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Abstract: Green fiber (GF) is a naturally colored fiber. A limited understanding of its color formation
mechanism restricts the improvement of colored cotton quality. This experiment used upland cotton
green fiber germplasm 1-4560 and genetic inbred line TM-1; the lipid profiles of green fibers at
30 (white stage) and 35 days post-anthesis (DPA) (early greening stage), as well as those of TM-1
at the same stages, were revealed. Among the 109 differential types of lipids (DTLs) unique to GF,
the content of phosphatidylserine PS (16:0_18:3) was significantly different at 30 and 35 DPA. It
is speculated that this lipid is crucial for the pigment accumulation and color formation process
of green fibers. The 197 DTLs unique to TM-1 may be involved in white fiber (WF) development.
Among the shared DTLs in GF35 vs. GF30 and WF35 vs. WF30, sulfoquinovosyldiacyl-glycerol
SQDG (18:1_18:1) displays a significant difference in the content change between green fibers and
white fibers, potentially affecting color formation through changes in content. The enriched metabolic
pathways in both comparison groups are relatively conserved. In the most significantly enriched
glycerophospholipid metabolic pathway, 1-acyl-sn-glycero-3-phosphocholine (C04230) only appears
in white cotton. This indicates differences in the metabolic pathways between white and green fibers,
potentially related to different mechanisms of color formation and fiber development. These findings
provide a new theoretical basis for studying cotton fiber development and offer important insights
into the specific mechanism of green fiber color formation.

Keywords: colored cotton; fiber color formation; lipidomics; differential types of lipids; metabolic pathway

1. Introduction

Cotton is a crucial fiber crop globally. Naturally colored cottons (NCCs) eliminate
the need for dyeing [1–3], thereby avoiding toxic pollutant treatment issues [4,5], with
extensive developmental prospects in reducing production costs and safeguarding the
environment. However, the pigment of colored cotton is unstable and monotonous, which
severely limits the development of colored cotton [6].

NCCs primarily exhibit green and brown colors. Brown fiber pigments mainly consist
of flavonoids [7–9] and proanthocyanidins [10–12]. Different flavonoids have varying
impacts on fiber development. For instance, naringenin can significantly hinder fiber
development [13]. GhCHS, a key gene in flavonoid biosynthesis, affects fiber color depth
through its expression level [14]. Some researchers suggest that brown fiber pigments also
contain catechins [15,16]. The composition of the green pigment is more complex than that
of the brown color. Compared with white and brown cotton fibers, green cotton fibers
have a different morphology, with a secondary cell wall of alternating cellulose–suberin
layers [17]. Molecular analysis indicates that the pigment of green fibers is a caffeic acid
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derivative [18]. Caffeic acid is found in the suberin layer and alternates with cellulose
outside the fiber [19]. Suberin is a polymer of aliphatic and aromatic domains [17]. Studies
have identified cinnamic acid derivatives important for green fiber color formation, suberin
coherence, and polymer attachment to cellulose cell walls. Glycerol is a new component of
the green cotton fiber suberin layer [20].

Lipids play an important role in life activities, including energy storage, maintenance
of the cell membrane structure, and signal transduction [21]. Transcriptome analysis of a
green fiber cotton and its white fiber near-isogenic line revealed that differentially expressed
genes are involved in lipid metabolism [22]. Green cotton fibers contain abundant waxes,
with very long-chain fatty acids (VLCFAs) serving as precursors for wax synthesis [23].
Numerous genes related to long-chain fatty acids and VLCFAs were upregulated in the
green cotton fibers. When shading treatment was applied to green fibers, they remained
white instead of turning green. Metabolome analysis indicated that lipids constituted a
significant proportion of differential metabolites [24].

Lipidomics, a branch of metabolomics, systematically analyzes complex lipid metabolic
networks in living organisms [25]. Technological advances in mass spectrometry, chro-
matography, and Nuclear magnetic resonance (NMR) have driven the development of
lipidomics. The main methods of lipidomics include nuclear magnetic resonance, shot-
gun, chromatography-mass spectrometry (MS), and liquid chromatography–MS (LC–MS)
lipidomics. LC–MS/MS-based lipidomics is particularly effective in identifying low-
abundance lipids.

