
Citation: Liu, X.; Gao, C.; Yang, G.;

Yang, B. Prediction of Suitable

Regions for Danxiaorchis yangii

Combined with Pollinators Based on

the SDM Model. Plants 2024, 13, 3101.

https://doi.org/10.3390/

plants13213101

Academic Editors: Zuzana Štípková

and Vladan Djordjević
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Abstract: Danxiaorchis yangii, a newly discovered fully mycoheterotrophic orchid. It relies on Lysi-
machia alfredii and Dufourea spp. for pollination, and environmental factors closely influence the
growth and distribution of these pollinators, which in turn directly affects the growth and reproduc-
tion of D. yangii. Climate change threatens the suitable habitats for these three species, emphasizing
the need to understand D. yangii’s response. This study comprehensively utilized the field distribu-
tion of D. yangii and related climatic data, along with future climate predictions from global models,
to predict the climate suitability areas of D. yangii under two greenhouse gas emission scenarios
(SSP245 and SSP370) using species distribution models (SDMs), which encompassed a random forest
(RF) model. Additionally, we selected the optimal ensemble model (OEM) for Dufourea spp. and
applied generalized boosted models (GBMs) and RF for L. alfredii in our predictions. The study
found that precipitation of the driest quarter plays a pivotal role in determining the distribution of
D. yangii, with an optimal range of 159 to 730 mm being most conducive to its growth. Comparative
analysis further indicated that precipitation exerts a greater influence on D. yangii than temperature.
Historically, D. yangii has been predominantly distributed across Jiangxi, Hunan, Zhejiang, and the
Guangxi Zhuang Autonomous Region, with Jiangxi Province containing the largest area of highly
suitable habitat, and this distribution largely overlaps with the suitable regions of its pollinators.

Keywords: Danxiaorchis yangii; Dufourea spp.; Lysimachia alfredii; suitable region

1. Introduction

Climate change is an ongoing and cyclical phenomenon influenced by Milankovitch
cycles, atmospheric disturbances from volcanic activity, and significant shifts in photo-
synthetic biomass throughout Earth’s history [1]. In the face of rapidly changing climate
conditions, species can respond in various ways: through acclimation or adaptation, mi-
gration and range modification, or extinction [2]. For species with discontinuous or highly
fragmented habitats, particularly rare species, the risks of migration challenges and extinc-
tion are heightened. Species distribution models (SDMs), also known as environmental
or ecological niche modeling, integrate species locality data and other biological diversity
attributes with environmental predictors, employing statistical and machine learning tech-
niques to produce empirical descriptions and spatial predictions of species–environment
relationships [3,4]. Currently, SDMs are widely utilized to analyze the impact of climate
change on potential species distributions, with model simulations predicting changes in
suitable habitats across different climate scenarios [5]. It is widely recognized that species
distribution and abundance are not only determined by abiotic factors but also by other
ones [6]. Using species distribution models (SDMs) without considering biotic interactions,
such as plant–pollinator relationships in Ophrys argolica and O. delphinensis [7], or trophic
interaction in Nucifraga caryocatac [8], may overestimate suitable areas for species that
rely on others. Therefore, biotic interactions are increasingly incorporated into SDMs or
combined with their outcomes.
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Members of Orchidaceae are long-lived perennials, with generation times exceeding
100 years in some cases, and are globally distributed [9]. Orchids produce large numbers
of wind-dispersed “dust” seeds per fruit [10] that lack endosperm and constitute little
more than air-filled casings around the embryo. Orchid seeds exhibit extremely low
germination rates because only a small portion of the large number of seeds will land
on a suitable substrate and eventually germinate, and throughout their life cycle, orchid
plants depend not only on the induction and symbiosis of specific fungal groups but
also on stringent environmental conditions to support their normal growth [11,12]. In
addition to these challenges, numerous species within this family are declining globally
due to habitat loss, climate change, and shifts in species distributions pollinated by specific
pollinators. Consequently, their distribution is influenced not only by climate and site
characteristics (e.g., geology) but also by interactions with biotic factors (e.g., mycorrhizal
fungi, pollinators) [13].

