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Abstract: Spectral imaging technique has been widely applied in plant phenotype analysis to improve
plant trait selection and genetic advantages. The latest developments and applications of various op-
tical imaging techniques in plant phenotypes were reviewed, and their advantages and applicability
were compared. X-ray computed tomography (X-ray CT) and light detection and ranging (LiDAR) are
more suitable for the three-dimensional reconstruction of plant surfaces, tissues, and organs. Chloro-
phyll fluorescence imaging (ChlF) and thermal imaging (TI) can be used to measure the physiological
phenotype characteristics of plants. Specific symptoms caused by nutrient deficiency can be detected
by hyperspectral and multispectral imaging, LiDAR, and ChlF. Future plant phenotype research
based on spectral imaging can be more closely integrated with plant physiological processes. It can
more effectively support the research in related disciplines, such as metabolomics and genomics, and
focus on micro-scale activities, such as oxygen transport and intercellular chlorophyll transmission.
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1. Introduction

Plant phenotype is the quantitative description of the individual development, phys-
iological characteristics, and biochemical characteristics of plants. The acquisition and
analysis of plant phenotype data are important in irrigation management, disease preven-
tion and control, breeding research, and yield increases [1]. High-throughput and precise
phenotype acquisition greatly promote the screening of breeding materials and significantly
improve breeding efficiency. There are significant differences in plant phenotypes, such as
morphology, physiology, and biochemistry, between different plants at different growth
stages. Moreover, the growth environment of plants under natural conditions is complex
and poses significant challenges to plant phenotype analysis. Traditional plant phenotype
observation is mainly conducted through the manual measurement of various phenotypic
parameters and has the drawbacks of being time-consuming and labor-intensive and having
large errors and strong subjectivity [2]. Rapid, batch, and repeatable measurements of plant
phenotypes have become bottlenecks in the fields of breeding and precision cultivation.

Spectral imaging technique, which has the advantages of being non-destructive, high-
throughput, reliable, and capable of real-time operation and repeatable measurement, has
good potential in plant phenotype analysis. It is widely used in precision agriculture and
breeding [3]. A variety of spectral sensors have been developed and applied in plant
phenotype analysis and trait observation [4]. In this field, vegetation indices (VIs) [5],
remote sensing [6], unmanned aerial vehicles (UAVs) [7], high-throughput plant phenotype
platforms (HTPPs) [8], and machine learning [9] are currently research hotspots [10].

Previous studies have discussed the application of certain spectral imaging techniques
in plant phenotypes, such as UAV [7], near-infrared (NIR) [11], remote sensing [9], and
LiDAR [12], as well as their application in certain plants or certain phenotypes, such as
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grains [13], fruits [14], and drought stress [3]. The phenotype analysis plan in different
scales or spectral imaging techniques is worth learning. This article reviews the research
progress in plant phenotypes based on the spectral technique in Web of Science, which
systematically compiles the application of spectral imaging in plant phenotype analysis on
different scales based on natural light spectral bands. This will provide a basic and detailed
reference and inspiration for future research.

2. Spectral Imaging

Spectral features are observable changes in phenotypic images caused by electro-
magnetic features of one or more pixels. This is caused by the emission or absorption of
photons, whose energy corresponds to the difference between the initial and final states
of the transition. Spectral features can indicate regions of interest, such as diseases or
abiotic/biotic stresses [15]. Although the photosynthetically active radiation of plants
covers only a 400–700 nm spectral range, however, plants can interact with light in the
350–2500 nm spectral range [8]. From short to long, the spectral bands can be divided into
the following types based on wavelength: gamma-ray, X-ray, ultraviolet (UV), visible light
(VL), infrared, microwave, and radio. The infrared is usually divided into four zones: NIR,
short-wave infrared (SWIR), middle-wave infrared, and long-wave infrared.

According to the frequency or wavelength used, electromagnetic waves can be re-
flected, absorbed, or transmitted through materials, which provides many potential quanti-
tative quality characteristics. This non-destructive analysis technique uses the resolution
of sensors and the mathematical econometric models [16]. Consequently, an array of
optical sensors and sensing methods have been developed based on different electromag-
netic responses at different wavelengths [4]. As represented in Figure 1, according to the
order of spectral wavelengths from short to long, spectral imaging mainly includes the
following types:

• Positron emission tomography (PET). This labels certain essential substances in plant
metabolism (e.g., glucose, protein, and nucleic acid) with short-lived radioactive iso-
topes and reflects crop metabolic activity through the aggregation of these substances
in metabolism activity [17].

• X-ray computed tomography (X-ray CT). This has a wavelength range of 10 pm–10 nm.
It is used to detect the differences in energy absorption before and after scanning from
different angles to visualize the external and internal three-dimensional (3D) structures
of plants [18].

• Hyperspectral imaging (HSI). This has a wavelength range of 200–2500 nm. It is
used to detect the two-dimensional geometric space and the one-dimensional spectral
information of targets. It is based on a wide range of narrow-band image data and
continuous and narrow-band image data with high spectral resolution [15].

• Multispectral imaging (MSI). This has a wavelength range of 200–2500 nm. It contains
many discrete spectral bands that typically range from three to hundreds or a set of
customized wavelength bands [10].

• Raman mapping (Raman). This has a wavelength range of 285–50000 nm. It is a
scattering spectrum used to analyze the molecular structure and chemical composition
of substances based on the Raman scattering effect [19].

