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Abstract: Amendment significantly improves soil structure and promotes crop growth. To combat soil
degradation and low crop yields in facility agriculture, it is crucial to study the optimal application
rate of amendments. This study analyzed the effects of biochar, vermicompost, and mineral-source
potassium fulvic acid on the stability of aggregate structure, soil nutrient content, and tomato yield
in cambisols, providing a theoretical basis for improving the soil quality of plastic greenhouses in
Southern China. A pot experiment on tomato cultivation was carried out in yellow-brown soil in
plastic greenhouses. The experiment included eight treatments: 1% biochar (B1); 3% biochar (B3); 5%
biochar (B5); 3% vermicompost (V3); 5% vermicompost (V5); 0.1% mineral-source potassium fulvic
acid (F1); 0.2% mineral-source potassium fulvic acid (F2); and the control condition without adding
soil amendments (CK). The results showed that the biochar and vermicompost treatments effectively
reduced soil bulk density and increased total soil porosity. Compared to the control, treatments with
soil amendments significantly increased soil pH and had different effects on soil nutrients: F2 showed
the most significant improvement in the content of available nitrogen, available phosphorus, and
available potassium, with an increase of 133.33%, 834.59%, and 74.34%, respectively; B3 treatment
had the highest increase in dissolved organic carbon (DOC), while B5 treatment had the highest
organic matter content. Compared to the CK, the particle size of the biochar treatment was mainly
0.053~0.25 mm, while the V3, F1, and F2 mainly occurred with a particle size > 0.25 mm; and V3
has the best aggregate stability. Biochar, vermicompost, and mineral potassium fulvic acid can all
promote tomato yield, with the F2 and V3 treatments having a yield increase effect of over 30%.
Furthermore, Pearson’s correlation analysis showed a highly significant positive correlation between
geometric mean diameter (GMD) and mean weight diameter (MWD), water-stable macroaggregate
content (R0.25), and a positive correlation between alkaline-dissolved nitrogen, available phosphorus,
dissolved organic carbon content, and aggregate stability indicators. Adding 0.2% mineral-source
potassium fulvic acid optimizes cambisols’ properties, enhances aggregate formation and stability,
boosts tomato yield, and shows great application potential.

Keywords: biochar; vermicompost; mineral-source potassium fulvic acid; aggregate stability; nutrient

1. Introduction

In China’s facility-based agriculture, soil cultivation remains the predominant method,
making the quality of facility soil a key factor limiting the sustainable development of
both current and future agricultural practices. Within the ecosystem, soil serves as a
crucial hub for material exchange and energy transfer, with its structure influencing water
retention, thermal regulation, and nutrient availability, which directly impact crop yield and
quality [1]. However, the excessive use of chemical fertilizers and pesticides, high multiple
cropping indexes, and long-term monocultures have led to widespread soil degradation in
facility cultivation, significantly reducing crop productivity [2,3].
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Currently, soil amendments play a vital role in enhancing soil fertility and structure
by improving its physical properties, increasing water retention capacity, and enhancing
the availability of essential nutrients [4,5]. By fostering better soil aeration, permeability,
and aggregation, soil amendments contribute to a more favorable environment for root
growth [6] and microbial activity [7]. This, in turn, facilitates nutrient cycling, enhances
soil fertility, and promotes the cultivation of healthier crops [8,9]. As such, soil amend-
ments represent a critical tool in mitigating soil degradation and supporting the long-term
sustainability of agricultural systems, particularly in facility-based agriculture where soil
quality is a limiting factor.

