% plants

=

Article

Accurately Segmenting/Mapping Tobacco Seedlings Using UAV
RGB Images Collected from Different Geomorphic Zones and
Different Semantic Segmentation Models

Qianxia Li '3, Zhongfa Zhou **, Yuzhu Qian 1-2-3, Lihui Yan 1-23(J, Denghong Huang >3, Yue Yang -%-3

and Yining Luo 123

check for
updates

Citation: Li, Q.; Zhou, Z.; Qian, Y.;
Yan, L.; Huang, D.; Yang, Y.; Luo, Y.
Accurately Segmenting/Mapping
Tobacco Seedlings Using UAV RGB
Images Collected from Different
Geomorphic Zones and Different
Semantic Segmentation Models.
Plants 2024, 13, 3186. https://
doi.org/10.3390/ plants13223186

Academic Editor: Vittorio Rossi

Received: 20 September 2024
Revised: 7 November 2024
Accepted: 10 November 2024
Published: 13 November 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

School of Geography & Environmental Sciences, Guizhou Normal University, Guiyang 500025, China;
1qx2384730355@163.com (Q.L.); 242100170587@gznu.edu.cn (Y.Q.)

School of Karst Science, Guizhou Normal University, Guiyang 550003, China

State Engineering Technology Institute for Karst Desertification Control, Guiyang 550000, China
Correspondence: fa6897@163.com

Abstract: The tobacco seedling stage is a crucial period for tobacco cultivation. Accurately extracting
tobacco seedlings from satellite images can effectively assist farmers in replanting, precise fertilization,
and subsequent yield estimation. However, in complex Karst mountainous areas, it is extremely
challenging to accurately segment tobacco plants due to a variety of factors, such as the topography,
the planting environment, and difficulties in obtaining high-resolution image data. Therefore, this
study explores an accurate segmentation model for detecting tobacco seedlings from UAV RGB
images across various geomorphic partitions, including dam and hilly areas. It explores a family of
tobacco plant seedling segmentation networks, namely, U-Net, U-Net++, Linknet, PSPNet, MAnet,
FPN, PAN, and DeepLabV3+, using the Hill Seedling Tobacco Dataset (HSTD), the Dam Area Seedling
Tobacco Dataset (DASTD), and the Hilly Dam Area Seedling Tobacco Dataset (H-DASTD) for model
training. To validate the performance of the semantic segmentation models for crop segmentation in
the complex cropping environments of Karst mountainous areas, this study compares and analyzes
the predicted results with the manually labeled true values. The results show that: (1) the accuracy
of the models in segmenting tobacco seedling plants in the dam area is much higher than that
in the hilly area, with the mean values of mloU, PA, Precision, Recall, and the Kappa Coefficient
reaching 87%, 97%, 91%, 85%, and 0.81 in the dam area and 81%, 97%, 72%, 73%, and 0.73 in the hilly
area, respectively; (2) The segmentation accuracies of the models differ significantly across different
geomorphological zones; the U-Net segmentation results are optimal for the dam area, with higher
values of mloU (93.83%), PA (98.83%), Precision (93.27%), Recall (96.24%), and the Kappa Coefficient
(0.9440) than those of the other models; in the hilly area, the U-Net++ segmentation performance is
better than that of the other models, with mIoU and PA of 84.17% and 98.56%, respectively; (3) The
diversity of tobacco seedling samples affects the model segmentation accuracy, as shown by the
Kappa Coefficient, with H-DASTD (0.901) > DASTD (0.885) > HSTD (0.726); (4) With regard to the
factors affecting missed segregation, although the factors affecting the dam area and the hilly area
are different, the main factors are small tobacco plants (STPs) and weeds for both areas. This study
shows that the accurate segmentation of tobacco plant seedlings in dam and hilly areas based on
UAV RGB images and semantic segmentation models can be achieved, thereby providing new ideas
and technical support for accurate crop segmentation in Karst mountainous areas.

Keywords: tobacco seedling plants; UAV RGB imagery; semantic segmentation model; different
geomorphic zones

1. Introduction

Tobacco (Nicotiana tabacum L.) is a plant of the Solanaceae family that is native to South
America. As an important economic crop, it is planted in over 125 countries worldwide,
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with a global estimated planting area of over 4 million hectares. China is the largest country
in tobacco cultivation, with areas in over 1700 counties and cities in 27 provinces being used
for this purpose. In 2021, the overall area for tobacco cultivation in China reached nearly
1 million hectares. The economic value of tobacco not only contributes greatly to national
and local financial income and economic development, but tobacco also has a variety of
significant medical properties [1,2]. Guizhou has a long history of tobacco cultivation
due to its unique ecological environment, subtropical monsoon warm humid climate that
is most suitable for tobacco growth, abundant rainfall and light and heat resources, and
advantageous natural conditions in terms of climate, soil, topography, and geomorphology;
therefore, it is an ideal production area for high-quality roasted cigarettes and is the second
largest production area in the country [34].