Danxiaorchis (Calypsoinae, Epidendreae, Epidendroideae), a recently described fully
mycoheterotrophic orchid genus, was characterized by a distinct Y-shaped callus in its
labellum [14]. Species of the Danxiaorchis genus lack both leaves and roots, making them
unable to obtain the necessary nutrients for growth through photosynthesis. Instead, they
sustain themselves by drawing nutrients from fungi in their surrounding environment,
with which they have a mutually beneficial and interdependent relationship. Due to their
extreme reliance on these fungi, they find it very difficult to survive when transplanted to
other locations. Only three species of Danxiaorchis have been described so far: Danxiaorchis
singchiana [15], Danxiaorchis yangii [16], and Danxiaorchis mangdangshanensis [17]. D. yangii,
a holomycotrophic new species from Jinggang Mountain National Nature Reserve, western
Jiangxi, eastern China. In previous work, we found that D. yangii employs Batesian
mimicry, imitating the floral morphology of Lysimachia alfredii to attract Dufourea spp. for
pollination [18]. Our field investigations revealed that D. yangii prefers steep slopes with
high canopy closure and cool, moist conditions, often forming small clusters scattered
across multiple areas of the same mountain range. However, the specific environmental
factors and biotic factors that influence the distribution of D. yangii remain unknown.

Based on this background, the aim of this study was to explore how D. yangii’s
potential distribution was affected by plant–pollinator interactions under current and
future climatic conditions, utilizing high-resolution environmental data at 30 arc-seconds
and the flexible SDMs package Biomod2, in conjunction with ArcGIS software (Version 10.8).
The major objectives were the following: (1) to predict the current and future distribution
of the potential suitable growth areas of D. yangii; (2) to explore the impact of dominant
environmental factors and its unique pollinators on the distribution of D. yangii, providing
a scientific basis for ecological protection and resource utilization.

2. Materials and Methods
2.1. Collection of Distribution Points

D. yangii was first discovered and described in 2017 from the Jinggang Mountain
National Nature Reserve, Jiangxi Province, China [16], and was also found in Hunan
Province. D. yangii typically grows at an altitude of 300–750 m on the edges of subtropical
evergreen broadleaf forests and in mixed forests of shrubs and bamboo. Currently, there
are no other recorded distributions of D. yangii. All distributions used in this study were
provided by our lab investigations. Additionally, we collected the natural distribution of
Dufourea spp. and L. alfredii to analyze the relationship between D. yangi and its pollina-
tors. The distribution data for Dufourea spp. and L. alfredii were primarily sourced from
the Chinese Virtual Herbarium (accessed on 6 July 2024; http://www.cvh.ac.cn/), Na-
tional Specimen Information Infrastructure Teaching Specimen Resource Sharing Platform
(accessed on 6 July 2024; http://mnh.scu.edu.cn), Chinese Natural Specimen Resource
Platform (accessed on 6 July 2024; http://www.cfh.ac.cn/), National Specimen Information
Infrastructure (accessed on 6 July 2024; http://www.nsii.org.cn/), Chinese Plant Photo
Bank (accessed on 6 July 2024; http://ppbc.iplant.cn/), Global Biodiversity Information
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Facility (https://www.GBIF.org (accessed on 5 July 2024) GBIF Occurrence Download
https://doi.org/10.15468/dl.cuz38w; GBIF, https://www.GBIF.org (accessed on 5 July
2024) GBIF Occurrence Download https://doi.org/10.15468/dl.u9vfdc) [19], as well as
relevant books such as the Flora of China, Flora of Yunnan, and other related research
literature [20]. Only distribution points recorded after 1970 were retained, and for records
without coordinates, latitude and longitude data were assigned via Google Earth (accessed
on 7 July 2024; http://ditu.google.cn/) [21]. Misidentified specimen points were verified
and removed, and duplicate points too close together were eliminated using the dist_mat
command in R, retaining only one point per 30 arc-seconds (approximately 1 km) grid [22].
Finally, we obtained 10 distribution points for D. yangii, 43 for Dufourea spp., and 217 for
L. alfredii in China.