Numerous studies have demonstrated that the application of biochar, vermicompost,
and mineral-sourced potassium fulvic acid can significantly improve soil quality and
promote crop yield [10–14]. Biochar, an organic amendment produced through the pyrolysis
of biomass at high temperatures, possesses a large specific surface area and highly porous
physical structure [15]. These characteristics enhance the soil’s water retention capacity and
contribute to the formation of larger soil aggregates [16]. Additionally, biochar has a high
cation-exchange capacity and strong adsorption properties, providing a comprehensive
range of nutrients that support the improvement of soil fertility [17]. Research has indicated
that higher application rates of biochar are more effective in enhancing the structure of
cambisols, while lower application rates maximize nutrient availability in the soil [18].
Vermicompost, a nutrient-rich organic fertilizer, offers excellent aeration, drainage, and
microbial activity, facilitating efficient nutrient uptake by crops [19]. Liu et al. found
that the combination of vermicompost and humic acid fertilizer effectively improved the
stability of soil aggregates and enhanced the microstructure of larger aggregates while
increasing the soil’s organic matter content [20]. Fulvic acid is the water-soluble part of
humic acid, and humic acid contains fulvic acid [21]. Mineral-sourced potassium fulvic
acid, an environmentally friendly soil amendment, not only improves soil structure and
fertility [22] but also enhances crop resilience to environmental stress [23]. Fulvic acid
ensures the effective absorption of nutrients by plants [24], and the application of potassium
fulvic acid in Southern China has been shown to significantly improve both crop yield and
quality [25].

Currently, most studies on the use of biochar, vermicompost, and mineral-sourced
potassium fulvic acid have focused on their individual application or combined use in fixed
proportions, with few studies examining their comparative effects on facility soil [26–29].
To identify the organic amendment with the most comprehensive improvement effect on
facility soils in Southern China, this study utilized yellow-brown soil from the middle- and
lower-reaches of the Yangtze River as the test soil. Through a pot experiment involving
facility-grown tomatoes, this study investigated the effects of adding biochar, vermicom-
post, and mineral-sourced potassium fulvic acid on soil nutrient content, soil aggregate
structure, and tomato yield. The findings provide a theoretical basis for enhancing soil
quality and crop productivity in facility-based agriculture.

2. Results
2.1. Effects of Different Amendments on Soil Chemical Properties

After applying different amendments, the soil chemical properties of each treatment
changed. As shown in Figure 1, the pH values of each treatment were significantly higher
than the CK; the improvement effect of biochar treatment was more obvious than that of the
vermicompost treatment and mineral potassium fulvic acid treatment, and the pH value
of B5 was the highest (7.7). As can be seen from Table 1, biochar treatment significantly
increased the soil-available potassium and organic matter contents compared with the
CK, and the contents were positively correlated with the applied amount of biochar. The
contents of alkali-hydrolyzed nitrogen, available phosphorus, and DOC were higher than
those in the treatment without amendment, and B3 content was the highest, indicating
that the high biochar application rate was more conducive to promoting the absorption of
available nutrients in soil. The nutrient index content of V5 was significantly higher than
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that without amendment (p < 0.05). The contents of V3 available potassium, organic matter,
and DOC were the lowest values in the treatment of adding amendments, which indicated
that the application of 3% vermicompost had a poor effect on the soil nutrient content. In
the treatment of potassium fulvate from a mineral source, the contents of alkali-hydrolyzed
nitrogen, available phosphorus, and available potassium in F2 were the highest values in
the treatment of adding amendments, and the increases were 133.33%, 834.59%, and 74.34%
compared with the CK, respectively. The effect of promoting soil absorption of nitrogen,
phosphorus, and potassium is the most obvious.
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Figure 1. Effects of different soil amendments on soil pH. Note: CK: control condition, B1: 1%
biochar, B3: 3% biochar, B5: 5% biochar, V3: 3% vermicompost, V5: 5% vermicompost, F1: 0.1%
mineral-source potassium fulvic acid, F2: 0.2% mineral-source potassium fulvic acid; the means are
not significantly different between soil type treatment (p > 0.05) when followed by the same lowercase
letter, according to Duncan’s multiple range test; ANOVA, analysis of variance.

Table 1. Effects of different soil amendments on soil nutrient contents.

