Effects of Applying Organic Amendments on Soil Aggregate Structure and Tomato Yield in Facility Agriculture
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Amendments on Soil Chemical Properties
2.2. Effects of Different Amendments on Soil Structure
2.2.1. Effects on Soil Bulk Density and Total Porosity
2.2.2. Effects of Different Soil Amendments on Soil Texture
2.2.3. Effects of Different Soil Amendments on Soil Aggregation Parameters
2.3. Effects of Different Amendments on Tomato Yield
2.4. Correlation Analysis
2.5. Gray Correlation Analysis of Parameters Affecting the Effectiveness of Soil Improvement
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Experimental Site Description
4.3. Experimental Design and Treatment Application
4.4. Determination of Tomato Growth Indicators
4.5. Determination of Soil Physical and Chemical Properties
4.6. Gray Relational Analysis Method
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigo-Comino, J.; López-Vicente, M.; Kumar, V.; Rodríguez-Seijo, A.; Valkó, O.; Rojas, C.; Pourghasemi, H.R.; Salvati, L.; Bakr, N.; Vaudour, E.; et al. Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air Soil Water Res. 2020, 13, 1178622120977491. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wang, Q.; Chang, T.; Shaghaleh, H.; Hamoud, Y.A. Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions. Plants 2022, 11, 3214. [Google Scholar] [CrossRef]
- Angon, P.B.; Anjum, N.; Akter, M.M.; Kc, S.; Suma, R.P.; Jannat, S. An Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices. Adv. Agric. 2023, 2023, 8861216. [Google Scholar] [CrossRef]
- Sun, F.; Lu, S. Biochars Improve Aggregate Stability, Water Retention, and Pore-Space Properties of Clayey Soil. Z. Pflanzenernähr. Bodenk. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar Amendment Improves Crop Production in Problem Soils: A Review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of Organic Manure Combined with Biochar Amendments to Cotton Root Growth and Yield Under Continuous Cropping Systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef]
- Mustafa, A.; Brtnicky, M.; Hammerschmiedt, T.; Kucerik, J.; Kintl, A.; Chorazy, T.; Naveed, M.; Skarpa, P.; Baltazar, T.; Malicek, O.; et al. Food and Agricultural Wastes-Derived Biochars in Combination with Mineral Fertilizer as Sustainable Soil Amendments to Enhance Soil Microbiological Activity, Nutrient Cycling and Crop Production. Front. Plant Sci. 2022, 13, 1028101. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Portugal, J.R.; Moretti, L.G.; Garcia, A.; Rodrigues, V.A.; Da Fonseca, M.D.C.; Bernart, L.; Vilela, R.G.; Mendonça, L.P.; et al. Long-Term Liming Improves Soil Fertility and Soybean Root Growth, Reflecting Improvements in Leaf Gas Exchange and Grain Yield. Eur. J. Agron. 2021, 128, 126308. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Wang, Q.; Bermudez, R.S.; Yu, S.; Bu, P.; Wang, Z.; Chen, D.; Feng, J. Effects of Plantation Type and Soil Depth on Microbial Community Structure and Nutrient Cycling Function. Front. Microbiol. 2022, 13, 846468. [Google Scholar] [CrossRef]
- Abulaiti, A.; She, D.; Liu, Z.; Sun, X.; Wang, H. Application of Biochar and Polyacrylamide to Revitalize Coastal Saline Soil Quality to Improve Rice Growth. Environ. Sci. Pollut. Res. 2023, 30, 18731–18747. [Google Scholar] [CrossRef]