• Visible imaging (VI). This has a wavelength range of 380–780 nm. It creates an RGB
color image with three channels: red, green, and blue [20].

• Chlorophyll fluorescence imaging (ChlF). Although Chl fluorescence is emitted at
around 600–750 nm, it can be excited in the 400 to 720–730 nm range. ChlF maps the
emitted chlorophyll fluorescence signal to the sample space based on a pixel used
to estimate photosynthetic performance and detect the effects of various stresses on
plants [21].

• Light detection and ranging (LiDAR). This uses sensors to send light pulses to objects
and receives reflected pulses from objects, and measures the distance between the
object and the sensor based on the time required between transmission and reception.
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It can obtain parameters such as distance, orientation, altitude, velocity, attitude, and
even the shape of the target [22].

• Near-infrared imaging (NIRI). This has a wavelength range of 780–1300 nm. It mainly
records the infrared radiation reflected by objects [11].

• Thermal imaging (TI). This has a wavelength range of 1000–14,000 nm. The infrared
radiation energy distribution pattern of the object being tested is received, and the
obtained infrared thermal image is formed, which corresponds to the thermal distribu-
tion field on the surface of the object [23].

• Magnetic resonance imaging (MRI). This has a wavelength range of 1 mm–1 dm. The
electromagnetic waves emitted by an object are detected by applying an external
gradient magnetic field. The position and type of atomic nucleus of the object are
detected, and an internal structure image is drawn [24].
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There are slight differences in spectral band division among the different imaging
methods in different research fields. There may also be intersections between different
spectral bands; for example, MSI and HSI have covered VI, NIR, and SWIR.

3. Spectral Imaging Application in Plant Phenotypes

In this study, plants refer to the objects involved in agricultural production, such as
grain crops, economic crops, feed crops, and green manure crops. Phenotype refers to
external traits, such as shape, structure, size, and color, which are determined by genes, the
environment, and related physiological and biochemical characteristics. Plant phenotype
analysis is the study of various phenotypic information related to plant growth in complex
environments, and it determines the structure, performance, and tolerance to limitations
of individual plants or plant groups [15]. Plant phenotypes can be divided into four
types: morphological phenotype, physiological phenotype, biochemical phenotype, and
performance trait phenotype (Table 1).
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Table 1. Main characteristics of plant phenotype monitoring by spectral technique.

Research
Object Phenotypic Characteristics Imaging Techniques References

Morphological
Phenotype

Seed size, shape, quantity,
incompleteness

HSI, MSI, RGB, PET,
MRI, X-ray CT

soybeans [16], rice [25],
hazelnut [26], pepper seed [27],
hybrid okra seed [28], chickpea

[29]

Fruit/Ear

size, shape, quantity, color, ear
length, ear thickness,

symmetry, incompleteness,
maturity

HSI, MSI, RGB, PET,
X-ray CT

apple [30], sorghum panicle
[31], kiwifruit [32], tomato [33],

litchi [34], grape [35]

Leaves
leaf area, length, width,

number, inclination angle,
color, veins, texture, symmetry

HSI, MSI, RGB, PET
leaves [36], grape [37], mango
[38], sweet potato [39], tomato

[40]

Flower quantity, color, number of
petals, degree of openness HSI, MSI, RGB

cool-season crops [41], apple
[42], coffee [43], strawberry

[44], flower [45]

Root root morphology, tuberous
roots, lesions, defects MRI, X-ray CT potato [46], carrot [47], root

[48], sorghum [49]

Plant

plant height, stem thickness,
leaves number, leaf area ratio,
canopy coverage, stem length,

plant spacing

HSI, MSI, RGB, LiDAR
maize [50], tree seedling [51],
rice seedling [52], lettuce [53],

oilseed [54], banana [55]

Canopy
biomass, canopy coverage,
coverage rate, average leaf
angle, 3D spatial structure

HSI, MSI, RGB, LiDAR
tomato [56], vegetables [57], oil

palm tree [58], rice [59],
blueberries [60], corn [61]

Physiological
Phenotype

Plant

leaf texture, leaf surface
temperature, photosynthetic
capacity, seed hardness, fruit

hardness, canopy temperature,
texture, density

HSI, MSI, RGB, TI, MRI,
X-ray CT

tomato [62], cotton [63], lettuce
[64], cucumber [19]

Biological Stress
disease stress, disease spots,
disease severity, pest stress,

weed stress

HSI, MSI, RGB, NIRI,
MRI, X-ray CT

mango [38], weed [65–68],
grape [69], wheat [70], oats

[71], plants [72]

Abiotic Stress
drought stress,

high/low-temperature stress,
salt stress, nutritional stress

HSI, MSI, ChlF, NIRI,
TI, PET, MRI, X-ray CT

common bean [21],
watermelon [73], tomato [74],

basil [75], grape [76]

Biochemical
Phenotype Plant

protein, carbohydrates,
nitrogen content, carotenoids,

fatty acids, chlorophyll content,
water content, anthocyanins,

starch, sugar

HSI, MSI, RGB, ChlF,
NIRI, Raman

sorghum [77], sugar beet [78],
corn [79]

Performance
Phenotype Plant yield, quality, biomass, fresh

weight, dry weight HSI, MSI, RGB, NIRI
guinea grass [80], kiwifruit

[81], corn [61,82], wheat [83],
soybean [84]