Guizhou is located in Southwestern China in the central hinterland of one of the
world’s three major Karst regions. The Karst region has an area of 109,084 km?, accounting
for 61.9% of the province’s total land area, with mountains and hills accounting for 92.5%
of the area. Guizhou is the only province in the country that does not have plain dams
and wide river valleys. Because of its undulating terrain, fragmented surface, vertical
and horizontal valleys, and soil-forming factors, there are many large sloping farmland
areas with a wide and scattered distribution within the territory. At the same time, the
Karst mountainous areas have more people and less flat land. Tobacco is mostly planted
on sloping farmland with a complex terrain and fragmented plots. The distribution of
planting space is scattered, the background characteristics of planting plots are complex,
and there are numerous cases of crop intercropping. Furthermore, the tobacco cultivation
process carries high risks, as it is susceptible to natural disasters and pests. Therefore,
timely information on the spatial distribution of the tobacco planting area, growth, yield,
and disaster loss is important to achieve refined tobacco management and accurate yield
estimation, which can assist in governmental decision-making [5-8]. Yield estimation plays
an important role in tobacco planting management and agricultural precision [9,10], as fast
and accurate extraction of tobacco seedling plants is an important prerequisite for precise
fertilization, timely replanting, and yield estimation.

Precision segmentation of tobacco seedlings is a crucial step in seedling replanting,
precision fertilizer application, and subsequent yield estimation. Freshly transplanted
tobacco seedlings are susceptible to natural disasters such as low temperatures, flooding,
high winds, and hailstorms, which cause varying degrees of losses to tobacco production,
while residual mulch and field weeds affect the growth of tobacco and reduce its quality
and yield [11]. During the tobacco seedling stage, the growth of transplanted tobacco
seedlings can be checked in a timely manner. Timely replanting should be carried out for
dead, weak, or missing seedlings. It is advisable to water withered tobacco seedlings in a
timely manner to facilitate their normal growth [12,13]. Therefore, accurate monitoring of
tobacco seedlings can solve the problem of seedling replanting in a timely manner, as well
as help to strengthen the management of tobacco plants and weeds in the field, disease and
pest prevention, and other measures, to ensure the optimal growth of tobacco plants and
improve the quality. This, in turn, improves the economic and medicinal value of tobacco.
In addition, the quantification of tobacco seedlings in plots is an important prerequisite for
accurate yield estimation in precision agriculture. However, traditional tobacco seedling
counting relies on manual counting, which is time-consuming and labor-intensive, and the
counting results are susceptible to subjective bias, making it more challenging to monitor
tobacco growth in complex scenarios. Therefore, further research on tobacco seedling
counting techniques is particularly important.

Previous studies have focused on the application of remote sensing technology in
tobacco acreage extraction [14,15]. Huang et al. [9] trained four deep semantic segmentation
models—namely, DeeplabV3+, PSPNet, SegNet, and U-Net—to extract tobacco plantation
areas based on UAV images. Zhu X et al. [16] combined supervised classification with
image morphological operations to carry out the extraction of tobacco field areas. Zhang
Yang et al. [17] extracted and analyzed the spectral characteristics of the features and
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vegetation indices using Sentinel-2A images, and used a decision tree classification method
to extract the tobacco planting area. As the fine extraction of tobacco seedlings requires
remote sensing images with a high spatial resolution, the present study mainly focuses on
the extraction of information from tobacco planting areas. There are limited studies on the
precise extraction of single tobacco plants (especially the extraction of tobacco seedlings)
directly from images using remote sensing technology. It is even more challenging to
extract data on tobacco plant seedlings using satellite images.