2.2. Environmental Data Preprocessing

In our study, climate is considered a key variable to explore the potential impacts of
climate change on D. yangii from historical (near-current) times to the end of the century. We
used 19 bioclimatic variables from the WorldClim database (http://www.worldclim.org/,
accessed on 1 August 2024) as the main factors for SDM to predict the distribution patterns
of D. yangii, Dufourea spp., and L. alfredii [23]. Since elevation differences at the same
latitude affect temperature and precipitation, influencing the distribution of plants and
their pollinators, we also used elevation data from WorldClim to examine the relationship
between elevation and distribution patterns [24]. Before use, we screened the environmental
variables by importing the 19 bioclimatic variables and species distribution data into ArcGIS
V10.4. Climate data corresponding to the distribution points were extracted, and correlation
analysis was conducted in R v4.4.1 [25]. Variables with a correlation coefficient r > |0.8|
were excluded [26]. The remaining climatic factors were retained for further modeling.

Historical (1970–2000) and future climate data were obtained from the WorldClim2.1
dataset based on CMIP6, with projections for four periods: 2021–2040 (2030s), 2041–2060
(2050s), 2061–2080 (2070s), and 2081–2100 (2090s) under two climate scenarios, SSP245
and SSP370. The WorldClim2.1 dataset includes up to 25 global climate models; for
this prediction, we selected the EC-Earth3-Veg model (the European Community Earth-
system model version 3.3 for vegetation) developed by the European Centre for Medium-
Range Weather Forecasts, due to its superior performance in predicting precipitation in
China [27,28] (Table 1). All environmental variables were masked and extracted for the
Chinese region using ArcGIS 10.4, with a uniform resolution of 30 arc-seconds and the
WGS1984 coordinate system, saved as .TIF files for use in Biomod2 modeling.

Table 1. Environmental variables (variables in bold are used for modeling D. yangii).

Environmental Variables (Code) Units

Mean annual air temperature (bio1) ◦C
Mean diurnal range (bio2) ◦C
Isothermality (bio3 = (bio1/bio7) × 100) -
Variation of temperature seasonlity (bio4) C of V
Maximum temperature of warmest month (bio5) ◦C
Minimum temperature of coldest month (bio6) ◦C
Temperature annual range (bio7) ◦C
Mean temperature of wettest quarter (bio8) ◦C
Mean temperature of driest quarter (bio9) ◦C
Mean temperature of warmest quarter (bio10) ◦C
Mean temperature of coldest quarter (bio11) ◦C
Mean annual precipitation (bio12) mm
Precipitation of wettest month (bio13) mm
Precipitation of the driest month (bio14) mm
Variation of precipitation seasonlity (bio15) C of V
Precipitation of wettest quarter (bio16) mm
Precipitation of driest quarter (bio17) mm
Precipitation of warmest quarter (bio18) mm
Precipitation of coldest quarter (bio19) mm

https://www.GBIF.org
https://doi.org/10.15468/dl.cuz38w
https://www.GBIF.org
https://doi.org/10.15468/dl.u9vfdc
http://ditu.google.cn/
http://www.worldclim.org/
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2.3. Construction and Validation of the SDM

Biomod2, a modeling platform based on R software, was developed in 2003 [29,30].
It is an R package that includes the following species distribution modeling algorithms:
generalized linear models (GLM), generalized boosted models (GBM), generalized addi-
tive models (GAM), classification tree analysis (CTA), artificial neural networks (ANN),
surface range envelope (SRE), flexible discriminant analysis (FDA), multivariate adaptive
regression splines (MARS), random forest (RF), and maximum entropy models (MaxEnt),
of which GBM and RF were finally used in our study.