The scattering and reflection, transmission, and absorption of photons are caused by
the interaction between light and plant tissues involved in the propagation of light in plants.
The spectral technique has been widely used in the phenotype analysis of crops, and sensors
with different characteristics have different specific applications in agriculture [58,85–87].
Spectral data collection relies heavily on these sensors and affects the final phenotype
results [88]. Different spectral imaging techniques can monitor changes in substances on
different scales. PET and X-ray CT are used to detect the energy released by electron
transitions in the inner shells of atoms. RGB and ChlF capture the energy changes caused
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by atomic valence electron transitions. HSI and MSI respond to energy changes caused
by atomic electron and molecular vibrational transitions. TI, Raman, and MRI respond
to molecular vibrational transitions. LiDAR generates precise 3D shapes by measuring
variable distances (ranges) using laser pulses. NMR collects only spatial information,
while infrared and Raman collect only spectral information [13]. The following system
summarizes the application of spectral imaging techniques to plant phenotypes.

3.1. Morphological Phenotype

The morphological phenotype is the most widely used in phenotype analysis because
it is the basis for plant selection in breeding programs. Related research has covered
almost all plant species. Its common research objects include seeds, fruits, leaves, flowers,
plants, and canopies. Their common characteristics are shown in Table 1. Some unique
morphological characteristics of specific crops have been proposed, such as the tiller number
and main stem number for gramine crops [89,90], the sword leaf length and width for rice,
and the number of grains and pods per plant for soybeans [91]. With the deepening and
refinement of phenotype research, more unique phenotypic features will be proposed in
the future. As represented in Figure 2, many spectral imaging techniques can be used to
extract morphological traits.

Plants 2024, 13, x FOR PEER REVIEW 5 of 20 
 

 

and sensors with different characteristics have different specific applications in agricul-
ture [58,85–87]. Spectral data collection relies heavily on these sensors and affects the final 
phenotype results [88]. Different spectral imaging techniques can monitor changes in sub-
stances on different scales. PET and X-ray CT are used to detect the energy released by 
electron transitions in the inner shells of atoms. RGB and ChlF capture the energy changes 
caused by atomic valence electron transitions. HSI and MSI respond to energy changes 
caused by atomic electron and molecular vibrational transitions. TI, Raman, and MRI re-
spond to molecular vibrational transitions. LiDAR generates precise 3D shapes by meas-
uring variable distances (ranges) using laser pulses. NMR collects only spatial infor-
mation, while infrared and Raman collect only spectral information [13]. The following 
system summarizes the application of spectral imaging techniques to plant phenotypes. 

3.1. Morphological Phenotype 
The morphological phenotype is the most widely used in phenotype analysis because 

it is the basis for plant selection in breeding programs. Related research has covered al-
most all plant species. Its common research objects include seeds, fruits, leaves, flowers, 
plants, and canopies. Their common characteristics are shown in Table 1. Some unique 
morphological characteristics of specific crops have been proposed, such as the tiller num-
ber and main stem number for gramine crops [89,90], the sword leaf length and width for 
rice, and the number of grains and pods per plant for soybeans [91]. With the deepening 
and refinement of phenotype research, more unique phenotypic features will be proposed 
in the future. As represented in Figure 2, many spectral imaging techniques can be used 
to extract morphological traits. 

 
Figure 2. Application of spectral imaging in morphological phenotypes of plants. 

HSI and MSI provide various types of spectral information related to plant physio-
logical and biochemical properties, which can reflect the interaction between light, crops, 
and their biochemical components from cellular to landscape scales. MSI is considered a 
type of HSI. HSI and MSI can be used to detect and identify the leaf area index (LAI), 
diseases, and pests [69], as well as to classify plants, fruits, and seeds. Multi-temporal MSI 

Figure 2. Application of spectral imaging in morphological phenotypes of plants.

HSI and MSI provide various types of spectral information related to plant physiologi-
cal and biochemical properties, which can reflect the interaction between light, crops, and
their biochemical components from cellular to landscape scales. MSI is considered a type
of HSI. HSI and MSI can be used to detect and identify the leaf area index (LAI), diseases,
and pests [69], as well as to classify plants, fruits, and seeds. Multi-temporal MSI based
on UAV is used for detecting banana plants and individual plant counting [55]. MSI and
HSI passive sensing are used to assess early plant vigor in winter wheat, and dry weight,
nitrogen uptake, and nitrogen content are tested based on canopy cover images [89]. MSI
is also used for the phenotypic analysis of ornamental greening plants’ leaf color changes
and genetic analyses [92].
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The RGB image is the most common form of VI. The combination of RGB images and
a deep learning convolutional neural network (CNN) can achieve plant classification, fruit
detection [32], and image segmentation [93]. It is widely used for variety classification and
identification, weed and canopy segmentation [94], defect and germination detection, and
growth stage and maturity evaluation [85,95]. RGB combined with CNN is used for apple
3D detection and location in orchards, and it has an F1-score of 0.881 [30]. It can also be used
to obtain morphological parameters, such as color [79], LAI [78], canopy area, and other
geometric attributes, and to detect plant leaves, tree crowns, and fruits. With the use of
RGB imagery, an attention-based recurrent CNN has been proposed for accurate vegetable
mapping from multi-temporal UAVs, and it has an overall accuracy of 92.80% [57].