Treatment DOC (mg·L−1) Available-N
(mg·kg−1)

Available-P
(mg·kg−1)

Available-K
(mg·kg−1)

Organic Matter
(g·kg−1)

CK 15.19 ± 0.07 b 44.67 ± 2.39 d 11.16 ± 2.19 c 158.5 ± 2.62 c 11.07 ± 0.57 d
B1 16.69 ± 0.40 ab 58.47 ± 3.41 bcd 39.29 ± 6.26 b 181.27 ± 6.86 bc 14.65 ± 0.33 c
B3 20.15 ± 1.37 a 59.23 ± 3.07 bcd 47.35 ± 7.32 b 193.15 ± 12.37 bc 19.57 ± 1.65 ab
B5 18.44 ± 2.02 ab 55.93 ± 1.27 cd 40.26 ± 1.17 b 203.05 ± 1.98 b 21.89 ± 1.92 a
V3 15.35 ± 2.19 b 68.02 ± 7.55 bc 45.63 ± 7.23 b 159.49 ± 5.24 c 14.51 ± 0.17 c
V5 17.25 ± 1.11 ab 78.97 ± 7.62 b 50.85 ± 8.04 b 203.05 ± 8.63 b 15.51 ± 0.09 c
F1 18.81 ± 1.45 ab 62.25 ± 17.61 bcd 45.32 ± 2.90 b 216.91 ± 9.08 b 16.23 ± 0.72 bc
F2 19.49 ± 0.36 ab 104.23 ± 10.80 a 104.30 ± 20.74 a 276.33 ± 24.73a 18.08 ± 1.69 bc

Note: CK: control condition; B1: 1% biochar; B3: 3% biochar; B5: 5% biochar; V3: 3% vermicompost; V5: 5%
vermicompost; F1: 0.1% fulvic acid; F2: 0.2% fulvic acid. The data in the table are expressed as mean ± standard
deviation, the means are not significantly different between soil type of treatment (p > 0.05) when followed by the
same lowercase letter, according to Duncan’s multiple range test; ANOVA, analysis of variance.

2.2. Effects of Different Amendments on Soil Structure
2.2.1. Effects on Soil Bulk Density and Total Porosity

Soil bulk density is one of the important indexes of soil quality. Compared with the CK,
the changes in soil bulk density were different under the action of different amendments.
With the increase in biochar application, soil bulk density showed an obvious decreasing
trend, in which B5 had the most obvious decreasing effect, reaching 12.06%. Compared
with the CK, V3 and V5 decreased by 7.09% and 5.67%, respectively. The difference
between potassium fulvic acid treatment and the CK is not significant, and the effect of
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reducing soil bulk density is not obvious. As one of the important parameters of soil
structure, soil total porosity reflects soil permeability. As shown in Figure 2B, biochar and
vermicompost treatments significantly increased the total soil porosity compared with the
CK. B5 increased the total porosity of soil by 13.73%, and B1 and B3 increased by 3.45%
and 11.76% compared with the CK, respectively. The effect of vermicompost application on
total soil porosity decreased with the increase in vermicompost application amount, and
V3 and V5 increased by 8.64% and 6.45%, respectively. F1 and F2 only increased by 0.17%
and 2.29%, respectively. The results showed that B5 had the most significant effect on soil
bulk density and total porosity.
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Figure 2. (A,B) Effects of different soil amendments on soil bulk density and porosity. Note: CK:
control condition, B1: 1% biochar, B3: 3% biochar, B5: 5% biochar, V3: 3% vermicompost, V5: 5%
vermicompost, F1: 0.1% mineral-source potassium fulvic acid, F2: 0.2% mineral-source potassium
fulvic acid. The means are not significantly different between soil type treatment (p > 0.05) when
followed by the same lowercase letter, according to Duncan’s multiple range test; ANOVA, analysis
of variance.