The above studies provide a basis to explore the role of lipids in the growth of green
fibers. In this study, non-targeted lipidomics analysis was conducted on the fibers of green
cotton at the white stage and the early greening stage, as well as on the fibers of white
cotton during the same period. This revealed the lipid composition in the green and white
fibers at 30 and 35 days post-anthesis (DPA) and identified difference in lipid types between
the green fiber (GF) and white fiber (WF). We identified differential types of lipids (DTLs)
in GF associated with green color, providing a reference for analyzing the mechanism of
green fiber color formation.

2. Results
2.1. Color Transformation During the Development of Green Fiber

The green fiber was white from 25 to 30 DPA, began to turn green at 35 days, and the
color deepened over time (Figure 1). We measured three color parameters of upland cotton
1-4560 using a CR-300 Chroma Meter. As the fibers developed, the brightness (L*) of the
green fibers gradually decreased. The a* values were negative and showed a decreasing
trend, indicating that the green color deepened over time. The b* values were positive and
gradually increased, representing a continuous deepening of the yellow color (Table 1).
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Figure 1. The color of fiber samples of upland cotton 1-4560 at different timepoints. From top to 
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Figure 1. The color of fiber samples of upland cotton 1-4560 at different timepoints. From top to
bottom, the samples range from 25 days post-anthesis (DPA) to 40 DPA.
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Table 1. Dynamic changes in color values of green fiber during development.

Cultivars Color Value
Days Past Anthesis (D)

25 D 30 D 35 D 40 D 45 D 50 D

Upland
cotton
1-4560

L* 90.35 89.90 90.19 83.13 75.65 68.74
a* −0.61 −1.43 −2.31 −2.55 −2.48 −4.87
b* 5.89 7.79 9.50 12.53 16.55 16.91

2.2. Multivariate Statistical Analysis

We conducted a multivariate statistical analysis on the lipids at two adjacent develop-
mental stages of GF and WF (GF35 vs. GF30 and WF35 vs. WF30) to observe variability
between the groups. Principal component analysis (PCA) modeling of the detected lipids
revealed significant differences in lipid compositions between the groups (Figure 2A). The
partial least squares-discriminant analysis (PLS-DA) (Figure 2B) and orthogonal partial least
squares-discriminant analysis (OPLS-DA) (Figure 2C) score plots showed a clear group sep-
aration with high R2 and Q2 statistics (Table 2), indicating good fit and high predictability.
These results suggest that the lipid dataset is robust and reliable for subsequent analysis.
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Figure 2. Multivariate statistical analysis. (A) Principal component analysis (PCA); (B) partial least
squares-discriminant analysis (PLS-DA); (C) orthogonal partial least squares-discriminant analysis
(OPLS-DA). GF30 represents the green fiber at 30 days post-anthesis; GF35 represents the green fiber
at 35 days post-anthesis. WF30 represents the white fiber at 30 days post-anthesis; WF35 represents
the white fiber at 35 days post-anthesis.

Table 2. Model parameters of GF35 vs. GF30 and WF35 vs. WF30 for comparative analysis.

Group Type PRE R2X R2Y Q2

GF35 vs.
GF30

PCA 2 0.678
PLS-DA 2 0.612 0.997 0.89

OPLS-DA 2 0.61 0.997 0.892

WF35 vs.
WF30

PCA 2 0.737
PLS-DA 2 0.73 0.996 0.95

OPLS-DA 2 0.727 0.996 0.923
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2.3. Identification of DTLs and Venn Diagram Analysis

Suberin can also be classified as a lipid. However, since suberin is a polymer composed
of aliphatic and aromatic domains, our experimental methods cannot directly detect the
compositional changes in suberin. Therefore, our analysis examines lipids other than
suberin. DTLs with a p-value ≤ 0.01 and a VIP ≥ 1 were considered significantly different.
The statistical results of the DTLs are presented in Table 3.

Table 3. Statistics of DTLs.