LiDAR is a laser active sensing technique based on the time-of-flight principle, which
generates high-density 3D point clouds through photon counting [12]. It can obtain the
horizontal and vertical spatial structural characteristics of plants, as well as the plant
height, biomass, and 3D distribution of the canopy. Plant growth and development can
be examined by plant size and morphology. LiDAR can generate 3D points along the
laser path to reveal some information below the canopy, which provides unique structural
features for classifying crops at the canopy or patch level. LiDAR can be used for the
construction of canopy 3D point cloud [22], extraction of plant height, biomass, size, and
shape of various crops [96], assessment of plant growth and development, description of
crop structure, shape, light interception [97], and response to irrigation [98], and detection
of male spikes and lodging.

MRI captures and depicts detailed 3D images of anatomical structures by detecting
the energy released when protons align with magnetic fields. MRI can provide spatial
information for nuclear examination. It can visualize the structural and dimensional
characteristics of the maize stem vascular system [99]. MRI can be used for examining
the internal and anatomical characteristics of seeds, roots [100], internal damage to fruits,
embryos, and endosperms, and for assessing crop quality and phenotype. It can also obtain
3D plant structures [101] and use them for seed growth in soil, and provide detailed images
of plant and root structures [24]. MRI is also used for the early detection of verticillium wilt
based on cotton roots [102].

X-ray CT can obtain detailed 3D structural information inside objects and is an ex-
cellent tool for 3D imaging and the quantitative analysis of plant tissues and organs [18].
Due to the density dependence of X-ray attenuation, it is particularly suitable for plant
imaging, as the space between cells is ubiquitous in many plant organs [103]. X-ray CT can
be used for extracting crop morphological traits, such as tillering, spike length, leaf veins,
and intercellular spaces [18]; inspecting the internal and anatomical characteristics of fruits
and seeds [104]; assessing the quality, maturity, and phenotype of fruits and seeds [105,106];
and for the 3D reconstruction of root systems [103].

3.2. Physiological Phenotype

The physiological phenotype is related to the physical state and function of plants,
including their growth rate, reproductive ability, and stress resistance. These traits are
usually examined with biochemical traits to elucidate the functions of cells, tissues, and
organs. The basic principle of plant physiological phenotype analysis based on spectral
technique is shown in Figure 3. Physiological traits are influenced by various factors,
including temperature, light, moisture, and nutrition. Spectral imaging, combined with
advanced machine learning (ML), has become the ideal tool for high-throughput crop
physiological phenotype analysis [15]. Because physiological traits involve the functions
of various parts of plants under specific environmental conditions, they are important in
stress responses.

HSI and MSI can simultaneously measure the spectral characteristics of a wide range of
continuous bands, which are usually used to explain the structural, chemical, and physical
properties of plants. It has stronger phenotypic detection capabilities and can reflect plant
performance and interactions with the environment in more detail [63]. Especially in
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the early stages of biotic or abiotic stress in plants, the naked eye or visible light cannot
recognize the stress, while HSI and MSI can detect it [107]. Therefore, they have significant
advantages in the early identification and monitoring of plant diseases and pests, as well
as in stress response evaluation [69]. HSI can also be used for the identification of haploid
polyploids and the prediction of seed and germination abilities [28]. MSI is widely applied
in seed phenotyping and quality monitoring, such as physicochemical quality traits, defect
detection, pest infestation, and seed health [16].

Plants 2024, 13, x FOR PEER REVIEW 7 of 20 
 

 

iological phenotype analysis [15]. Because physiological traits involve the functions of var-
ious parts of plants under specific environmental conditions, they are important in stress 
responses. 

 
Figure 3. Application of spectral imaging in physiological phenotypes of plants. 

HSI and MSI can simultaneously measure the spectral characteristics of a wide range 
of continuous bands, which are usually used to explain the structural, chemical, and phys-
ical properties of plants. It has stronger phenotypic detection capabilities and can reflect 
plant performance and interactions with the environment in more detail [63]. Especially 
in the early stages of biotic or abiotic stress in plants, the naked eye or visible light cannot 
recognize the stress, while HSI and MSI can detect it [107]. Therefore, they have significant 
advantages in the early identification and monitoring of plant diseases and pests, as well 
as in stress response evaluation [69]. HSI can also be used for the identification of haploid 
polyploids and the prediction of seed and germination abilities [28]. MSI is widely applied 
in seed phenotyping and quality monitoring, such as physicochemical quality traits, de-
fect detection, pest infestation, and seed health [16]. 

NIRI uses an electromagnetic wave located between VL and mid-infrared light and 
is widely used for the real-time physical and chemical analyses of plants [11]. NIRI uses 
infrared wavelengths that penetrate deeper than other instruments of the same wave-
length, making it highly sensitive in identifying the presence of water, water stress, and 
the cellular physical structure. It can measure the function of swollen cell structures and 
perform the phenotypic analysis of roots in the dark. NIRI can be used to measure plant 
water distribution and drought stress, external defect detection [108], and quality control 
[109]. NIRI is also used to monitor invasive insect pests (e.g., brown marmorated stink 
bugs) on different vegetal backgrounds [72]. 