Following the ODMAP (overview, data, model, assessment, and prediction) protocol,
we sequentially constructed the ecological niche model workflow from five parts: overview,
data, model, assessment, and prediction [31]. In our study, the ENMeval package [29] was
used to optimize two key parameters of the MaxEnt model at the species level in order to
minimize overfitting and sampling bias while improving predictive accuracy. Subsequently,
ten individual models were run in the Biomod2 package, and models meeting the selection
criteria were re-integrated to form ensemble models. The most suitable model for the target
species was then selected for subsequent suitable region simulation. It is necessary to
optimize two key MaxEnt parameters using the ENMeval 2.0 package [32]: regularization
multiplier (RM) and feature combination (FC). RM values range from 0.5 to 4, in increments
of 0.5. FCs are combinations of five features: linear (L), quadratic (Q), hinge (H), product (P),
and threshold (T), resulting in combinations such as L, LQ, LQH, H, LQHP, and LQHPT. By
cross-pairing the 8 RMs and 6 FCs, 48 parameter combinations are formed. Subsequently,
the ENMeval test is performed, and the parameter combination with the lowest AICc
increment (delta.AICc), typically zero, and a high AUC value (AUC > 0.9) is selected to
optimize MaxEnt [33]. In addition to the parameter tuning required for MaxEnt, other
single models such as GLM, GAM, GBM, CTA, ANN, SRE, FDA, MARS, and RF use default
parameters. Using Biomod4.1-2, optimal ensemble models for D. yangii, Dufourea spp.,
and L. alfredii are constructed through the following main steps: First, single models and
the full ensemble model (FEM) are used to model the target species, and the evaluation
metrics of the models are output. Next, high-accuracy single models are selected based
on these metrics and recombined to form the optimal ensemble model (OEM), which is
then evaluated. Finally, by comparing the evaluation metrics of each model, the one with
the best predictive ability is selected to simulate suitable regions under both historical and
future scenarios [21].

The model evaluation metrics used include true skill statistic (TSS) and the area under
the ROC curve (AUC). TSS values range from [−1, 1], with values closer to 1 indicating
higher model accuracy [34]. An AUC > 0.95 signifies an excellent model [35]. These
metrics are employed to select the best comprehensive model. For Dufourea spp., since
the evaluation results did not meet the criteria for excellence, the threshold was adjusted
to AUC > 0.8 to select satisfactory models [35]. All operations were performed in R, with
100 random background points generated for D. yangii and 500 for Dufourea spp. and
L. alfredii. The distribution data were split, with 75% used for training and 25% for testing,
and the model was run five times [21,36].

2.4. Visualization Analysis

In constructing the models, weights were assigned according to TSS values, with
higher TSS values corresponding to higher weights for the respective model [37]. The
“get_variables_importance” command in R was used to generate box plots, illustrating the
importance of each variable in the model [29,30]. The “bm_PlotResponseCurves” command
was employed to draw bivariate response curves, setting environmental variables to median
values to assess the species’ response under moderate environmental conditions. The
projection results for each period, simulated by the optimal ensemble model (OEM), were
visualized in ArcGIS 10.4 using the reclassification tool to divide the suitability into four
categories: no suitability (grid value = 0), low suitability (0 < grid value ≤ 0.4), medium
suitability (0.4 < grid value ≤ 0.6), and high suitability (0.6 < grid value ≤ 1) [20]. The
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binary suitability threshold was determined using the maximized TSS principle, and binary
distribution maps were created accordingly. Using the SDM toolbox v2.5 plugin [38],
regions of expansion, contraction, stability, and centroid migration trajectories for the
species under future climate scenarios were generated.

To avoid the confounding effects of multiple environmental factors on the climatic
impact, we used only temperature and precipitation-related variables in the modeling
process. However, in the actual environment, we found that topographical and biological
factors also significantly affect the life history of D. yangii. Therefore, we examined in
detail the relationships between key environmental factors, including elevation, slope,
aspect, pollinators, and their foraging plants, in different levels of suitable regions for
D. yangii under historical climates. Key environmental factors were extracted from the
binary distribution maps to analyze the changes in environmental variables within suitable
regions and their relationships [39,40].