Simple Control Upregulated
Lipids

Downregulated
Lipids

Differential
Types of Lipids

GF35 GF30 122 17 139
WF35 WF30 18 209 227

In GF35 vs. GF30, 139 DTLs were identified, with 122 (87.8%) upregulated, including
4 AcHexChE, 4 AcHexCmE, 7 AcHexSiE, 6 AcHexStE, 4 AcHexZyE, 1 Cer, 1 ChE, 2 CmE,
10 DG, 4 DGDG, 1 LPE, 2 MG, 2 MGDG, 2 MePC, 6 PA, 11 PC, 9 PE, 6 PG, 1 PI, 1 PS, 1 SPH,
2 SQDG, 32 TG, 2 ZyE, and 1 PEt. Additionally, 17 (12.2%) DTLs were downregulated,
including 1 BisMePA, 1 Cer, 1 CmE, 4 Hex1Cer, 1 MePC, 1 PC, 1 PI, 3 TG, 1 ZyE, 1 LPMe,
1 PMe, and 1 cPA (Table S1). In WF35 vs. WF30, 227 DTLs were identified, with 18 (7.9%)
upregulated and 209 (92.1%) downregulated. Among the 18 upregulated lipids were
1 AcHexCmE, 7 Cer, 1 DG, 2 PA, 2 PC, 2 PE, 2 TG, and 1 Pet. Among the 209 downregulated
lipids were 3 AcHexCmE, 1 AcHexStE, 4 AcHexZyE, 7 Cer, 1 CerP, 16 DG, 5 DGDG,
8 Hex1Cer, 1 MG, 2 MGDG, 14 MePC, 3 PC, 5 PE, 8 PG, 4 PI, 1 PS, 1 SPH, 2 SQDG, 1
ST, 94 TG, 2 WE, 1 ZyE, 2 DGDG, 1 LPC, 1 LPE, and 1 MGDG (Table S2). An analysis
of the DTLs in these two comparison groups shows that most DTLs in GF35 vs. GF30
are upregulated, while most DTLs in WF35 vs. WF30 are downregulated. This indicates
significant differences in lipid metabolism during fiber development and color formation
in different types of cotton.

A total of 30 lipids showed significant content change in the GF and WF comparison
group, indicating their important role in the development of both fiber types (Figure 3).
These lipids include 3 ST, 3 SL, 3 SP, 8 GP, and 13 GL. Additionally, the fold change of SQDG
(18:1_18:1) in WF35 vs. WF30 is much greater than in GF35 vs. GF30 (Table S3), suggesting
its involvement in the differential phenotype formation of GF and WF and its potential role
in regulating fiber color. Excluding these 30 shared lipids, 109 lipids are unique to green
fibers, suggesting their role in green fiber pigment synthesis. Among them, PS (16:0_18:3)
displays the highest fold change and is significantly different from other lipids. It can be
regarded as a candidate lipid for regulating the color formation of green fibers. Subsequent
experiments can further explore its specific functions and action mechanisms. For example,
substances that promote or inhibit the synthesis of this lipid can be added to observe their
impact on the development of green fibers. There were 197 DTLs unique to white fibers,
indicating their association with white fiber development. We respectively screened out
the top 10 specific DTLs that only appear in GF35 vs. GF30 and in WF35 vs. WF30 (Table 4).
These included 1 SP, 1 ST, 8 GP, and 10 GL, suggesting a prominent role for GL in fiber
development (Tables S4 and S5).
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Table 4. Specific DTLs among the groups.

Group Lipid Name Category Log2
(Fold Change)

Specific DTLs
(GF35 vs. GF30)

PS (16:0_18:3) GP 24.44
PC (60:1) GP 4.55

PMe (18:0_18:3) GP −4.55
DG (36:1) GL 4.20

BisMePA (17:0_18:3) GP −4.14
PC (18:0_14:2) GP −4.13

TG (6:0_18:3_18:3) GL 3.76
TG (18:1_18:1_24:0) GL 3.54
TG (6:0_12:0_18:1) GL 3.49

PC (20:1_13:0) GP 3.38

Specific DTLs
(WF35 vs. WF30)

TG (18:3_14:2_18:3) GL −5.97
TG (52:8) GL −5.74

TG (18:3_14:3_18:3) GL −5.30
PC (40:3) GP −5.25
DG (18:4) GL −5.10

TG (17:0_18:3_24:2) GL −5.00
Cer (d18:0_25:0) SP 4.64

TG (54:7) GL −4.56
WE (26:0_18:3) ST −4.50

PI (44:4) GP −4.32
Log2 (fold change), with two decimal places reserved.