TI measures the surface temperature of plants by detecting their infrared radiation 
and can generate analysis data based on time series or single time points. As it can monitor 
subtle changes in plant canopy temperature at different growth stages and its response to 
the environment, it is used to select genes and assist in breeding by comparing the differ-
ences in leaf or canopy temperatures. TI is mainly used for estimating plant drought stress 
and transpiration [23] and moisture condition index calculation, including the crop water 
stress index (CWSI) and stomatal conductance indices [107]. It is also used for the quanti-
fication of crop osmotic stress response to salinity and the detection and monitoring of 

Figure 3. Application of spectral imaging in physiological phenotypes of plants.

NIRI uses an electromagnetic wave located between VL and mid-infrared light and
is widely used for the real-time physical and chemical analyses of plants [11]. NIRI uses
infrared wavelengths that penetrate deeper than other instruments of the same wavelength,
making it highly sensitive in identifying the presence of water, water stress, and the cellular
physical structure. It can measure the function of swollen cell structures and perform
the phenotypic analysis of roots in the dark. NIRI can be used to measure plant water
distribution and drought stress, external defect detection [108], and quality control [109].
NIRI is also used to monitor invasive insect pests (e.g., brown marmorated stink bugs) on
different vegetal backgrounds [72].

TI measures the surface temperature of plants by detecting their infrared radiation
and can generate analysis data based on time series or single time points. As it can monitor
subtle changes in plant canopy temperature at different growth stages and its response
to the environment, it is used to select genes and assist in breeding by comparing the
differences in leaf or canopy temperatures. TI is mainly used for estimating plant drought
stress and transpiration [23] and moisture condition index calculation, including the crop
water stress index (CWSI) and stomatal conductance indices [107]. It is also used for the
quantification of crop osmotic stress response to salinity and the detection and monitoring
of diseases and pathogen infections [110]. TI can assess the water status of a wide range of
individuals and is used to test the water stress of apples [111].

ChlF can reflect the spatial and temporal heterogeneity of fluorescence spectra on
multiple scales, such as cells, leaves, and plants, thus making it the most accurate and
appropriate method for screening the effects of environmental stress on plants. It can
monitor plant metabolic information, detect plant diseases, and invert chlorophyll and
nitrogen content, nitrogen–carbon ratio, and LAI. Non-modulated ChlF can explore in
depth the intrinsic photosynthetic physiological information of plants. ChlF is mainly
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used for detecting biological or abiotic stresses related to photosynthesis [75] and for
analyzing the nutritional and physiological status of plants [112], such as photosynthetic
capacity, non-photochemical quenching, and other physiological characteristics. It obtains
the photosynthetic activity of crops in real time. ChlF and MSI are used to monitor the
drought stress of common beans [21].

PET is a nuclear imaging technique that can generate 3D images or images of functional
processes [17]. It can perform non-invasive imaging of the distribution of biomarkers,
evaluate processes at the molecular and cellular levels, detect plant stress [113], and provide
quantitative data in a non-destructive and dynamic manner [114]. A novel design of
dedicated plant PET scanners specifically developed to address agronomic issues has been
proposed [17].

Other spectroscopic techniques also have many applications. RGB is mainly used for
pests and disease detection and identification, as well as quality evaluation and grading [26].
MRI is mainly used for detecting plants’ germination ability, dormancy, survival, vitality,
and pest infestation [100], as well as the water status and transportation in plant cells [99].
X-ray CT is mainly used for quantifying the degree of drought or salt stress and detecting
germination ability, dormancy, survival, vitality, and pest infestation [115,116].

3.3. Biochemical Phenotype

The biochemical phenotype characterizes the presence, composition, and quantity
of specific chemical and biochemical markers under steady-state conditions. These traits
are related to various aspects of biological processes, such as leaf nitrogen, protein, car-
bohydrates, carotenoids, fatty acids, and chlorophyll content involved in photosynthesis,
metabolism, and hydraulics (Figure 4). Photosynthetic pigments are important indicators
of plants’ photosynthesis. Chlorophyll [64] and carotenoids can be evaluated for pho-
tosynthetic pigments at the leaf and canopy levels using RGB, HSI, ChlF, and NIR. The
use of spectroscopic techniques to observe and identify targeted biochemical markers has
promoted various omics and breeding research. Early and long-term nutrient deficiencies,
such as nitrogen, phosphorus, potassium, magnesium, and iron, can be monitored using
ChlF and MSI.
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HSI and MSI are usually divided into three regions: the VIS region shows strong
absorption of photosynthetic pigments, lutein, chlorophyll, and carotenoids; the VIS-SWIR
region can extract information on general nutrients, such as protein, nitrogen, and sugar;
the NIR and SWIR regions are sensitive to water and nitrogen content; and the SWIR area
quantifies plant characteristics, such as phosphorus, hemicellulose, protein, and mineral
content. HSI can compare the changes in special substances in plant bodies and show the
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reflectance of leaf sponge tissue, leaf biochemical components, and the main vegetation
index of the canopy. HSI and MSI can be used to examine water content, plant nutrients,
canopy chlorophyll content, nitrogen content, many VIs, and other biochemical parameters.
HSI is used to characterize cotton photosynthesis at the canopy level, with a suitable spatial
resolution and scanning throughput at the canopy and sub-canopy levels [63]. HSI and RGB
images are used for the high-throughput analysis of leaf chlorophyll content in hydroponic
lettuce [64].