3. Results
3.1. Model Optimization and Selection

Before modeling D. yangii, Dufourea spp., and L. alfredii, MaxEnt’s key parameters were
optimized. The optimal parameter combinations for RM and FC were [4, LQ], [1, LQHPT],
and [1, LQHP], respectively. For Dufourea spp. modeling, the default parameters were
already the optimal combination. Taking D. yangii as an example (Figure 1), the default
parameters resulted in a delta.AICc of 29.68, whereas the optimized parameter combination
achieved a delta.AICc of 0, indicating no model increment and the best performance.
Notably, D. yangii also had a delta.AICc of 0 with the [4, LQH] combination, but the [4, LQ]
model was simpler. In selecting the parameter combination for modeling, we found that
the optimized MaxEnt surpassed previous evaluation metrics, prompting us to choose
the best-performing model for further simulations. In the D. yangii simulation, the OEM
performed well but was slightly less effective than the RF model: RF had a TSS value of
0.9968, which was 0.080 higher than OEM, and an AUC value of 0.9984, exceeding OEM
by 0.024. Given RF’s simplicity, we opted to use it directly for D. yangii predictions across
various scenarios. For Dufourea spp. and L. alfredii, we selected the OEM based on GLM,
GBM, MARS, RF, MaxEnt.2, and GBM, RF, respectively, for predictions.
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3.2. Analysis of Suitable Regions Under Historical Climate

The prediction results show that D. yangii historically thrived in a broad area within
Jiangnan, China, with a suitable habitat covering approximately 37.26 × 104 km2. This
included the entire Jiangxi Province, parts of southeastern Hunan, southern Zhejiang
Province, northeastern Guangxi Zhuang Autonomous Region, and even northeastern
Taiwan, all exhibiting favorable climatic conditions for D. yangii growth (Figure 2). Among
these, 38.3% of this region was classified as highly suitable for D. yangii, predominantly
located in three areas: one in the northeastern part of Guilin and central Yongzhou, another
comprising central Yichun, extending across central and eastern Xinyu, Ji’an, and northern
Ganzhou—considered the main historical distribution area of D. yangii. The last area was
covered in central and southern Quzhou and northwestern Lishui City of Hunan Province.
The moderately suitable regions (48.3%) formed a belt connecting these highly suitable
zones, with notable concentrations in Zhejiang, Jiangxi, Hunan, and Guangxi provinces.
Additionally, these moderately suitable regions also extended to the northern and eastern
coastal regions of Taiwan. Lastly, 13.4% of the region was deemed lowly suitable, forming
an expansion outward from the moderately suitable zones.
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Figure 2. Potential distribution and actual distribution points of D. yangii under the historical
environmental condition.

The map highlights Jiangxi Province as the key area for protecting D. yangii, given
that the climate in most parts of the province is highly suitable for its survival. This
area also contains the original habitat of D. yangii, making it essential for conservation
efforts. For future reintroduction efforts, priority can be given to the highly suitable regions
within Jiangxi, especially in areas like central Yichun, Ji’an, eastern Xinyu, and northern
Ganzhou. Additionally, the other two highly suitable regions—northeastern Guilin and
central Yongzhou, and central and southern Quzhou and northwestern Lishui—should
also be considered to expand the protection and potential recovery of D. yangii in the wild.