In recent years, UAV remote sensing technology has been rapidly developed and
has become widely used in various fields. The main reason is the ability of drones to
be equipped with sensors that capture images across multispectral, hyperspectral, and
visible light, while being unrestricted by spatial, temporal, and spectral resolutions, as
well as complex weather. Therefore, high-spatial-resolution images of complex terrain in
Karst mountainous areas can be obtained in a flexible, economical, and efficient manner,
compensating for the shortcoming of not being able to obtain real-time high-resolution
satellite images. As UAV remote sensing provides spatial distribution information on
crops, it has been widely used in precision agriculture [18-23]. For example, Xia Yan
et al. [24] proposed a UAV image tobacco fine extraction method combining multi-feature
and ultra-pixel segmentation, achieving an accuracy of 99% for the difficult problem of
extracting tobacco monocultures. Honghui Xie [25] used watershed and center-region
segmentation to select tobacco candidate regions, selected multiple features, and used
a support vector machine to extract tobacco plants. Xie H et al. [26] converted tobacco
images into lab color space, performed the morphological reconstruction of B-channels,
extracted tobacco candidate regions based on the processed B-channels, and selected
multiple features to extract tobacco plants using a support vector machine. Fan Z et al. [27]
extracted multiple candidate regions of tobacco plants via morphological manipulation and
watershed segmentation based on the property that the center regions of tobacco plants are
brighter than the leaf regions, constructed a deep convolutional neural network to extract
tobacco and non-tobacco plants, and later performed non-tobacco plant removal. Chen
Daoying et al. [28] classified images of a tobacco field using K-means clustering to obtain
an initial result containing both tobacco plants and weeds, extracted multiple features, and
used a BP neural network to reject weeds and extract tobacco plants, achieving an average
accuracy of more than 90%. The fine extraction of tobacco is mainly accomplished through
the combination of super-pixel segmentation and supervised classification, but the above
methods still have many limitations, such as low extraction accuracy and low automation.

With the improvement in computer hardware, software, and arithmetic power, deep
learning has attracted great attention in scientific research and practical applications, and
many scholars have applied it in the field of agriculture. The combination of UAV remote
sensing technology and deep learning has led to the rapid development in precision
agriculture. In recent years, deep learning methods for RGB imaging crop counting have
emerged [29,30]. Samii et al. [31] designed and trained a deep learning CNN network
to learn about cotyledon opening during plant seedling development. Jiang et al. [32]
used the Faster-RCNN model together with the Inception ResNetv2 feature extractor to
accurately compute plant seedlings in the field. Yang et al. [33] introduced Yolov4-based
spatial pyramid pooling (SPP) and multilevel feature fusion methods, achieving substantial
improvements in the counting performance. These methods use the detected object boxes
for counting, and the output is the position of each instance and its corresponding bounding
box. However, the number of tobacco seedlings in a field can range from a few to thousands,
especially in Karst mountainous areas where the land is fragmented and the surface is
complex. Tobacco is planted in environments with numerous weeds and mixed crops,
making it difficult to accurately segment tobacco seedlings. In addition, the large number
of tobacco seedling samples brings an enormous workload to the labeling process.

This study explores a family of tobacco plant segmentation networks—namely, U-
Net, U-Net++, Linknet, PSPNet, MAnet, FPN, PAN, and DeepLabV3+—for the accurate
segmentation of tobacco seedlings based on semantic segmentation models of UAV-RGB
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images. The aims of the study are as follows: (I) selection of the most suitable model
for the accurate segmentation of tobacco plant seedlings in complex Karst mountains;
(I) construction of tobacco seedling datasets from different geomorphologic regions to
train different semantic segmentation models; (III) manual evaluation of the performance
of different models in different geomorphologic zones; and (IV) field validation of the
proposed semantic segmentation model.

2. Materials and Methods
2.1. Study Area

Guizhou has a long history of tobacco planting; however, due to its terrain, sur-
face fragmentation, climate, and other factors, the arable land resources are very limited.
Crop cultivation is diverse to effectively utilize such resources and intercropping is com-
mon, resulting in an extremely complex tobacco planting environment. In view of the
complex environmental conditions for tobacco cultivation in Guizhou, two major tobacco-
growing towns—Beipanjiang Township (25°36'08"' N, 105°35'53"" E) in Zhenfeng County
and Qiangsiang Township (25°10'48"" N, 105°11'24”" E) in Anlong County, Qianxinan
Prefecture—were selected as the study areas (Figure 1).
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Figure 1. Study area map. (a) China; (b) Guizhou province; (c) Zhenfeng and Anlong Counties;
(d) UAV imagery data of the study area in the Zhenfeng and (e) Anlong Counties; (f) planting
environments, growth, management of pests and diseases, and replanting of tobacco plants in the
two study areas.