- Wang, S.; Gao, P.; Zhang, Q.; Shi, Y.; Guo, X.; Lv, Q.; Wu, W.; Zhang, X.; Li, M.; Meng, Q. Biochar Improves Soil Quality and Wheat Yield in Saline-Alkali Soils Beyond Organic Fertilizer in a 3-Year Field Trial. Environ. Sci. Pollut. Res. 2023, 30, 19097–19110. [Google Scholar] [CrossRef]
- Oyege, I.; Balaji Bhaskar, M.S. Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, R.; Zhang, C.; Wang, L.; Wang, H.; Wang, X.-X. Role of Vermicompost and Biochar in Soil Quality Improvement by Promoting Bupleurum falcatum L. Nutrient Absorption. Soil Use Manag. 2023, 39, 1600–1617. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, Y.; Wang, Q.; Li, M.; Sun, H.; Liu, N.; Zhang, L.; Zhang, Y.; Liu, Z. Effects of Potassium Fulvic Acid and Potassium Humate on Microbial Biodiversity in Bulk Soil and Rhizosphere Soil of Panax ginseng. Microbiol. Res. 2022, 254, 126914. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, L.; Zhang, Y.; Yang, L.; Yu, C.; Yin, G.; Doane, T.A.; Wu, Z.; Zhu, P.; Ma, X. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol After Three Years of Field Application. PLoS ONE 2016, 11, e0154091. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Jiang, C.; Zhu, P.; Lei, J.; Peng, S. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China Region. Chin. J. Eco-Agric. 2013, 21, 979–984. [Google Scholar] [CrossRef]
- Lirikum; Kakati, L.N.; Thyug, L.; Mozhui, L. Vermicomposting: An Eco-Friendly Approach for Waste Management and Nutrient Enhancement. Trop. Ecol. 2022, 63, 325–337. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Liu, X.; Lu, Y.; Wang, Y. Saline-Alkali Soil Applied with Vermicompost and Humic Acid Fertilizer Improved Macroaggregate Microstructure to Enhance Salt Leaching and Inhibit Nitrogen Losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Wu, D.; Lu, Y.; Ma, L.; Cheng, J.; Wang, X. Preparation and Molecular Structural Characterization of Fulvic Acid Extracted from Different Types of Peat. Molecules 2023, 28, 6780. [Google Scholar] [CrossRef]
- Maji, D.; Misra, P.; Singh, S.; Kalra, A. Humic Acid Rich Vermicompost Promotes Plant Growth by Improving Microbial Community Structure of Soil as Well as Root Nodulation and Mycorrhizal Colonization in the Roots of Pisum Sativum. Appl. Soil Ecol. 2017, 110, 97–108. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Lin, W.; Jahan, M.S.; Wang, J.; Sun, J.; Jiang, J.; Gu, W.; Zou, J.; Shu, S.; et al. Foliar Application of a Mixture of Putrescine, Melatonin, Proline, and Potassium Fulvic Acid Alleviates High Temperature Stress of Cucumber Plants Grown in the Greenhouse. Technol. Hortic. 2022, 2, 6. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.; Farooq, M.; Xue, L.; Ali, S. Fulvic Acid Application Improves the Maize Performance under Well-Watered and Drought Conditions: Fulvic Acid Improves the Maize Performance. J. Agron. Crops Sci. 2011, 197, 409–417. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Yao, R.; Chen, X.; Wang, X. Biochar and Fulvic Acid Amendments Mitigate Negative Effects of Coastal Saline Soil and Improve Crop Yields in a Three Year Field Trial. Sci. Rep. 2020, 10, 8946. [Google Scholar] [CrossRef]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M.I.; et al. Improvements in Wheat Productivity and Soil Quality Can Accomplish by Co-Application of Biochars and Chemical Fertilizers. Sci. Total Environ. 2017, 607–608, 715–724. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.-X.; Zhang, H.-P.; Li, X.-Y.; Shen, Y.-F.; Li, S.-Q. Soil Amendment with Biochar Increases Maize Yields in a Semi-Arid Region by Improving Soil Quality and Root Growth. Crops Pasture Sci. 2016, 67, 495. [Google Scholar] [CrossRef]