2.4. Components of DTLs in GF and WF at Different Developmental Stages

To further explore lipid participation in GF and WF development, we conducted a
classification analysis of DTLs in GF35 vs. GF30 and WF35 vs. WF30. Figure 4 shows that
green cotton has more lipid types than white cotton (Figure 4). A total of 30 lipid subclasses
are detected in the 139 DTLs of GF35 vs. GF30, while 25 lipid subclasses are detected in
the 227 DTLs of WF35 vs. WF30. In GF and WF, TG, PC, and DG are all relatively large
in proportion. TG displays the highest proportion, followed by PC, and DG ranks third.
AcHexSiE, AcHexChE, CmE, BisMePA, ChE, PMe, and cPA only appear in green cotton,
potentially playing specific physiological roles in the developmental process of green cotton
fibers, while WE, ST, and LPC only appear in white cotton (Table S6). These differences
indicate that green and white cotton exhibit distinct lipid metabolism patterns during
fiber development.



Plants 2024, 13, 3063 6 of 15

Plants 2024, 13, 3063 6 of 15 
 

 

 

Figure 4. Component of the differential types of lipids (DTLs) in the two comparison groups. (A) 
DTLs in GF35 vs. GF30. (B) DTLs in WF35 vs. GF30. Each color represents a different lipid type. 
TG: triacylglycerol; PC: phosphatidylcholine; DG: diacylglycerol; PE: phospha-tidylethanolamine; 
AcHexSiE: acyl hexosyl sitosterol ester; AcHexStE: acyl hexosyl stigmasterol ester; PA: phospha-
tidic acids; PG: phosphatidylglycerols; AcHexChE: acyl hexosyl cholesterol ester; AcHexCmE: acyl 
hexosyl campesterol ester; AcHexZyE: acyl hexosyl zymosterol ester; DGDG: digalactosyl diacyl-
glycerols; HexCer: hexosylceramide; CmE: cholesteryl methyl ester; MePC: methyl phosphatidyl-
choline; ZyE: zymosteryl; Cer: ceramides; MG: monoglyceride; MGDG: monogalactosyldiacylglyc-
erol; PI: phosphatidylinositol; SQDG: sulfoquinovosyldiacyl-glycerol; BisMePA: phosphatidyl-
methanol; ChE: cholesteryl ester; LPE: lyso-phosphatidylethanolamine; PS: phosphatidylserine; 
SPH: sphingosine; LPMe: lyso-phosphatidylmethanol; PEt: phosphatidylethanol; PMe: phospha-
tidyl-methanol; cPA: cyclic phosphatidic acid; WE: wax ester; ST: sterol lipids; LPC: lyso-phospha-
tidylcholine. 

2.5. Cluster and Volcano Plot Analysis of DTLs 
The clustering heat map (Figure 5) and volcano plot (Figure 6) intuitively show that 

the content change in the DTLs in the white cotton and green cotton comparison group is 
significantly different. In green cotton, most lipids are upregulated from 30 DPA to 35 
DPA, while in white cotton, the opposite trend is observed. This indicates that lipids play 
a crucial role in fiber development and color formation in both cotton types. 

Figure 4. Component of the differential types of lipids (DTLs) in the two comparison groups.
(A) DTLs in GF35 vs. GF30. (B) DTLs in WF35 vs. GF30. Each color represents a different lipid type.
TG: triacylglycerol; PC: phosphatidylcholine; DG: diacylglycerol; PE: phospha-tidylethanolamine;
AcHexSiE: acyl hexosyl sitosterol ester; AcHexStE: acyl hexosyl stigmasterol ester; PA: phosphatidic
acids; PG: phosphatidylglycerols; AcHexChE: acyl hexosyl cholesterol ester; AcHexCmE: acyl hexosyl
campesterol ester; AcHexZyE: acyl hexosyl zymosterol ester; DGDG: digalactosyl diacylglycerols;
HexCer: hexosylceramide; CmE: cholesteryl methyl ester; MePC: methyl phosphatidylcholine;
ZyE: zymosteryl; Cer: ceramides; MG: monoglyceride; MGDG: monogalactosyldiacylglycerol;
PI: phosphatidylinositol; SQDG: sulfoquinovosyldiacyl-glycerol; BisMePA: phosphatidylmethanol;
ChE: cholesteryl ester; LPE: lyso-phosphatidylethanolamine; PS: phosphatidylserine; SPH: sphingo-
sine; LPMe: lyso-phosphatidylmethanol; PEt: phosphatidylethanol; PMe: phosphatidyl-methanol;
cPA: cyclic phosphatidic acid; WE: wax ester; ST: sterol lipids; LPC: lyso-phosphatidylcholine.