3.3. Environmental Factors Analysis

We found that different models exhibited varying sensitivity to the climatic factors
affecting the distribution of D. yangii. However, it is evident that the precipitation of
the driest quarter (bio17) was the most prominent factor across all models, followed
by precipitation seasonality (bio15) and the precipitation of the wettest quarter (bio16)
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(Figure 3). In our modeling, we selected three environmental variables, each related to
temperature and precipitation. All models showed a preference for precipitation-related
factors, which had a significant impact on the distribution of D. yangii. From a topographical
perspective, the moderately and highly suitable regions for D. yangii are surrounded by the
Xuefeng, Nanling, and Wuyi mountain ranges. The three main highly suitable regions are
located between the southern side of the Xuefeng Mountains and the northern side of the
Nanling Mountains, the northern side of central Wuyi Mountains, and the northern side
of the northern Wuyi Mountains. In the context of gradual global warming, the suitable
region for D. yangii is expected to expand rather than decrease, likely due to the strong
topographical heterogeneity of the surrounding mountains. This heterogeneity causes
the southeast and southwest monsoons to bring precipitation that remains in these areas,
forming microclimates that provide refuges for D. yangii [38,39].
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Figure 3. Importance of environmental factors evaluated by each model.

The response curves of environmental factors (Figure 4) provide insights into the
relationship between environmental variables and habitat suitability for the target species.
When the contribution rate of an environmental factor exceeds 0.5, it indicates that the
corresponding variable range is most favorable for the target species’ survival [37]. The
response curve for bio17 (precipitation of the driest quarter), which has the highest contri-
bution rate, shows a sharp increase in its contribution rate to 0.0249 when the precipitation
of the driest quarter exceeds 158.2 mm, peaking at 171.7 mm, and then fluctuating with a
decreasing trend, reaching 0.4817 at 191.0 mm.

We extracted bio17 for each suitable region level and obtained the following results: in
China, the precipitation of the driest quarter ranges from [0, 764]. Specifically, bio17 in the
lowly suitable region ranges from [0, 397], in the moderately suitable region from [159, 764],
and in the highly suitable region from [159, 320]. This is consistent with the results of
the environmental response curve mentioned above, indicating that a precipitation of the
driest quarter exceeding 159 is more favorable for the survival of D. yangii. Upon extracting
elevation data, we found that the elevation in the lowly suitable region for D. yangii ranges
from [−153, 7200], in the moderately suitable region from [4, 3510], and in the highly
suitable region from [33, 2265]. The variation in elevation across different suitable region
levels is maximal, with D. yangii primarily concentrated below 3500 m and thriving best
below 2300 m. Additionally, we analyzed aspect and slope data and found that D. yangii
prefers to grow on steeper slopes but shows no particular preference for aspect.

By predicting the suitable regions for L. alfredii and Dufourea spp. under historical
climate conditions (Figures 5 and 6), we found that the suitable region for D. yangii largely
overlaps with the suitable regions of these two species. This suggests that the suitable
region of D. yangii falls within the range of its pollinators and the plants on which these
pollinators feed. Under historical climate conditions, the distribution of the pollinator
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Dufourea spp. was the most extensive, covering central southwestern China, southeastern
northwest, and southern central and eastern China. L. alfredii was primarily distributed
across southern China, southern central China, southeastern China, and southwestern
China. In contrast, D. yangii was mainly concentrated in southern central and southeastern
China. When the suitable regions of the three species were overlaid (Figure 5), it became
evident that D. yangii is located at the intersection of the ranges of L. alfredii and Dufourea
spp. Given the pollination requirements of D. yangii [18], this overlap suggests that the
availability of its pollinators might be a key factor limiting its distribution range.
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3.4. Changes in Suitable Regions Under Future Climates

As shown in Figure 6, the future climate is projected to be more suitable for the survival
of D. yangii compared to historical climates. The total area of suitable regions is expected to
increase, reaching its maximum in the 2050s under the SSP245 pathway. Under the SSP370
pathway, both moderately and highly suitable regions in the 2050s will be maximized across
all future scenarios, second only to the SSP245 pathway for the same period. Regardless
of how the climate changes, the overall trend shows that the total suitable regions for
D. yangii will increase, peaking in the 2050s, before gradually decreasing. Among the
pathways, the SSP245 pathway is the most favorable for D. yangii, as it will lead to the
highly suitable regions gradually converging and forming a large, continuous area in the
central and northern parts of Jiangxi Province. Comparing this to the distribution patterns
under historical climates, it is clear that the central part of Jiangxi Province consistently
exhibits higher suitability (Figure 6).