2.2.2. Effects of Different Soil Amendments on Soil Texture

Soil aggregate is the basic unit of soil structure and the particle size distribution of
aggregates is affected by the application of amendments. As can be seen from Figure 3,
the content of the CK macroaggregates (particle size > 0.25 mm) is roughly the same as
that of silky clay particles (particle size < 0.053 mm), which are 39.71% and 42.13%, respec-
tively. Compared with the CK, the distribution of soil aggregates changed significantly
in the treatment group, and the effects of different soil amendments were also different.
Biochar treatment obviously increased the content of silt clay and decreased the content of
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macroaggregates. The content of B5 powder clay is the highest in all treatments (57.97%),
with an increase of 37.60%; the content of B3 macroaggregates was the highest in the
biochar treatment (33.35%). There were significant differences in the powder clay content
of vermicompost treatment. Compared with the CK, the content of V3 decreased by 10.56%,
while that of V5 increased by 24.78%. The powder clay content of F1 and F2 decreased by
8.33% and 13.17% compared with the CK, respectively. The contents of microaggregates
(0.053~0.25 mm) increased significantly, which were 23.60% and 22.84%, respectively.
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Figure 3. Fractions of soil aggregates under different soil amendments. Note: CK: control condition,
B1: 1% biochar, B3: 3% biochar, B5: 5% biochar, V3: 3% vermicompost, V5: 5% vermicompost, F1:
0.1% mineral-source potassium fulvic acid, F2: 0.2% mineral-source potassium fulvic acid.

2.2.3. Effects of Different Soil Amendments on Soil Aggregation Parameters

The aggregate mean weight diameter (MWD), geometric mean diameter (GMD), and
water stability of large aggregate content (R0.25) are important indexes to characterize the
stability of soil aggregates. The higher the value, the better the stability of soil aggregates.
As shown in Figure 4, all stability indexes of biochar treatment are presented in the order
of B3 > B1 > B5, in which all the stability indexes of B5 are the lowest values in all treat-
ments. Compared with the CK, the stability indexes of V5 and F1 all decreased, and the
MWD decreased by 18.52% and 3.70%, respectively; GMD decreased by 42.31% and 7.69%,
respectively; and R0.25 decreased by 19.34% and 4.84%, respectively. Compared with the
CK, the stability of V3 and F2 aggregates was significantly improved, among which the
stability indexes of V3 were the highest, and MWD, GMD, and R0.25 were increased by
14.81%, 26.92%, and 15.08%, respectively, indicating that 3% vermicompost treatment had
the best effect on the stability of soil aggregates.

2.3. Effects of Different Amendments on Tomato Yield

Yield is a key indicator of crop production. After the application of the soil amendment,
the yield of each treatment increased compared with the CK (as shown in Figure 5), and
the increase effect of V3 and F2 reached more than 30%. The yield of biochar treatment
increased with the increase in application amount, and were 50.92, 53.81, and 54.91 t·hm−2,
respectively. Compared with the CK, vermicompost treatment increased yield by 32.56%
(V3) and 25.28% (V5), respectively. Under the same application amount, the yield of the
vermicompost treatment was higher than that of biochar treatment. F2 increased the most,
reaching 34.82%, and had the best effect on yield increase.
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trol condition, B1: 1% biochar, B3: 3% biochar, B5: 5% biochar, V3: 3% vermicompost, V5: 5%
vermicompost, F1: 0.1% mineral-source potassium fulvic acid, F2: 0.2% mineral-source potassium
fulvic acid.
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Figure 5. Effects of different soil amendments on yield. Note: CK: control condition; B1: 1% biochar;
B3: 3% biochar; B5: 5% biochar; V3: 3% vermicompost; V5: 5% vermicompost; F1: 0.1% fulvic acid;
F2: 0.2% fulvic acid. The magnitude of yield change was calculated using the control group as
a reference.