NIRI relies on the absorption of NIR radiation by components, such as proteins, lipids,
carbohydrates, and water, which can generate unique spectral patterns. It can detect
related energy absorption and the molecular vibrations of the combination of the C-H,
N-H, and O-H functional groups [16]. NIRI can be used for non-destructive testing and
variety identification of agricultural products [108,117] and has been used to detect and
visualize the distribution of sugar content in agricultural products in over 1,000 packaging
factories in Japan. NIRI is also used for evaluating fruit maturity and hardness, quality and
nutritional analysis, and the detection of survival and vitality.

ChlF comes with a standard filter wheel that can achieve multispectral fluorescence
imaging. Fluorescence imaging is mainly used to measure the optical properties of chloro-
phyll. ChlF is commonly applied to assess the spatial patterns, photosynthesis, and
metabolic status of crops. It can effectively inverse chlorophyll, nitrogen content, and
nitrogen carbon ratio, detect plant metabolic information and diseases, and analyze the
vertical heterogeneity of canopy biochemical parameters [118]. Chlf and HSI are used to
determine shikimic acid concentrations in transgenic maize exhibiting glyphosate tolerance,
which provides a new data-driven method.

Raman is a scattering spectrum that exposes a sample to the spectrum and measures
the degree of light scattering caused by molecular bond vibrational transitions. It is
commonly used in molecular structure research. As a non-invasive technique, it is popularly
used in biochemical and structural analyses, which provide insights into the structure,
concentration, and interaction of biochemical molecules within an organism’s cells and
tissues [119,120]. Raman is mainly used for the analysis of plant biochemistry and structure;
the detection of biochemical molecules, cells, and tissues [121]; the assessment of plants’
nutritional content [122]; and disease detection [123,124].

3.4. Performance Phenotype

The performance phenotype describes the overall performance of crops in terms of
biomass, yield, and quality, and it is the most complex but interesting trait for crop breeders.
The basic principle of plant performance phenotype analysis based on spectral technique
is shown in Figure 5. Its common parameters include harvest index, number of grains
per spike, thousand-grain weight, number of grains per plant, hundred-grain weight,
number of spikes per mu, and theoretical yield. Although the feasibility and accuracy of
the performance phenotype have been proven, its stability and repeatability cannot be
strictly guaranteed. Due to complex factors, such as genotype, environmental factors, and
agronomic practices, performance phenotype is influenced by a combination of factors.

HSI and MSI can be used for biomass and yield prediction and growth stage and
maturity evaluation. HSI is used to train a CNN classification model to estimate corn grain
yield, with a classification accuracy of 75.50% at five corn growth stages [61]. RGB and depth
images are used to estimate various growth indices of four varieties of greenhouse lettuce,
and the normalized root mean square error of fresh weight is 6.09% [85]. Researchers [80]
have proposed a CNN approach using UAV-RGB imaging to estimate dry matter yield
traits in a guinea grass breeding program.

Other spectral imaging techniques can be applied to crop phenotype research, such
as synthetic aperture radar (SAR) and laser backscatter imaging (LLBI). SAR can work in
weather conditions with very low visibility (e.g., cloud cover). It has been widely explored
in crop classification, crop growth monitoring, and soil moisture monitoring [125]. LLBI
is a low-cost imaging technique that utilizes the principles of light absorption, scattering,
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and image processing in visible and NIR electromagnetic spectra to detect and analyze
targets [126].
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4. Comparative Analysis of Spectral Imaging
4.1. Spectral Imaging Comparison

Different spectral imaging techniques are suitable for different crop phenotype analysis
tasks, as shown in Figure 6. X-ray CT and LiDAR can measure the 3D morphological
features of crops, and they are appropriate for the 3D representation of crop surfaces,
tissues, and organs. Specific symptoms caused by plant nutrient deficiency can be easily
detected using HSI, MSI, LiDAR, and ChlF measurements. HSI, IR, and Raman provide
multi-component information that can overcome the low sensitivity. In addition, HSI and
Raman are highly sensitive to the detection of trace components. ChlF surpasses HSI in
characterizing photosynthetic activity on the micro-scale. Table 2 compares the different
imaging techniques.

Table 2. Comparison of different spectral imaging techniques.

Techniques Advantages Disadvantages

HSI, MSI

non-invasive, fast, and high-throughput;
MSI provides higher spatial resolution
than HSI; capture stress signals before

visible

high cost and heavy weight compared to RGB sensors;
high data dimension requires greater computing power,

time, and resources; unsuitable for online
applications [95]; limitations on plant research at

small-scale or patch level [127]; higher challenges for
data mining and machine learning

RGB

qualitative, reliable, inexpensive,
convenient, and wild used; advantages in

spatial resolution, signal-to-noise ratio,
throughput, and repeatability

limited image accuracy due to inherent size distortion
between 2D planes and 3D plants; only obtain surface
features due to inability to penetrate the crop canopy;

unsuitable complex environments with variable lighting,
observation angles, object directions, and various

occlusion [9]

NIRI

penetrates deeper than other instruments
of the same wavelength; highly sensitive

in identifying water’s presence, water
stress, and cellular physical structure

unable to provide reliable data on plant chemical
composition; relatively large relative error due to the
interference between adjacent peaks in the spectrum;

dependent on mathematical model to conduct analysis;
sensitive to temperature and humidity

TI

monitors plant stress responses simpler
and cheaper; higher spatial resolution,

targeting, and sensitivity to certain
environmental factors in a constantly

changing environment

only obtains features related to surface temperature;
relatively poor spatial resolution and repeatability;

higher cost and more difficult to deploy compared with
infrared thermometers; very limited effectiveness in

small temperature differences [76]; easy to be disturbed
for soil, air, and canopy temperature
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Table 2. Cont.