Furthermore, regardless of climate changes, the centroid of D. yangii’s suitable region
will generally remain near Ji’an City and Fuzhou City in Jiangxi Province. Under historical
climates, the centroid is located in Jishui County. By the 2030s, under SSP245 and SSP370,
the centroid will shift 29.5 km to the northwest and 24.7 km to the east, respectively. Despite
variations in the centroid during the 2050s and 2070s, it will eventually return to its 2030s
position by the 2090s (Figure 7).

Compared to the suitable regions under historical climates, the reduction in suitable
regions for D. yangii in the future will primarily occur at the edges of the lowly suitable
regions, with minimal impact on the moderately and highly suitable regions (Figure 8).
Under the SSP245 pathway, there will be a significant increase in the total area of suitable
regions by the 2050s, characterized by an expansion in all directions. Moreover, the overall
change in suitable regions compared to historical climates will be relatively minor, with
only slight losses in the southwestern part of the suitable regions and small gains at the
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eastern and northern edges. This suggests that the core areas for D. yangii, particularly the
moderately and highly suitable regions, will remain largely intact and may even expand
under future climate conditions, while only marginal areas at the periphery of its range
will experience some reduction.
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4. Discussion
4.1. Prospective Changes in D. yangii’s Suitable Habitat

Rapid climate change is currently outpacing the ability of many plant species to adapt,
creating mismatches between the climatic conditions and the preferences of species within
a community [40]. Environmental factors play a crucial role in driving species growth [34],
and with rising global temperatures and shifting precipitation patterns, it is vital to simu-
late the potential distribution of plants for effective ecological and practical management
of species and forest ecosystems. Identifying the environmental factors that shape and
maintain the geographic distribution of species is essential from both evolutionary and
ecological perspectives [41]. Numerous studies have shown that temperature and precip-
itation are the most direct and critical factors affecting vegetation [42]. Precipitation is
the most significant climatic variable shaping the environmental conditions of a region,
influencing hydrological hazards like floods and droughts as well as determining species
distribution and growth conditions [43]. Mithilasri et al. (2024) revealed that among bio-
climatic variables, the annual temperature range (Bio 7) contributes the most (31.44%) to
the distribution of Bulbophyllum acutiflorum, followed by precipitation seasonality (Bio 15)
at 25.44%, indicating that this species may tolerate varying temperatures and prefer habi-
tats with distinct wet and dry seasons [44]. In this study, the key environmental factors
influencing the growth and distribution of D. yangii were identified as the precipitation
of the driest quarter (Bio17), precipitation seasonality (Bio15), and precipitation of the
wettest quarter (Bio16) (Table 1), suggesting that D. yangii prefers habitats with sufficient
precipitations. In future climate scenarios, the suitable habitat for D. yangii will continue to
expand until the 2070s and then gradually decline. However, the central region of Jiangxi
Province (Ji’an City and Fuzhou City) will remain a highly suitable habitat and should
be prioritized for conservation. This is likely due to the fact that the preferred habitat for
D. yangii is primarily concentrated in warm and humid climates, fertile soils, and moderate
light conditions, which closely align with the climatic and topographical conditions of
Ji’an and Fuzhou in Jiangxi Province. Mountainous regions of suitable habitat with high
topographic diversity may provide refuge by buffering disturbances due to the presence of
microhabitats.