2.5. Cluster and Volcano Plot Analysis of DTLs

The clustering heat map (Figure 5) and volcano plot (Figure 6) intuitively show that
the content change in the DTLs in the white cotton and green cotton comparison group is
significantly different. In green cotton, most lipids are upregulated from 30 DPA to 35 DPA,
while in white cotton, the opposite trend is observed. This indicates that lipids play a
crucial role in fiber development and color formation in both cotton types.
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Figure 5. Clustering heat map analysis of DTLs. (A) A total of 139 upregulated or downregulated
DTLs were visualized between GF35 and GF30. (B) A total of 227 upregulated or downregulated
DTLs were visualized between WF35 and WF30. The red and blue colors in the graphs indicate
upregulated and downregulated DTLs, respectively.
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(B) DTLs upregulated or downregulated between WF35 and WF30. Each point in the volcano plot
represents a lipid, with the x-axis representing the logarithm of the fold change of the lipid between
the two samples and the y-axis representing the −log10 (p value). Red, blue, and gray colors in the
figure indicate upregulated, downregulated, and not significantly different DTLs, respectively.

In GF35 vs. GF30, the triglyceride (TG) subclass had the most DTLs (35), indicating its
high activity from 30 to 35 DPA in green cotton (Figure 7A). The AcHex subclass showed
a large difference in lipid quantity between green and white cotton. In GF35 vs. GF30,
25 AcHex DTLs showed a significant content change, compared to only 5 in the WF35 vs.
WF30 group (Figure 7B,E). Conversely, the PC subclass had fewer DTLs in the GF35 vs.
GF30 compared to the WF35 vs. WF30 group (Figure 7C,F); additionally, two Cer subclass
lipids showed content change only in the GF35 vs. GF30 group (Figure 7D).
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Figure 7. Typical differential lipid categories. (A) Distribution of TG lipids in GF35 vs. GF30;
(B) distribution of AcHex lipids in GF35 vs. GF30; (C) distribution of PC lipids in GF35 vs. GF30;
(D) distribution of Cer lipids in GF35 vs. GF30; (E) distribution of AcHex lipids in WF35 vs. WF30;
(F) distribution of PC lipids in WF35 vs. WF30. TG: triacylglycerol; AcHex: including AcHexChE
(acyl hexosyl cholesterol ester), AcHexCmE (acyl hexosyl campesterol ester), AcHexSiE (acyl hexosyl
sitosterol ester), AcHexStE (acyl hexosyl stigmasterol ester), and AcHexZyE (acyl hexosyl zymos-
terol ester); PC: phosphatidylcholine; Cer: ceramides. The modules of different colors represent
different lipids.
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2.6. Correlation Analysis of DTLs

The correlation analysis of DTLs can reveal the trend of changes between different
lipids. Lipids showing similar trends are positively correlated, while those showing
opposite trends are negatively correlated. Most of the DTLs in GF35 and GF30 show similar
trends, indicating a positive correlation in content change between these lipids (Figure 8A).
At the same time, the DTLs in WF35 and WF30 show the same trend (Figure 8B). These
results indicate that although there are many unique lipids involved in the developmental
processes of green cotton and white cotton, the changing trends among these lipids are
relatively conservative. This further proves the regulatory role of lipids in this process.
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(B) correlation between DTLs in WF35 vs. WF30. Each color around the circle represents a different
lipid type, and the line color inside the circle represents the correlation between two lipids. Orange
lines represent positive correlation, and blue lines represent negative correlation. TG: triacylglycerol;
SQDG: sulfoquinovosyldiacylglycerol; PS: phosphatidylserine; PI: phosphatidylinositol; PG: phos-
phatidylglycerols; PC: phosphatidylcholine; PA: phosphatidic acids; MePC: methyl phosphatidyl-
choline; MGDG: monogalactosyldiacylglycerol; MG: monoglyceride; PE: phosphatidylethanolamine;
HexCer: hexosylceramide; DGDG: digalactosyl diacylglycerols; DG: diacylglycerol; CmE: cholesteryl
methyl ester; ChE: cholesteryl ester; Cer: ceramides; BisMePA: bis-methyl phosphatidic acid;
AcHex: including AcHexChE (acyl hexosyl cholesterol ester), AcHexCmE (acyl hexosyl campes-
terol ester), AcHexSiE (acyl hexosyl sitosterol ester), AcHexStE (acyl hexosyl stigmasterol ester),
and AcHexZyE (acyl hexosyl zymosterol ester); SPH: sphingosine; cPA: cyclic phosphatidic acid;
PEt: phosphatidylethanol; PMe: phosphatidyl methanol; ZyE: zymosteryl; CerP: ceramides phos-
phate; WE: wax ester.