Techniques Advantages Disadvantages

LiDAR

durability, high accuracy, data resolution,
and reading speed, and sensitivity to
small distance changes; suitable for
various lighting conditions, such as
nighttime and field measurements

high cost, large data volume, and narrow band;
unsuitable for complex leaf angles and flat canopy;

time-consuming and large computational load for 3D
point cloud generation; scanning noise was easily
generated due to wind and rain interference; low

accuracy in large-scale phenotype analysis; difficult
analysis

ChlF

change in ChlF can occur before most
other signs of stress; fast, non-invasive,
easy-to-operate, low-cost, and highly

sensitive; short measurement time, large
measurement area, and high flux

vulnerable to interference from uneven lighting, wind,
and rain; unable to distinguish potential causes of the
stress; difficult to distinguish temperature signals and

light signals when outdoors; unable to measure soluble
solids content, fruit pH value, and maturity of the plant;

requires dark-adapted measurements

MRI

provides spatial information of the
nucleus; suitable for obtaining plant
morphological characteristics under
limited flux and spatial resolution

only operated in laboratory; no suitable portable devices
for the in-field crop; long time consumption of data

collection and limited throughput; unable to be used on
aerial platforms due to the size and weight of the

equipment; very high cost

X-ray CT

high spatial resolution, signal-to-noise
ratio, and repeatability; multi-spectral
X-ray provides higher sensitivity for

plant identification

high cost, long time consumption, and low throughput;
poor environmental adaptability; not suitable for

airborne use; only scans roots with a diameter of 1 mm
or more; unable to measure many fine roots; only

achieves 3D visualization and qualitative interpretation
of plant organs and tissues; low automation

Raman

high spectral resolution; highly sensitive
for the detection of minor components;

surface-enhanced Raman has better
sensitivity

risk of tissue burns when laser irradiation applied due
to small sample volume and self-luminous high; very
weak and unstable—should be combined with other

methods; strong interference of biological fluorescence
signals in the background; high cost
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Crop phenotype analysis can be divided into different scale levels: cell and tissue level,
organ level (root, stem, leaf, flower, fruit, seed, and harvest), plant level, and population
and plot level. X-ray CT and MRI can provide anatomical details of crop tissues, while
Raman can visualize cell walls, requiring the use of magnified images, such as microscopes.
ChlF is used to examine the function and nutritional information of seeds. NIR effectively
evaluates the internal quality attributes of fruits in a non-contact manner. LiDAR can show
the 3D spatial structure of leaves and plants. The MSI phenotype has potential in the
genetic analysis of seasonal leaf color changes in green crops [92]. HSI, MSI, and RGB are
suitable for large-scale, high-throughput crop phenotype analysis that can be combined
with agricultural machinery, drones, satellites, and other devices.

4.2. High-Throughput Plant Phenotyping Platform (HTPP)

HTPP applies modern information techniques for the quick, automatic, and non-
destructive acquisition, analysis, and in situ monitoring of complex plant traits [128], thus
making it possible to simultaneously measure many plant traits [112]. HTPP typically uses
multiple sensors to measure various traits of crops, determine nutrient, water, and pesticide
requirements, and detect various biological stresses. It is usually divided into two types:
outdoor and indoor.

Outdoor HTPP is typically conducted on farms or in natural ecosystems using only
natural light sources. Spectral sensing equipment is always installed in agricultural machin-
ery, drones, fixed-wing aircraft, vehicles, and satellites for large-scale phenotype analysis.
Aerial platforms provide remote sensing techniques for monitoring crop growth and var-
ious stresses and estimating large-scale crop yields [110]. In recent years, the HTPP for
unmanned aerial vehicles equipped with multiple sensors has provided a large-scale, effi-
cient, non-invasive, flexible, and low-cost solution for large-scale breeding [50,129,130]. It
still faces many challenges, such as cross-platform data acquisition, sensor calibration, data
processing methods [131], image interpretation, and the reliable and accurate extraction of
crop phenotype information [132].

Indoor HTPP includes greenhouse, growth chamber, and laboratory scenarios. Crops
can be fully or partially illuminated by artificial light sources. Typically, automated sys-
tems and handheld devices are used for imaging, which is suitable for a limited number
of crops. Phenotypic analysis includes plant growth rate, crop stress detection, biomass
estimation, seed viability, root characteristics, and physiological and biochemical measure-
ments. Portable devices and their isolation measurement rooms are widely used. Handheld
devices are simple, easy to use, and cost-effective, but they have small coverage and slow
measurement speed and are labor-intensive and time-consuming.

5. Research Trends
5.1. Multimodal Data Application

Multimodal data application is a future research trend. Plants’ TI and MSI multi-
modal outputs can be compared and analyzed to provide complementary insights and
to effectively develop VIs, which can provide new methods for plant stress physiological
responses. Software has been developed for calculating CWSI and the green–red nutri-
tional index by fusing NIR and RGB images. Multimodal data can improve existing yield
prediction models, such as VIs, weather, soil, number of fruits/flowers, and canopy height.
TI combined with RGB can accurately segment crop images of different VIs [133]. There is
still room for the fusion and application of various types of remote sensing images, and
combining a large amount of physical and spectral data with biochemical data on crop
growth has great value [134].

