomez-Gomez L, Donadel OJ, Hapon MB, Feresin GE, Gamarra-Luques C. Correlation Analysis Among the Chemical Composition and Cytotoxic and Antioxidative Activities of a Tessaria absinthioides Decoction for Endorsing Its Potential Application in Oncology. Plants. 2024; 13(21):3062. https://doi.org/10.3390/plants13213062
Chicago/Turabian StylePascual, Lourdes Inés, Lorena Luna, Roxana Elizabeth González, Javier Esteban Ortiz, Luciano Gomez-Gomez, Osvaldo Juan Donadel, María Belén Hapon, Gabriela Egly Feresin, and Carlos Gamarra-Luques. 2024. "Correlation Analysis Among the Chemical Composition and Cytotoxic and Antioxidative Activities of a Tessaria absinthioides Decoction for Endorsing Its Potential Application in Oncology" Plants 13, no. 21: 3062. https://doi.org/10.3390/plants13213062
APA StylePascual, L. I., Luna, L., González, R. E., Ortiz, J. E., Gomez-Gomez, L., Donadel, O. J., Hapon, M. B., Feresin, G. E., & Gamarra-Luques, C. (2024). Correlation Analysis Among the Chemical Composition and Cytotoxic and Antioxidative Activities of a Tessaria absinthioides Decoction for Endorsing Its Potential Application in Oncology. Plants, 13(21), 3062. https://doi.org/10.3390/plants13213062