2.7. Lipid Metabolism Pathway of Fibers

To elucidate the metabolic pathways involved in fiber development, the DTLs of
the GF and WF comparison groups were enriched, respectively, using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database. The analysis revealed fewer enriched
pathways due to the lack of corresponding lipid identifiers in KEGG. The significantly
enriched metabolic pathways in both comparison groups are shown in Figure 9, including
the glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI) anchor biosyn-
thesis, linoleic acid metabolism, glycerolipid metabolism, α-linolenic acid metabolism,
and arachidonic acid metabolism pathways. In the components of these pathways, phos-
phatidylethanolamine (C00350), phosphatidylcholine (C00157), and triacylglycerol (C00422)
appear in both green and white cotton. However, in the most significantly enriched glyc-
erophospholipid metabolism pathway, 1-acyl-sn-glycero-3-phosphocholine (C04230) only
appears in white cotton. This indicates differences in the fiber development between white
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and green cotton. Glycerophospholipids are an important component of cell membranes.
Their metabolism may affect the growth, differentiation, and function of fibers. Further
research on this pathway’s specific mechanisms could provide new ideas and methods
for promoting fiber development. These findings provide an important entry point for
further research regarding the differences between WF and GF and help to provide a deeper
understand of the complex mechanism of fiber color formation and the unique metabolic
characteristics of different fiber types during their development.
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3. Discussion

Lipids are a class of metabolites. They constitute the main component of the biological
membrane and regulate signal transduction processes such as cell growth, differentiation,
senescence, and programmed cell death. At the same time, lipids can also provide energy,
participate in the growth of organisms, and maintain life activities [26]. Lipids are the
basic substances that organisms use to perform many crucial functions. Therefore, lipid
metabolism is a major research hotspot in biological metabolism [27]. In terms of main-
taining the normal physiological functions of cells, lipids are as important as genes and
proteins [28]. As a key branch field of metabolomics, lipidomics can permit a comprehen-
sive and in-depth systematic analysis of the entire set of lipids in specific cells or organisms,
enabling a more thorough understanding of the complex lipid metabolism network and
also revealing the core and crucial functions that lipids play in life activities.

3.1. Lipid Profiles of WF and GF

Previous studies have pointed out that the growth and development of fibers depend
on the synthesis and transportation of long-chain fatty acids [29,30]. In this study, we
investigated the lipid changes of GF and WF at 30 and 35 DPA. The results showed that
there were 139 DTLs in GF35 vs. GF30 and 227 DTLs in WF35 vs. WF30. Among them,
30 lipids show significant content changes in both GF35 vs. GF30 and WF35 vs. WF30.
They mainly belong to two subclasses, glycolipids (GL) and glycerophospholipids (GP).
Notably, the changes in these 30 lipids in green fibers and white fibers showed different
upregulation and downregulation patterns. This phenomenon further indicates that the
differential change patterns of lipids reflect their potentially crucial influence on the fiber
development process, and there are differences in the utilization and regulation mechanisms
of lipids between green and white cotton.
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3.2. Conserved Lipid Metabolic Pathways with Differential Components in GF and WF

DTLs are enriched in multiple identical pathways, including glycerophospholipid
metabolism, GPI anchor biosynthesis, linoleic acid metabolism, glycerolipid metabolism,
α-linolenic acid metabolism, and arachidonic acid metabolism pathways, in the develop-
mental comparison groups of green and white cotton. This means that these metabolic
pathways may play important and relatively stable roles in the development of different
types of cotton fibers. In the components of the glycerophospholipid metabolism pathway,
1-acyl-sn-glycero-3-phosphocholine (C04230) only appears in white cotton. The presence
of C04230 may be related to the specific physiological process of white cotton. Follow-up
studies can further explore key differentially expressed genes in these pathways. Then,
whether or not they affect the formation or accumulation of fiber pigments can be further
verified, thus providing important clues and a basis for an in-depth understanding of
cotton fiber development and pigment synthesis mechanisms.

