Identification of Target Gene and Interacting Protein of Two LaSCL6 Alternative Splicing Variants Provides Novel Insights into Larch Somatic Embryogenesis
Abstract
:1. Introduction
2. Results
2.1. Thirty Larix Genes Were Screened as the Candidate Target Genes of LaSCL6 after Analyzing the Transcriptomic Responses of O. sativa and A. thaliana to LaSCL6 Overexpression
2.2. Three Candidate Target Genes Were Confirmed to Be Regulated by LaSCL6
2.3. LaSCL6-var1 and LaSCL6-var2 Could Interact with LaAP2L2 in the Nucleus
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Vector Construction and Plant Transformation
4.3. RNA Isolation, RNA-Seq Library Preparation, and Gene Expression Analysis
4.4. Correlation Analysis and Sequence Blast
4.5. Promoter Sequence Analysis and Cloning
4.6. Y1H Assay
4.7. Dual-LUC Assay
4.8. Sequence Analysis and Subcellular Localization
4.9. Y2H Screening and Identification
4.10. BiFC Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobrowolska, I.; Businge, E.; Abreu, I.N.; Moritz, T.; Egertsdotter, U. Metabolome and transcriptome profiling reveal new insights into somatic embryo germination in Norway spruce (Picea abies). Tree Physiol. 2017, 37, 1752–1766. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Li, Z.; Dang, S.; Han, S.; Zhang, L.; Qi, L. Examination of the transcriptional response to LaMIR166a overexpression in Larix kaempferi (Lamb.) Carr. Biology 2021, 10, 576. [Google Scholar] [CrossRef]
- Kang, Y.; Li, W.; Zhang, L.; Qi, L. Over-expression of the cell-cycle gene LaCDKB1;2 promotes cell proliferation and the formation of normal cotyledonary embryos during Larix kaempferi somatic embryogenesis. Genes 2021, 12, 1435. [Google Scholar] [CrossRef]
- Park, M.E.; Goryachkina, O.V.; Tretyakova, I.N.M.; Muratova, E.N. Cytogenetic characteristics of embryogenic cell lines of different ages obtained by somatic embryogenesis in Larix sibirica Ledeb. Contemp. Probl. Ecol. 2023, 16, 665–671. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Hargreaves, C.; Lelu-Walter, M.A.; Trontin, J.F. Advances in conifer somatic embryogenesis since year 2000. In In Vitro Embryogenesis in Higher Plants Methods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 131–166. [Google Scholar]
- Siddiqui, Z.H.; Abbas, Z.K.; Ansari, M.W.; Khan, M.N. The role of miRNA in somatic embryogenesis. Genomics 2019, 111, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, A.M. Research tools for the functional genomics of plant miRNAs during zygotic and somatic embryogenesis. Int. J. Mol. Sci. 2020, 21, 4969. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bian, L.; Shen, H.L.; Li, Y.H. Somatic embryogenesis and plantlet regeneration from mature zygotic embryos of Manchurian ash (Fraxinus mandshurica Rupr.). Plant Cell Tiss. Org. 2013, 115, 115–125. [Google Scholar] [CrossRef]
- Sumeera, S.; Ghori, N.; Hyat, F.; Li, Y.; Chen, C. Use of auxin and cytokinin for somatic embryogenesis in plant: A story from competence towards completion. Plant Growth Regul. 2023, 99, 413–428. [Google Scholar]
- Zhang, S.G.; Zhou, J.; Han, S.Y.; Yang, W.H.; Li, W.F.; Wei, H.L.; Li, X.M.; Qi, L.W. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem. Bioph. Res. Co. 2010, 398, 355–360. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, J.; Hu, J.; Ling, J. Mini review: Application of the somatic embryogenesis technique in conifer species. For. Res. 2022, 2, 18. [Google Scholar] [CrossRef]
- Long, J.M.; Liu, C.Y.; Feng, M.Q.; Liu, Y.; Wu, X.M.; Guo, W.W. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J. Exp. Bot. 2018, 69, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Yan, R.; Wang, C.; Sun, H. Functional characterization of the MiR171a promoter and endogenous target mimics identification in Lilium pumilum DC. Fisch. during somatic embryogenesis. Plant Cell Tiss. Org. 2021, 144, 345–357. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Wang, Z.; Li, X.; Sun, H. Evidence of the regulatory roles of candidate miRNAs during somatic embryogenesis in Lilium davidiivar.unicolor. J. Plant Growth Regul. 2021, 40, 197–214. [Google Scholar] [CrossRef]