- Kumar, A.; Prakash, C.H.B.; Brar, N.S.; Kumar, B. Potential of Vermicompost for Sustainable Crop Production and Soil Health Improvement in Different Cropping Systems. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1042–1055. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Zhang, M.; Chen, Q.; Zheng, L.; Li, Y.C.; Sun, L. The Combined Application of Controlled-Release Urea and Fulvic Acid Improved the Soil Nutrient Supply and Maize Yield. Arch. Agron. Soil Sci. 2021, 67, 633–646. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Zhao, Y.; Yang, B.; Ding, R.; Wang, J.; Nie, J. Changes in Soil Characteristics and Maize Yield Under Straw Returning System in Dryland Farming. Field Crops Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Stone, R.J.; Ekwue, E.I. Maximum Bulk Density Achieved During Soil Compaction as Affected by the Incorporation of Three Organic Materials. Trans. ASAE 1993, 36, 1713–1719. [Google Scholar] [CrossRef]
- Czachor, H.; Charytanowicz, M.; Gonet, S.; Niewczas, J.; Jozefaciuk, G.; Lichner, L. Impact of Long-term Mineral and Organic Fertilizer Application on the Water Stability, Wettability and Porosity of Aggregates Obtained from Two Loamy Soils. Eur. J. Soil Sci. 2015, 66, 577–588. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Y.; Li, G.; Ren, Y.; Li, Z.; Ma, G. Microcharacteristics of Soil Pores After Raindrop Action. Soil Sci. Soc. Am. J. 2020, 84, 1693–1704. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, G.; Feng, H.; Sun, B.; Zhao, Y.; Chen, H.; Chen, J.; Dyck, M.; Wang, X.; Zhang, J.; et al. Effects of Straw and Biochar Amendments on Aggregate Stability, Soil Organic Carbon, and Enzyme Activities in the Loess Plateau, China. Environ. Sci. Pollut. Res. 2017, 24, 10108–10120. [Google Scholar] [CrossRef]
- Guo, R.; Qian, R.; Yang, L.; Khaliq, A.; Han, F.; Hussain, S.; Zhang, P.; Cai, T.; Jia, Z.; Chen, X.; et al. Interactive Effects of Maize Straw-Derived Biochar and N Fertilization on Soil Bulk Density and Porosity, Maize Productivity and Nitrogen Use Efficiency in Arid Areas. J. Soil Sci. Plant Nutr. 2022, 22, 4566–4586. [Google Scholar] [CrossRef]
- Schlüter, S.; Sammartino, S.; Koestel, J. Exploring the Relationship between Soil Structure and Soil Functions via Pore-Scale Imaging. Geoderma 2020, 370, 114370. [Google Scholar] [CrossRef]
- Mustafa, A.; Minggang, X.; Ali Shah, S.A.; Abrar, M.M.; Nan, S.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil Aggregation and Soil Aggregate Stability Regulate Organic Carbon and Nitrogen Storage in a Red Soil of Southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- An, Y.; Ji, Q.; Zhao, S.; Wang, X. Effects of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil. Environ. Sci. 2016, 37, 293–300. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.; Tang, J.; Liang, W.; Yu, X.; Xiang, B.; Tan, T. Physicochemical properties and effects of biochar and bentonite on agronomic traits of maize in amended windswept soils. J. Arid. Land Resour. Environ. 2023, 37, 164–174. (In Chinese) [Google Scholar]
- Hurisso, T.T.; Davis, J.G.; Brummer, J.E.; Stromberger, M.E.; Mikha, M.M.; Haddix, M.L.; Booher, M.R.; Paul, E.A. Rapid Changes in Microbial Biomass and Aggregate Size Distribution in Response to Changes in Organic Matter Management in Grass Pasture. Geoderma 2013, 193–194, 68–75. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Zhang, X. Effects of peat or vermicompost mixed with biochar on the physical and chemical properties of the substrate and composition and metabolism of bacterial communities. J. China Agricutural. Univ. 2022, 27, 84–94. (In Chinese) [Google Scholar]