3.3. Effect of Lipid on Color Formation of Green Cotton

Green fibers are unstable and easily decolorized by sunlight and rain [31]. Genes
related to metal transporter proteins are highly expressed in green cotton, with higher
contents of Fe2+ and Cu2+ than those noted in white fibers. These metals may chelate with
pigment substances, altering fiber color [32]. Metabolomic and transcriptomic analyses
reveal differences in the pathways related to the biosynthesis of phenylpropanoids, cutin,
suberin, and wax between green and white cotton. The relationship between these factors
and the formation of green fiber color requires further exploration [22].

Green and white cotton fibers show distinct differences in the aliphatic components
of suberin polymers. The C22 chain length is dominant (95.5%) in the polymer monomers
of green fibers, while the aliphatic polymers of ordinary white cotton fibers are mainly
composed of dihydroxyhexadecanoic acid. Cotton fiber wax primarily comprises wax
esters and fatty alcohols. In green fiber, wax esters release predominantly C22 (54%) fatty
acids, while in white cotton, they mainly release C16 (26%) [17]. Studies in Arabidopsis
thaliana also found that lipids play a role in plant color formation. After transforming
antisense acyl carrier protein-4, lipid synthesis in leaf tissue is reduced, and the leaves turn
white [33]. To further explore the color formation mechanism of green fibers, we analyzed
the DTLs unique to green fibers. PS (16:0_18:3) shows a significant content change during
the developmental stage from 30 DPA to 35 DPA and only occurs in green cotton. Phos-
phatidylserine (PS), an essential constituent of eukaryotic membranes, is the most abundant
anionic phospholipid in the eukaryotic cells, accounting for up to 10% of the total cellular
lipids, playing an important role in cell signal transduction [34]. Therefore, we speculate
that PS (16:0_18:3) may play a role in the mechanism regulating fiber color. In addition,
among the shared DTLs in GF35 vs. GF30 and WF35 vs. WF30, SQDG (18:1_18:1) displays
a different change pattern in the two comparison groups. Therefore, SQDG (18:1_18:1)
may affect fiber color through different levels of lipid content. Further experiments can be
conducted to verify whether PS (16:0_18:3) and SQDG (18:1_18:1) are involved in the color
formation of green fibers and to analyze the specific mechanism employed.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Upland cotton 1-4560 (green fiber) and the genetic standard line TM-1 (white fiber)
were ordered from the germplasm center of the Institute of Cotton Research, CAAS. These
were planted in the experimental field of Shandong Agricultural University, with alternat-
ing wide (80 cm) and narrow (60 cm) row spacing and a 28 cm spacing between plants.
Flowers from the first and second fruiting nodes on the middle and upper branches of the
main stem were self-pollinated and tagged at full bloom. Three cotton bolls of similar size
from green cotton (1-4560) and white cotton (TM-1) at 30 DPA and 35 DPA were harvested.
They were stripped in the field, transported to the laboratory in liquid nitrogen, and stored
at −80 ◦C for lipidomic analysis. Each group consisted of three biological replicates.
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4.2. Determination of Green Fiber Color

Fiber color was determined using a Minolta CR-300 Chroma Meter (Osaka, Japan). A
CIE light source was selected, and a white calibration plate was used for calibration before
the assay. CIE L*a*b* was used to indicate green cotton fibers’ color and dynamic changes
during cotton fiber development [35]. Assay color values were captured in the L*a*b* color
space. The L* value (0 means black, and 100 means white) denotes the sample brightness.
The a* value indicates the color density from red to green, with positive values indicating
red and negative values indicating green. The b* value indicates the color density from
blue to yellow, with positive values indicating yellow and negative values indicating blue.
The coordinate origin represents the colorless colored dots [36]. The L*, a*, and b* color
values were measured five times for each period.