4.2. Strengths and Limitations of the Study

While we used Biomod2 for the first time to model the potential habitat of D. yangii in
China under present and future scenarios (SSP245 and SSP370) for the 2030s, 2050s, 2070s,
and 2090s, there are still some limitations. (1) The sample data of D. yangii only covers
Jiangxi Province. The limited and dispersed distribution points increased uncertainty in our
model, potentially leading to discrepancies from the actual suitable areas. The resolution of
the environmental data used may not adequately capture microhabitat variations that are
crucial for the survival of D. yangii, possibly resulting in an oversimplified prediction. (2) In
our study, the environmental variables that may significantly influence the distribution of
D. yangii were divided into two categories: one consisting of temperature and precipitation
factors for modeling purposes, and the other comprising topographical and pollination-
related biotic factors, which were used for a comprehensive analysis of the modeling results.
This method of categorizing and analyzing environmental factors not only helps to avoid
the issue of multiple environmental variables intertwining and overshadowing the role of
climatic factors but also allows for a clearer understanding of the importance of each type of
environmental variable and the specific environmental requirements for the distribution of
D. yangii. The biotic interactions, ultraviolet irradiation, and plateau meteorology were not
included in this study because of a lack of accurate data on these variables. Limitations in
spatial data, and the assumption that species could migrate to climate-friendly areas under
climate change, have led to uncertainty in species distribution projections [45]. (3) Previous
studies have extensively explored temperate European orchids, analyzing the biotic and
abiotic factors that influence their presence, abundance, and distribution [46–48]. Orchids
form mycorrhizal symbioses with fungi in natural habitats, affecting their seed germination,
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protocorm growth, and nutritional acquisition [49]. Fungal symbionts are essential as they
provide carbon and minerals to the dust-like, reservoir-less orchid seeds during early
development [50]. The distribution of orchids is intricately linked to their reliance on
specific mycorrhizal fungi for nutrient acquisition, which poses several limitations. Factors
such as soil type, moisture levels, and overall ecosystem health determine the presence
and abundance of these mycorrhizal fungi. For instance, Pica et al. (2024) examined the
current and potential future distribution of three forest orchids (Cephalanthera, Epipactis, and
Limodorum) in a protected area of the Northern Apennines, using habitat suitability models
based on presence-only data and the MaxEnt model, finding that precipitation-related
variables (BIO04, BIO11, BIO14, BIO15, BIO18) and soil variables (the bulk density of the
fine earth fraction (SOIL1), the volumetric fraction of coarse fragments (SOIL3), and the
proportion of clay particles in the fine earth fraction (SOIL4)) significantly influenced their
distribution [51]. Additionally, Smallwood et al. (2022) found that edaphic conditions
significantly influence the distribution of six Cypripedium spp. due to their role in supporting
obligate mycorrhizal symbionts, suggesting that range modifications of terrestrial orchids
in response to climate change may only be feasible if multiple co-occurring species respond
similarly [2].

Consequently, any changes in the environment—such as climate change, habitat de-
struction, or pollution—can impact fungal populations, thereby restricting the growth and
reproductive success of orchids. Additionally, the specificity of some orchids to particular
fungal partners means that the loss of these fungi could lead to local extinctions of these
orchids. Furthermore, the geographic distribution of orchids and their associated fungi
is often limited by environmental factors such as altitude, temperature, and precipitation,
which can create microhabitats suitable for one but not the other. Therefore, we suggest
that future studies should collect more detailed data by increasing field investigations and
supply missing impact factors, such as fungal distribution data, to enhance the precision
and reliability of the predictive outcomes.

5. Conclusions

In this study, we explored the response of D. yangii to climate change in China by
predicting the potential distribution of suitable niches using the Biomod2 model based on
distribution records. Our findings reveal several key points: (1) The main environmen-
tal variables constraining the distribution include the precipitation of the driest quarter
(Bio17), precipitation seasonality (Bio15), and precipitation of the wettest quarter (Bio16);
(2) currently, suitable niches for D. yangii are primally located in Jiangxi Province, with
highly suitable areas concentrated in Ji’an City and Fuzhou City. Notably, under historical
climate conditions, the distribution of D. yangii largely overlaps with the suitable regions of
its pollinators (L. alfredii and Dufourea spp.); (3) under future climate scenarios, the potential
suitable regions are expected to expand significantly before the 2070s, particularly with a
notable increase in highly suitable areas in central Jiangxi Province. This study is the first
to predict the suitable habitat distribution of D. yangii based on environmental factors in
conjunction with its pollinators under current and future climate scenarios, and we hope
our findings will provide new insights for its conservation.
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