- Feng, M.Q.; Nan, J.; Wang, P.B.; Liu, Y.; Xia, Q.M.; Jia, H.H.; Shi, Q.F.; Long, J.M.; Xiao, G.A.; Yin, Z.P.; et al. miR171-targeted SCARECROW-LIKE genes CsSCL2 and CsSCL3 regulate somatic embryogenesis in citrus. Plant Physiol. 2023, 192, 2838–2854. [Google Scholar] [CrossRef]
- Pysh, L.D.; Wysocka-Diller, J.W.; Camilleri, C.; Bouchez, D.; Benfey, P.N. The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 1999, 18, 111–119. [Google Scholar] [CrossRef]
- Llave, C.; Kasschau, K.D.; Rector, M.A.; Carrington, J.C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 2002, 14, 1605–1619. [Google Scholar] [CrossRef]
- Wang, L.; Mai, Y.X.; Zhang, Y.C.; Luo, Q.; Yang, H.Q. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol. Plant 2010, 3, 794–806. [Google Scholar] [CrossRef]
- Wu, X.M.; Kou, S.J.; Liu, Y.L.; Fang, Y.N.; Xu, Q.; Guo, W.W. Genomewide analysis of small RNAs in nonembryogenic and embryogenic tissues of citrus: microRNA- and siRNA-mediated transcript cleavage involved in somatic embryogenesis. Plant Biotechnol. J. 2015, 13, 383–394. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Yang, Y.; Jia, N.; Wang, C.; Sun, H. miR171 and its target gene SCL6 contribute to embryogenic callus induction and torpedo-shaped embryo formation during somatic embryogenesis in two lily species. Plant Cell Tiss. Org. 2017, 130, 591–600. [Google Scholar] [CrossRef]
- Shi, Q.F.; Long, J.M.; Yin, Z.P.; Jiang, N.; Feng, M.Q.; Zheng, B.; Guo, W.W.; Wu, X.M. miR171 modulates induction of somatic embryogenesis in citrus callus. Plant Cell Rep. 2022, 41, 1403–1415. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, A.; Han, H.; Li, T.; Geng, Y.; Liu, X.; Meyerowitz, E. HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem. Science 2018, 361, 502–506. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Engstrom, E.M.; Nimchuk, Z.L.; Pruneda-Paz, J.L.; Tarr, P.T.; Yan, A.; Kay, S.A.; Meyerowitz, E.M. Control of plant stem cell function by conserved interacting transcriptional regulators. Nature 2014, 517, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.Y.; Zhao, B.; Chao, L.M.; Chen, D.Y.; Cui, W.R.; Mao, Y.B.; Wang, L.J.; Chen, X.Y. Interaction between two timing microRNAs controls trichome distribution in Arabidopsis. PLoS Genet. 2014, 10, e1004266. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, M.; Wang, Y.; Lu, P.; Ge, W.; Zhang, K. Unraveling the molecular mechanisms by which the miR171b-SCL6 module regulates maturation in Lilium. Int. J. Mol. Sci. 2024, 25, 9156. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Cai, W.; Huang, W.; Zhou, X.; Luo, Q.; Yang, H.; Wang, J.; Huang, J. Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLoS Genet. 2014, 10, e1004519. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, C.; Wen, S.; Yang, N.; Tan, J.; Zhang, C.; Jiang, L.; Zheng, A.; Hu, X.; Lai, Z.; et al. csn-miR171b-3p_2 targets CsSCL6-4 to participate in the defense against drought stress in tea plant. Hortic. Plant J. 2024, in press. [Google Scholar] [CrossRef]
- Zang, Q.L.; Li, W.F.; Qi, L.W. Regulation of LaSCL6 expression by genomic structure, alternative splicing, and microRNA in Larix kaempferi. Tree Genet. Genomes 2019, 15, 57. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, M.; Zhang, R.; Xie, J.; Duan, X.; Shan, H.; Xu, G.; Kong, H. Identification of the target genes of AqAPETALA3-3 (AqAP3-3) in Aquilegia coerulea (Ranunculaceae) helps understand the molecular bases of the conserved and nonconserved features of petals. New Phytol. 2020, 227, 1235–1248. [Google Scholar] [CrossRef]
- Sadovsky, M.; Putintseva, Y.; Birukov, V.; Novikova, S.; Konstantin, K. De Novo Assembly and Cluster Analysis of Siberian Larch Transcriptome and Genome; Springer International Publishing: Cham, Switzerland, 2016; pp. 455–464. [Google Scholar]
- Sun, C.; Xie, Y.H.; Li, Z.; Liu, Y.J.; Sun, X.M.; Li, J.J.; Quan, W.P.; Zeng, Q.Y.; Van de Peer, Y.; Zhang, S.G. The Larix kaempferi genome reveals new insights into wood properties. J. Integr. Plant Biol. 2022, 64, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, S.; Han, S.; Wu, T.; Li, X.; Li, W.; Qi, L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 2012, 236, 647–657. [Google Scholar] [CrossRef]