4.3. Lipid Extraction

The lipid extraction procedure was as follows: First, 100 mg of each fiber sample was
placed into a 2 mL centrifuge tube. Then, 750 µL of a precooled (−20 ◦C) chloroform–
methanol solution (2:1, v/v) and two steel balls were added. The samples were ground
using a high-flux tissue grinder at 60 Hz for 60 s. After grinding, the samples were placed
on ice for 40 min. Next, 190 µL of ddH2O was added, and the mixture was vortexed
thoroughly for 30 s before being placed on ice for an additional 10 min. The mixture was
then centrifuged at 12,000 rpm for 5 min at room temperature. Subsequently, 300 µL of
the lower phase was transferred to a new 2 mL centrifuge tube. An additional 500 µL
of the precooled (−20 ◦C) chloroform–methanol solution (2:1, v/v) was added, vortexed
thoroughly for 30 s, and centrifuged again at 12,000 rpm for 5 min at room temperature.
After centrifugation, 400 µL of the lower phase was transferred to a new 2 mL centrifuge
tube. The sample was then concentrated using a vacuum centrifuge concentrator. The
concentrated sample was dissolved in 200 µL of isopropanol and filtered through a 0.22 µm
membrane to obtain the lipid sample for high-performance liquid chromatography–mass
spectrometry (LC–MS) analysis. Finally, 20 µL of each sample was pooled to create a
quality-control (QC) sample [37,38].

4.4. The Chromatographic Conditions

The chromatographic separation was carried out using a Thermo Ultimate 3000 system
with an ACQUITY UPLC® BEH C18 column (100 × 2.1 mm, 1.7 µm, Waters, Milford,
MA, USA) maintained at 50 ◦C. The autosampler temperature was maintained at 8 ◦C.
Analytes were eluted with a gradient of acetonitrile/water (60:40, 0.1% formic acid +
10 mM ammonium formate) (C) and isopropanol/acetonitrile (90:10, 0.1% formic acid +
10 mM ammonium formate) (D) at 0.25 mL/min. Each sample (2 µL) was injected after
equilibration. The linear gradient of solvent C (v/v) increased as follows: 0~5 min, 70~57%
C; 5~5.1 min, 57~50% C; 5.1~14 min, 50~30% C; 14~14.1 min, 30% C; 14.1~21 min, 30~1% C;
21~24 min, 1% C; 24~24.1 min, 1~70% C; 24.1~28 min, 70% C.

4.5. Mass Spectrometry Conditions

ESI-MSn experiments were executed on a Thermo Q Exactive Focus mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA), with the spray voltage of 3.5 kV (positive
mode) and −2.5 kV (negative mode). The sheath gas and auxiliary gas were set at 30
and 10 arbitrary units, respectively, with a capillary temperature of 325 ◦C. The Orbitrap
analyzer scanned a mass-to-charge ratio (m/z) range of 150–2000 at a resolution of 35,000.
Data-dependent acquisition (DDA) MS/MS experiments were conducted using an HCD
scan with a normalized collision energy of 30 eV. Dynamic exclusion was applied to
eliminate redundant information in the MS/MS spectra [39].

4.6. Data Processing

Lipidsearch software (V4) was used to annotate the raw data, generating a data matrix
including M/Z, retention time (RT), and intensity. The annotation results of all samples
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were aligned and filtered using Lipidsearch software (v4.0). The main parameters were
set to an r.t. tolerance of 0.25 and an m-score threshold of 5 [40]. To compare data of
different magnitudes, the total peak intensity was normalized, and lipids were classified by
molecular structure and hydrophobicity [41].

4.7. Statistical Analysis

The lipid data were processed using Pareto scaling, followed by multivariate statistical
analysis including principal component analysis (PCA), partial least squares-discriminant
analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA)
using the R language ropls package [42]. KEGG is a comprehensive database integrating
information on genomes, biological pathways, diseases, drugs, and chemicals [43]. Lipid
sequences were aligned to the KEGG database using Blast software (BLAST+ 2.13.0) [44] to
obtain KO numbers and extract the associated KEGG pathways.

5. Conclusions

In this study, non-targeted lipidomics were used to reveal the lipid profiles of GF
and WF at 30 and 35 DPA. We identified 1184 lipids in four fiber samples. By analyzing
the DTLs in GF35 vs. GF30 and WF35 vs. WF30, the metabolic pathways in which lipids
are involved for fiber development and color formation were identified. Among them,
the glycerophospholipid metabolism pathway is the most significant. Among the DTLs
in the two developmental comparison groups, we found that PS (16:0_18:3) and SQDG
(18:1_18:1) display significantly different content change patterns in GF and WF, suggesting
that they are involved in the color formation of green fibers. This experiment is conducive
to an in-depth understanding of the molecular mechanism of fiber development and color
formation and provides valuable scientific support for cotton variety improvement and
fiber quality enhancement. In the future, it is expected that it will be possible to change the
color of cotton fibers by regulating the expression of key genes regulating the synthesis of
pigments, suberin, and lipids.
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