2.4. Correlation Analysis

The bulk density is significantly negatively correlated with total porosity and organic
matter. In Figure 6, it can be seen that the physical structure of the soil affects the uptake
of organic matter by the soil, which is consistent with the facts. The looser the structure,
the more conducive it is to the increase in organic matter content in the soil. Soil chemical
indexes were closely related, and there were significant positive correlations among alkali-
hydrolytic nitrogen, available phosphorus, and available potassium. pH had certain effects
on soil nutrient content and was negatively correlated with both of them. There was a
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significant negative correlation between organic matter and pH as well as between available
phosphorus and available potassium. The indexes of soil aggregates reflect the anti-erosion
ability of the soil structure. Aggregate parameters, available nutrients, and organic matter
content were positively correlated with yield, indicating that the increase in soil nutrient
content and aggregate stability was conducive to the increase in tomato yield.
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2.5. Gray Correlation Analysis of Parameters Affecting the Effectiveness of Soil Improvement

In this experiment, a total of 11 soil parameters and 8 treatments were selected,
including total porosity (TP), average weight diameter of aggregates (MWD), geometric
mean diameter (GMD), water-stable large aggregates content (R0.25), pH value, dissolved
organic carbon content (DOC), soil organic matter (SOM), alkaline-dissolved nitrogen
content (AN), quick-acting phosphorus content (AP), quick-acting potassium content (AK),
and yield (Y) (Table 2). The weighted gray correlation was calculated and the best value of
each indicator was used as a reference series. When evaluating soil quality, since there is
no uniform standard for the selection of indicators, the use of gray correlation analysis can
make the evaluation results more accurate and objective.

The differences in the effects of the treatments on soil nutrients, aggregate structure,
and tomato yield enhancement have enabled a better evaluation of the effects of biochar,
vermicompost, and mineral-source potassium fulvic acid. A total of 11 parameters and
8 treatments were employed to construct a gray system, with the optimal value of each
index—listed above in this section—utilized as a reference series for the calculations.
The greater the total weighted correlation degree, the better the soil improvement effect.
As can be seen from Table 3, the comprehensive analysis results of the gray correlation
degree in this test are F2 > V3 > B3 > B5 > B1 > F1 > CK > B1. The results showed
that the comprehensive performance of 0.2% mineral-source potassium fulvic acid in this
experiment is the best.
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Table 2. Index weight data.

Treatment ej Weight

TP 0.957837328 0.0571
R0.25 0.927749695 0.0979

MWD 0.929261959 0.0959
GMD 0.882924764 0.1587
AN 0.897705925 0.1386
AP 0.932153402 0.0919
AK 0.898540221 0.1375

SOM 0.949682607 0.0682
pH 0.96895736 0.0421

DOC 0.957870079 0.0571
Y 0.95940454 0.0550

Table 3. Weighted correlation analysis of indicators.

Treatment WGCD WO

CK 0.423 7
B1 0.402 8
B3 0.517 3
B5 0.504 4
V3 0.658 2
V5 0.462 6
F1 0.492 5
F2 0.769 1

3. Discussion

Soil bulk weight—as an important factor in the physical structure of the soil—is closely
related to the total soil porosity [30] and is significantly affected by the application of organic
materials [31,32]. It is generally believed that soil pore plugging will lead to soil compaction,
which will affect the water, fertilizer, gas, and heat status of the soil [33]. Previous studies
have concluded that the lower the value of soil bulk density, the greater the total porosity,
which is conducive to reducing soil consolidation and promoting the formation of soil
aggregates [34,35]. The results of this paper are in line with previous research. A good
aggregate structure distribution is conducive to soil material exchange and energy transfer
and promotes soil water and fertilizer retention and carbon sequestration [36,37]. In this
experiment, both the bulk density and total porosity of the soil treated with biochar showed
a trend of gradually improving with the increase in the amount of biochar (Figure 2). Due
to its high specific surface area and porosity, biochar, when applied as an amendment
to the soil, improves soil properties, resulting in an increase in soil bulk density and
total porosity [38,39]. However, the content of water-stable macroaggregates decreased
compared with the CK, which may be due to changes in exchange complexes caused by
the application of biochar [40]. After the application of vermicompost, the changes in
soil bulk density and total porosity were between those of biochar and the potassium
fulvic acid treatment. Under the same application amount, the soil bulk density value
of vermicompost treatment was higher than that of the biochar treatment, and showed a
trend of change opposite to that of the biochar treatment, possibly because the physical
structure of the vermicompost used in this study was too tight [41]. Compared with biochar
and vermicompost, the changes in bulk density and total porosity under potassium fulvic
acid treatment from mineral sources are not obvious, which may be due to the fact that
the application amount of potassium fulvic acid from mineral sources was potentially too
small [42].