- Huang, Y.; Wang, Q.; Zhu, P.; Zhang, L.; Xia, Z.; Hou, Y. Effects of soil conditioners on the amelioration of acidic soils. Southwest China J. Agric. Sci. 2014, 27, 1637–1640. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, M.; Yang, S.; Ai, S.; Ai, X.; Jiang, X.; Chen, J.; Li, R.; Ai, Y. Artificial Soil Nutrient, Aggregate Stability and Soil Quality Index of Restored Cut Slopes along Altitude Gradient in Southwest China. Chemosphere 2020, 246, 125687. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Calvo-Cases, A.; Imeson, A.C.; Soriano-Soto, M.D. Influence of Soil Properties on the Aggregation of Some Mediterranean Soils and the Use of Aggregate Size and Stability as Land Degradation Indicators. CATENA 2001, 44, 47–67. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Zhang, X.; Wei, K.; Chen, L.; Liang, W. Effects of Conservation Tillage on Soil Aggregation and Aggregate Binding Agents in Black Soil of Northeast China. Soil Tillage Res. 2012, 124, 196–202. [Google Scholar] [CrossRef]
- Lehmann, A.; Zheng, W.; Ryo, M.; Soutschek, K.; Roy, J.; Rongstock, R.; Maaß, S.; Rillig, M.C. Fungal Traits Important for Soil Aggregation. Front. Microbiol. 2020, 10, 2904. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in Soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Jensen, J.L.; Schjønning, P.; Watts, C.W.; Christensen, B.T.; Peltre, C.; Munkholm, L.J. Relating Soil C and Organic Matter Fractions to Soil Structural Stability. Geoderma 2019, 337, 834–843. [Google Scholar] [CrossRef]
- Cen, R.; Feng, W.; Yang, F.; Wu, W.; Liao, H.; Qu, Z. Effect Mechanism of Biochar Application on Soil Structure and Organic Matter in Semi-Arid Areas. J. Environ. Manag. 2021, 286, 112198. [Google Scholar] [CrossRef]
- Song, X.; Li, H.; Song, J.; Chen, W.; Shi, L. Biochar/Vermicompost Promotes Hybrid Pennisetum Plant Growth and Soil Enzyme Activity in Saline Soils. Plant Physiol. Biochem. 2022, 183, 96–110. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Zhang, K.; Luo, T.; Zhu, K.; Hu, L. The Application of Biochar Alleviated the Adverse Effects of Drought on the Growth, Physiology, Yield and Quality of Rapeseed Through Regulation of Soil Status and Nutrients Availability. Ind. Crops Prod. 2021, 171, 113878. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Yu, X.; Cheng, C.; Zong, S.; Wang, Y.; Dai, X.; Cao, X.; Ye, X. Studies on the effect of xanthohumic acid on soil improvement and tobacco quality of tobacco plantation. Chin. J. Soil Sci. 2016, 47, 914–920. (In Chinese) [Google Scholar]
- Yu, C.; Cao, Y.; Ren, M.; Yang, Q.; Lang, L.; Guo, J. Effects of Different Fulvic Acids on Maize Growth at Seedling Stage and Soil Nutrient Content. Fertil. Health 2022, 49, 44–48. (In Chinese) [Google Scholar]
- Huang, Y.; Chen, G.; Xiong, L.; Liu, B.; Liu, Y.; Huang, Y.; Tang, Q. Effects of different straw biochars on rice growth and soil nutrients. J. South Agric. 2020, 51, 2113–2119. (In Chinese) [Google Scholar]
- Li, W.; Liu, C.; Wang, D.; Dai, S.; Zhang, X.; Bo, T. Study on combined biochar-earthworm manure-humic acid for soil improvement. China Resour. Compr. Util. 2023, 41, 12–19+23. (In Chinese) [Google Scholar]