- Li, W.F.; Zhang, S.G.; Han, S.Y.; Wu, T.; Zhang, J.H.; Qi, L.W. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr. Tree Genet. Genomes 2014, 10, 223–229. [Google Scholar] [CrossRef]
- Li, A.; Yu, X.; Cao, B.B.; Peng, L.X.; Gao, Y.; Feng, T.; Li, H.; Ren, Z.Y. LkAP2L2, an AP2/ERF transcription factor gene of Larix kaempferi, with pleiotropic roles in plant branch and seed development. Russ. J. Genet. 2017, 53, 1335–1342. [Google Scholar] [CrossRef]
- Ahrazem, O.; Rubio-Moraga, A.; Trapero-Mozos, A.; Climent, M.F.L.; Gómez-Cadenas, A.; Gómez-Gómez, L. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Sci. 2015, 234, 60–73. [Google Scholar] [CrossRef]
- Hou, X.; Tong, H.; Selby, J.; Dewitt, J.; Peng, X.; He, Z.H. Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol. 2005, 139, 1704–1716. [Google Scholar] [CrossRef]
- Christ, B.; Sussenbacher, I.; Moser, S.; Bichsel, N.; Egert, A.; Muller, T.; Krautler, B.; Hortensteiner, S. Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 2013, 25, 1868–1880. [Google Scholar] [CrossRef] [PubMed]
- Mach, J. Chlorophyll breakdown branches out: Identification of a major catabolic route involving cytochrome P450 CYP89A9. Plant Cell 2013, 25, 1486. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.H.; Ma, X.M.; Kojima, M.; Sakakibara, H.; Wang, Y.W.; Hou, B.K. Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 2013, 237, 991–999. [Google Scholar] [CrossRef]
- Sun, Y.G.; Wang, B.; Jin, S.H.; Qu, X.X.; Li, Y.J.; Hou, B.K. Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS ONE 2013, 8, e59924. [Google Scholar] [CrossRef]
- Zang, Q.L.; Li, X.Y.; Qi, L.W.; Li, W.F. Identification and characterization of LaSCL6 alleles in Larix kaempferi (Lamb.) Carr. based on analysis of simple sequence repeats and allelic expression. Forests 2020, 11, 1296. [Google Scholar] [CrossRef]
- Zang, Q.L.; Zhang, Y.; Han, S.Y.; Li, W.F.; Qi, L.W. Transcriptional and post-transcriptional regulation of the miR171-LaSCL6 module during somatic embryogenesis in Larix kaempferi. Trees 2021, 35, 145–154. [Google Scholar] [CrossRef]
- Xing, J.X.; Zang, Q.L.; Ye, Z.L.; Qi, L.W.; Yang, L.; Li, W.F. Overexpression of larch SCL6 inhibits transitions from vegetative meristem to inflorescence and flower meristem in Arabidopsis thaliana (L.) Heynh. Plants 2024, 13, 1232. [Google Scholar] [CrossRef]
- Roy, M.; Wu, R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 2001, 160, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Tian, F.; Yang, D.C.; Meng, Y.Q.; Jin, J.; Gao, G. PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Res. 2020, 48, D1104–D1113. [Google Scholar] [CrossRef]
- Shcherbo, D.; Murphy, C.S.; Ermakova, G.V.; Solovieva, E.A.; Chepurnykh, T.V.; Shcheglov, A.S.; Verkhusha, V.V.; Pletnev, V.Z.; Hazelwood, K.L.; Roche, P.M.; et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 2009, 418, 567–574. [Google Scholar] [CrossRef]
- Cheong, Y.H.; Moon, B.C.; Kim, J.K.; Kim, C.Y.; Kim, M.C.; Kim, I.H.; Park, C.Y.; Kim, J.C.; Park, B.O.; Koo, S.C.; et al. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol. 2003, 132, 1961–1972. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Q.-L.; Ye, Z.-L.; Qi, L.-W.; Li, W.-F. Identification of Target Gene and Interacting Protein of Two LaSCL6 Alternative Splicing Variants Provides Novel Insights into Larch Somatic Embryogenesis. Plants 2024, 13, 3072. https://doi.org/10.3390/plants13213072
Zang Q-L, Ye Z-L, Qi L-W, Li W-F. Identification of Target Gene and Interacting Protein of Two LaSCL6 Alternative Splicing Variants Provides Novel Insights into Larch Somatic Embryogenesis. Plants. 2024; 13(21):3072. https://doi.org/10.3390/plants13213072
Chicago/Turabian StyleZang, Qiao-Lu, Zha-Long Ye, Li-Wang Qi, and Wan-Feng Li. 2024. "Identification of Target Gene and Interacting Protein of Two LaSCL6 Alternative Splicing Variants Provides Novel Insights into Larch Somatic Embryogenesis" Plants 13, no. 21: 3072. https://doi.org/10.3390/plants13213072
APA StyleZang, Q. -L., Ye, Z. -L., Qi, L. -W., & Li, W. -F. (2024). Identification of Target Gene and Interacting Protein of Two LaSCL6 Alternative Splicing Variants Provides Novel Insights into Larch Somatic Embryogenesis. Plants, 13(21), 3072. https://doi.org/10.3390/plants13213072