The indexes of soil aggregates reflect the anti-erosion ability of soil structure. The
larger the mean geometric diameter and geometric weight diameter, the higher the soil
agglomeration degree and the better the anti-erosion ability [43]. A high proportion of
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water stability and large aggregate content will be more conducive to soil fertility, thereby
improving soil quality. In this experiment, all the indexes of B5 were the lowest values in
all treatments, indicating that the high application amount of biochar was not conducive
to the parameters of the soil aggregate structure. The parameters of the aggregates are
consistent with the results of particle size distribution changes [44], and V3 has the best
improvement effect on the stability index of aggregates compared with other treatments
(Figure 4). It is generally believed that soil organic matter, as a cementing agent of soil
aggregates, is conducive to the formation of large aggregates and the improvement of
aggregate stability [45–47]; however, the content of organic matter is not the only factor
affecting the composition of aggregates. In this study, the content of organic matter was
negatively correlated with MWD, GMD, and R0.25 (Figure 6); this may be due to the wet
sieve method used in the test [48] or the existence of exchangeable sodium, which would
lead to the destruction of aggregates [45,48]. As an important part of soil, organic matter has
an important influence on soil fertility and physical structure. Under the conditions of this
test, the application of amendments significantly enhanced the soil organic matter content
compared to the control. Additionally, for each amendment, an increase in application rate
corresponded to a higher soil organic matter content. Notably, the amendment B5 exhibited
the highest organic matter content, attributed to the elevated carbon content of biochar.
Furthermore, the effects of the amendments on organic matter enhancement became more
pronounced with increased application rates [49].

Soil-available nutrient content comprehensively reflects its fertilizer supply capacity,
which has a key effect on tomato growth and yield. Biochar is rich in nitrogen, phospho-
rus, and potassium; vermicompost is rich in nutrition; mineral-source potassium fulvic
acid contains a variety of micronutrients; and the three soil amendments can improve
the physical and chemical properties of soil [14,50,51]. The study by Li Zhipeng et al.
showed that compared with other treatments, the application of fertilizer combined with
1800 kg·hm−2 mineral-source potassium fulvate had the best effect on increasing the con-
tent of soil-available nutrients and improving soil fertility [52]. In this study, the contents
of alkali-hydrolyzed nitrogen, available phosphorus, and available potassium in the F2
treatment were the highest among all treatments (Table 1). On the one hand, the mineral-
source potassium fulvic acid itself contains rich potassium elements, which is conducive to
soil absorption; on the other hand, it may also be due to the oxygen-containing functional
groups of the potassium fulvic acid from mineral sources, which play an active role in the
activation of nutrients fixed in the soil and the secretion produced by the roots of planted
crops—promoting the release of nutrients [53]. Compared with potassium fulvic acid
treatment from mineral sources, biochar and vermicompost treatment had a less obvious
effect on nutrient content, which may be due to the absorption of available nutrients by
biochar and vermicompost [54] or the chemical fixation reaction of clay minerals in the
amendment [55]. Soil amendments can significantly promote the improvement of crop
yield [56,57]. In this experiment, 0.2% mineral-source potassium fulvic acid had a sig-
nificant effect on tomato yield increase, which was consistent with the results of Li Jing
et al. [58], further confirming that rational application of mineral-source potassium fulvic
acid could not only promote nutrient accumulation but also improve crop yield.