5.2. 3D Image Application

Spatial 3D reconstruction of crops is important for high-throughput crop phenotype
acquisition, plant type feature evaluation, and phenotype correlation analysis. Due to
the limitations of physical space in the transport of water, gas, and nutrients in living
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organisms, the 3D analysis of plant structures is of great significance. Many physiological
processes of crops, such as photosynthesis, respiration, and growth, are controlled by the
transportation of water, metabolic gases, and nutrients, which are essentially 3D. The 3D
structure research of crop phenotypes mainly includes the spatial structure of individual
plants or populations, stem vein network, nutrient spatial transport mechanism, plant
posture estimation, monitoring of lodging, leaf orientation distribution, the spatial structure
of leaf sequence, inflorescence, and fruit sequence. The 3D imaging of crop organs and
tissues is helpful for understanding their role in water, gas, and nutrient transport. The
3D images obtained from X-ray CT can be used for the quantitative modeling of crop
physiological processes, precise numerical calculations of heat and mass transfer in crops,
and other biophysical processes. By combining the realistic 3D arrangement of cells and
tissues within plant organs, complex phenomena can be analyzed more accurately through
simulations. For example, in respiration and photosynthesis, the connectivity of related
transport structures can be studied using networks of pores or vascular systems.

5.3. Micro-Scale Applications

Spectral phenotype analysis techniques increasingly need to be extended to the sub-
structure level, and imaging techniques should continuously surpass the current physical
spectral level. Spectral techniques have been applied to many microscopic phenotypic stud-
ies, such as pollen, stomata, maize vascular bundles, mesoporous structures in fruit tissues,
and cell stress. X-ray CT has opened up possibilities for the high-throughput phenotype
analysis of plant organs [18]. For example, it can visualize the fluid and solute transport
structures in plant organs; examine the structural morphology of the xylem in tomato
roots and the cellular structure of the vascular system in tomato petioles; separate different
tissues, such as apple ovaries, from 3D images; and separate cells from pore spaces on the
microscopic scale. The rapid development of spectral imaging techniques is helping to con-
nect genotype–phenotype differences. Although research on phenotypes on the micro-scale
is currently relatively insufficient, it is an inevitable trend for future development.

5.4. Low-Cost Portable Imaging Device

The most important aspect of the crop phenotype analysis platform is its ease of
use and affordability. The miniaturization of optical sensors can further promote the im-
provement of their performance and the flexibility of integration with different phenotype
platforms. Breeding works require simple phenotypic tools, such as collecting wheat
canopy reflectance data through handheld devices [135]. The handheld NDVI measuring
instrument is simple, practical to use, and low cost, and it can identify plant vitality and
biomass. The main characteristics of future phenotype devices included a low level of
professional knowledge, simple application operation and data input, multiple sensors
integrated into a portable device, and the strong stability and robustness of algorithms in
complex environments.

5.5. Application of Machine Learning

ML is the future development direction of multi-omics, data integration, and systems
biology [59]. Linking piled-up genomic information with trait expression still faces chal-
lenges, and remote sensing and ML can address the association between massive genomic
information and trait expression in the future [52]. By combining computer science, biology,
remote sensing, statistics, and genomics, ML can associate complex plant traits with gene
expression in the future. ML has found increasing application in the processing of HSI data
due to its nonparametric nature and strong flexibility in dealing with the nonlinear relation-
ship between hyperspectral reflectance and target parameters. ML can already accurately
predict the biochemical pathways of tomatoes using metabolite data [136]. The future ML
platform must be robust, flexible, and able to distinguish multiple disease symptoms on a
single leaf or the same plant canopy. Automated machine learning is an automated version
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of ML for dealing with large and complex multivariate datasets. This automation saves
time and effort and enhances model quality, which is the future development trend.

6. Conclusion and Outlook

This article systematically analyzes research progress in spectral imaging techniques
in crop phenotype analysis. Currently, there is insufficient research on physiological and
biochemical phenotypes, especially biochemical phenotypes. There is abundant research
on the macro-scale, especially on the field remote-sensing scale, unmanned aerial vehicles,
and vehicle-mounted devices, while there is relatively little research on the micro-scale,
especially on the substructural levels of molecules, cells, and organs. Future crop phe-
notype research based on spectral imaging should be more closely integrated with plant
physiological processes, focusing on oxygen transport, intercellular chlorophyll transmis-
sion, and other micro-scale activity, and support research on related disciplines, such as
metabolomics and genomics, more effectively.

Currently, the greatest challenge in phenotype research is quickly obtaining high-
dimensional, high-density, and high-precision, large-scale plant phenotype data from
individual molecules of the entire organism. How to effectively define and extract complex
traits and how to improve accuracy and throughput remain key issues. HSI and MSI
still have great development potential, which could be further developed in areas such as
multi-device collaboration, spectral fusion, airborne equipment improvement, and real-
time image processing techniques. The potential of sensors in obtaining new phenotypic
information still needs to be explored, and new sensors and sensing methods for complex
traits should be studied. Spectral imaging techniques should be improved in hardware
modes, image reconstruction and analysis, resolution and contrast enhancement, mathe-
matical modeling, and data sharing. Integrating a universal metabolomics platform would
be ideal, and whole-plant physicochemical phenotype analysis would be the next key goal.
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