- Zhang, H.; Yang, J.; Zhou, J.; Li, G.; Zhang, J. Effects of organic and inorganic amendments on aggregation and crop yields in sandy fluvo-aquic soil. J. Plant Nutr. Fertil. 2021, 27, 791–801. (In Chinese) [Google Scholar]
- Zhang, J.; Yu, B.; Zhang, J.; Liu, Y.; Jiang, X.; Cui, Z. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil. J. Plant Nutr. Fertil. 2017, 23, 704–711. (In Chinese) [Google Scholar]
- Li, J.; Li, S.; Li, Q. Effects of Different Amounts of Fulvic Acid on Tomato Yield and Quality. J. Agric. 2022, 12, 54–59. (In Chinese) [Google Scholar]
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen Inorganic Forms; American Society of Agronomy: Madison WI, USA, 1982. [Google Scholar]
- Zhang, Q.; Yao, D.; Kuang, S.; Zhang, J.; Wang, W.; Zhang, A.; Liao, H.; Zhu, Q.; Niu, Y. Comprehensive evaluation of utilization potential of summer green manure resources in mountain orchards of Guizhou based on grey correlation analysis. Soil Fertil. Sci. China 2022, 94–101. (In Chinese) [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press Co., Ltd.: Beijing, China, 2000. [Google Scholar]
Treatment | DOC (mg·L−1) | Available-N (mg·kg−1) | Available-P (mg·kg−1) | Available-K (mg·kg−1) | Organic Matter (g·kg−1) |
---|---|---|---|---|---|
CK | 15.19 ± 0.07 b | 44.67 ± 2.39 d | 11.16 ± 2.19 c | 158.5 ± 2.62 c | 11.07 ± 0.57 d |
B1 | 16.69 ± 0.40 ab | 58.47 ± 3.41 bcd | 39.29 ± 6.26 b | 181.27 ± 6.86 bc | 14.65 ± 0.33 c |
B3 | 20.15 ± 1.37 a | 59.23 ± 3.07 bcd | 47.35 ± 7.32 b | 193.15 ± 12.37 bc | 19.57 ± 1.65 ab |
B5 | 18.44 ± 2.02 ab | 55.93 ± 1.27 cd | 40.26 ± 1.17 b | 203.05 ± 1.98 b | 21.89 ± 1.92 a |
V3 | 15.35 ± 2.19 b | 68.02 ± 7.55 bc | 45.63 ± 7.23 b | 159.49 ± 5.24 c | 14.51 ± 0.17 c |
V5 | 17.25 ± 1.11 ab | 78.97 ± 7.62 b | 50.85 ± 8.04 b | 203.05 ± 8.63 b | 15.51 ± 0.09 c |
F1 | 18.81 ± 1.45 ab | 62.25 ± 17.61 bcd | 45.32 ± 2.90 b | 216.91 ± 9.08 b | 16.23 ± 0.72 bc |
F2 | 19.49 ± 0.36 ab | 104.23 ± 10.80 a | 104.30 ± 20.74 a | 276.33 ± 24.73a | 18.08 ± 1.69 bc |
Treatment | Weight | |
---|---|---|
TP | 0.957837328 | 0.0571 |
R0.25 | 0.927749695 | 0.0979 |
MWD | 0.929261959 | 0.0959 |
GMD | 0.882924764 | 0.1587 |
AN | 0.897705925 | 0.1386 |
AP | 0.932153402 | 0.0919 |
AK | 0.898540221 | 0.1375 |
SOM | 0.949682607 | 0.0682 |
pH | 0.96895736 | 0.0421 |
DOC | 0.957870079 | 0.0571 |
Y | 0.95940454 | 0.0550 |
Treatment | WGCD | WO |
---|---|---|
CK | 0.423 | 7 |
B1 | 0.402 | 8 |
B3 | 0.517 | 3 |
B5 | 0.504 | 4 |
V3 | 0.658 | 2 |
V5 | 0.462 | 6 |
F1 | 0.492 | 5 |
F2 | 0.769 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.-Q.; Wu, Q.-Q.; Zhang, J.; Chang, T.-T.; Liu, X.-N. Effects of Applying Organic Amendments on Soil Aggregate Structure and Tomato Yield in Facility Agriculture. Plants 2024, 13, 3064. https://doi.org/10.3390/plants13213064
Tao W-Q, Wu Q-Q, Zhang J, Chang T-T, Liu X-N. Effects of Applying Organic Amendments on Soil Aggregate Structure and Tomato Yield in Facility Agriculture. Plants. 2024; 13(21):3064. https://doi.org/10.3390/plants13213064
Chicago/Turabian StyleTao, Wen-Qu, Qian-Qian Wu, Jie Zhang, Ting-Ting Chang, and Xin-Na Liu. 2024. "Effects of Applying Organic Amendments on Soil Aggregate Structure and Tomato Yield in Facility Agriculture" Plants 13, no. 21: 3064. https://doi.org/10.3390/plants13213064
APA StyleTao, W. -Q., Wu, Q. -Q., Zhang, J., Chang, T. -T., & Liu, X. -N. (2024). Effects of Applying Organic Amendments on Soil Aggregate Structure and Tomato Yield in Facility Agriculture. Plants, 13(21), 3064. https://doi.org/10.3390/plants13213064