4. Materials and Methods
4.1. Experimental Materials

The tested biochar was corn stalk carbon, purchased from Henan Lize Environmental
Protection Technology Co., Ltd. (Henan, China). Its main physical and chemical properties
are as follows: pH 9.40; organic carbon 410.90 g·kg−1; P2O5 5.33 g·kg−1; K2O 19.16 g·kg−1;
total nitrogen 8.35 g·kg−1; total phosphorus 2.33 g·kg−1; total potassium 15.90 g·kg−1.

The main physical and chemical properties of the tested vermicompost are as follows:
pH 8.17; organic carbon 419.22 g·kg−1; total nitrogen 12.19 g·kg−1; total phosphorus
28.00 g·kg−1; total potassium 13.02 g·kg−1.
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The tested biochar was obtained by firing at a constant temperature of 300 ◦C without
oxygen for 2 h. The tested mineral-source potassium fulvic acid was purchased from
Handan Saifu Biotechnology Co., Ltd. (Handan, China). The content of fulvic acid was
≥50%, the content of potassium oxide was ≥12%, and the content of humic acid was ≥60%.

4.2. Experimental Site Description

The experiment was carried out in plastic greenhouses (31◦57′ N, 118◦50′ E) in the
Water-saving Park of Jiangning Campus of Hohai University, which exists within a sub-
tropical monsoon climate with an average annual temperature of 15.7 ◦C, average annual
precipitation of 1072.9 mm, and average annual evaporation of 900 mm. The cultivated soil
was yellow-brown soil, and the basic properties of the soil before the test were as follows:
pH 6.42; available phosphorus 5.81 mg·kg−1; available potassium 101 mg·kg−1; alkali-
soluble nitrogen 11.10 mg·kg−1; organic matter 12.56 g·kg−1; total nitrogen 1.121 g·kg−1.

4.3. Experimental Design and Treatment Application

The trial was conducted from July to December 2020. A total of 8 soil amendment
treatments were set up, namely: (1) 1% biochar (B1); (2) 3% biochar (B3); (3) 5% biochar (B5);
(4) 3% vermicompost (V3); (5) 5% vermicompost (V5); (6) 0.1% mineral-source potassium
fulvic acid (F1); (7) 0.2% mineral-source potassium fulvic acid (F2); (8) No soil conditioner
(CK) was added. A total of 8 repetitions were set for each treatment.

Before the test began, the tested soil was air-dried and sieved through 2 mm, the
amendment was thoroughly mixed with the soil, and then it was uniformly packed into a
plastic bucket (diameter of 28 cm at the bottom; height of 38.5 cm). Each barrel contained
12 kg of soil and the bottom was filled with 8-centimeter-thick perlite. The bottom of the
experimental bucket was perforated.

The tested tomato variety was “Cooperative 903” (cultivation density: 45,000 plants·hm−2),
which was planted in plastic buckets at the late stage of the seedling stage, with 1 plant per
barrel. Each barrel was applied with 20 grams of compound fertilizer (N:P:K = 15:15:15) as
the base fertilizer. The plants retained 4 fruits per inflorescence, and the second inflorescence
was pinked after the fruit.

4.4. Determination of Tomato Growth Indicators

During the growth period of the tomato plants, the plant height and stem diame-
ter were measured by tape measure and vernier caliper every seven days. At the time
of fruit ripening, the first and second inflorescence fruits of the selected plants were
picked separately and the weight of individual fruits was measured and recorded using an
electronic scale.

4.5. Determination of Soil Physical and Chemical Properties

After fruit harvest, three barrels were randomly selected for each treatment for soil
sample collection as three repetitions. Soil samples from 5 to 10 cm were collected, removed,
air-dried, and screened for the determination of the soil’s physical and chemical properties.

The ring knife method was used to determine soil bulk density and total porosity at
0~5 cm. The wet sieve method was used to analyze the structure of soil aggregates [59],
The specific method is to place the soil sample on the shell sieve, add water to the settling
bucket, wait until the water is over and infiltrated, and conduct oscillatory screening to
separate the large aggregate (particle size > 0.25 mm), micro-aggregate (0.053–0.25 mm),
and silky clay (<0.053 mm) components. Finally, it is washed into an aluminum box,
dried, and weighed. The specific calculation formula of the soil aggregate stability index is
as follows:

MWD =
n

∑
i=1

Xiωi (1)
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GWD = EXP

[
∑n

i=1 Mi ln Xi

∑n
i=1 Mi

]
(2)

R0.25 = 1 − M<0.25

MT
× 100% (3)

where MWD is the average weight diameter (mm); Xi is the average diameter of particle
i aggregate (mm); ωi is the mass percentage (%) of the aggregate of grade i; GWD is the
geometric mean diameter (mm); Mi is the aggregate mass of i grade (g); R0.25 is the content
of water-stable macroaggregates (%); M<0.25 is the mass sum (g) of aggregates with particle
size < 0.25 mm; MT is the aggregate mass (g).

The dissolved organic content was determined in an extract with a soil–water ratio of
1:2.5 by shaking at 25.8 ◦C for 60 min and centrifugation at 4500 r/min for 10 min. The soil
pH was measured in 1:5 soil and water extract using a calibrated pH meter. The available
nitrogen was analyzed using the alkali-hydrolytic diffusion method [60]. The available
phosphorus was determined by spectrophotometric method; the available potassium was
determined by ammonium acetate extraction method; the organic matter was determined
by potassium dichromate volumetric method.

4.6. Gray Relational Analysis Method

The gray correlation analysis method evaluates the correlation between curves by
assessing the similarity of their geometric shapes over a sequence. It measures the rela-
tionship between time-series data by quantitatively analyzing trends in their development
and changes. The method calculates the gray correlation degree between a reference series
and various comparison series based on this geometric relationship. When the changes
between two factors in the sample data are more divergent, their correlation degree is
lower; conversely, a smaller difference in changes indicates a higher correlation degree. The
results of soil improvement of each treatment were comprehensively evaluated by gray
correlation analysis [61].

The following are the specific calculation methods.
Index weight calculation (entropy weight method):

ωj =
1 − ej

∑m
j=1

(
1 − ej

) (4)

where ej is the entropy value of the J item.
Gray relational degree analysis:

x′ ij =
xij

x0j
(5)

x′ ij = 1 −
xij

x0j
(6)

ξi(k) ==
min(i)min(k)|X0(k)− Xi(k)|+ ρmax(i)max(k)|X0(k)− Xi(k)|

|X0(k)− Xi(k)|+ ρmax(i)max(k)|X0(k)− Xi(k)|
(7)

γi = ∑n
k=1W(k)ξi(k) (8)

where k is the k index; i is the i data; ρ is the resolution coefficient, the value is 0.5. From
the theory of gray correlation analysis, it is known that the reference series is the best in the
evaluation of soil quality, so when the correlation between the evaluated indexes and the
reference series is larger, it reflects better soil quality.
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4.7. Statistical Analysis

Microsoft Excel 2010 software and IBM SPSS Statistics 26.0 software were used for data
collation and analysis, and Origin2021 software was used for mapping. Univariate ANOVA
and Pearson’s correlation analysis were compared using Duncan’s method (p < 0.05).

5. Conclusions

Organic carbon, vermicompost, and potassium fulvic acid from mineral sources have
obvious effects on soil and tomato yield but the difference in species and application
amount will affect the improvement effect. Biochar significantly increased the pH of yellow-
brown soil and decreased the bulk density of soil; the application rate of 5% was the
best. The application of 3% vermicompost has the most obvious effect on promoting the
formation of large aggregates and improving the stability of aggregates in yellow-brown
soil. Mineral-source potassium fulvic acid is more conducive to the absorption of soil-
available nutrients. According to the gray correlation degree analysis, under the conditions
of this study, the comprehensive improvement effect of 0.2% mineral-source potassium
fulvate was significantly better than the other treatments and had a more balanced effect on
improving yellow-brown soil structure, increasing nutrient content, and promoting tomato
growth. All of the above methods of determination are based on Bao [62].
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