Beipanjiang Township has a Karst hilly landscape, and the northern part of the area
comprises more than 95% stone nooks and crannies. The soil and climate conditions are
extremely suitable for the growth of peppercorns, sand nuts, and other cash crops, and
the area has been developed into a three-dimensional agricultural production area for
peppercorn and sand nut planting. The central and southern areas, with a relatively flat
terrain, are dominated by the cultivation of high-quality tobacco, greenhouse vegetables,
corn, and other crops, forming an agricultural industrial structure with complementary ad-
vantages. Qianxiang Township is mainly hilly, with a landscape composed of mountainous
basins and grooves. The dam area has a lot of arable land and is an important agricultural
industrial base in Anlong County, with the main cash crops being tobacco, rice, corn, and
oilseed rape.
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2.2. Data Acquisition

The DJI Mavic 2 Pro drone (Shenzhen, China) is compact and ultra-lightweight, capable
of being equipped with a variety of sensors, including the 1-inch CMOS Hasselblad camera.
This camera is ideal for capturing high-quality remote sensing data, such as visible light
(RGB) imagery, which can be utilized for monitoring tobacco plants in the study area.
The time of image collection was during the seedling stage of tobacco planting, and the
drone shooting time in the study area of Beipanjiang Township was 14:00-16:00 on 4 June
2021, under clear and cloudless weather and good visibility conditions, while the shooting
time in the study area of Qianxiang Township was 14:00-16:00 on 6 June 2023, under
clear and cloudy weather and better visibility conditions. All of these conditions met the
requirements for safe drone operation. When performing the flight mission, the heading
and side overlap rates were set to 80% to ensure the accuracy and quality of the captured
tobacco images, and the waypoint hovering method was used for shooting. RTK (USA)
was used to collect the ground control points, and the images collected using the UAV
were geographically aligned and spliced using the Pix4D 4.4.12 (Redlands, California, USA)
commercial software. Figure 2 shows the UAS (Figure 2A), RTK (Figure 2B), and Pix4D
software (Figure 2C).

A. Unmanned Aerial Vehicle !'" B. RTK-Ground control point i[5 "~ C.Pix4D-UAV;
Remote Sensing System acquisition il I image stitching;

Figure 2. Acquisition and stitching of drone data. (A) UAS: (a) DJI Mavic 2 Pro drone equipped
with (b) Hasselblad camera and (c) drone batteries, handle, tablet, etc.; (B) RTK ground control
point data acquisition: (a) satellite signal receiver and (b) smart handbook (interactive interface);
(C) Drone image stitching software—Pix4D: (a) Digital Orthophoto Map (DOM) and (b) Digital
Surface Model (DSM).

2.3. Construction of the Seedling Tobacco Dataset

Traditionally, sampling, data collection and production, and crop labeling need to
be performed in the field to obtain data on the relevant crops, which is time-consuming
and labor-intensive. This study used high-resolution UAV images and the ArcMap 10.2
software to label crops, which greatly reduces the working time and cost.

The data volume of the high-resolution UAV remote sensing images in the study areas is
large, and their direct use as samples is not conducive to the training of deep learning models
due to the limited computer performance and computational capacity; therefore, the ArcMap
software was used to manually and accurately annotate along the contours of tobacco plants
and binarize the tobacco images to produce tobacco plant labels. The tobacco images were
randomly segmented and manually annotated into 224 pixel x 224 pixel samples to obtain
an accurately labeled tobacco seedling dataset. To better explore the impact of the datasets
on model training performance, this study produced three datasets for deep learning model
training based on the degree of terrain undulation and fragmentation of arable land in the
Guizhou Karst terrain. The three datasets included a Hill Seedling Tobacco Dataset (HSTD),
a Dam Area Seedling Tobacco Dataset (DASTD), and a Hilly Dam Area Seedling Tobacco
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Dataset (H-DASTD). The process of tobacco seedling dataset construction is shown in Figure 3,
and detailed descriptions of the HSTD, DASTD, and H-DASTD are shown in Table 1.
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Table 1. Detailed descriptions of HSTD, DASTD, and H-DASTD.

Tobacco Seedling Growing

Number of Samples of

Datasets Environment Tobacco Seedling Plants Partial Sample Display (Image)
The planting land has a Karst
hilly landscape, with large
suri}:;lce un du};ation brokgen Manually labeled samples of
. . . 24,558 plants: the labeled
cultivated land, diverse soils, L.
hieh and wide soil cans tobacco seedling images were
& red membran. ’m 0 binarized and segmented into
a uneovered Mempranes, Maty 24 pixel x 224 pixel-sized
= weeds in the background of . .
N tobacco planting, and slices, and geometric and
2 different grow th,ra tes of color transformations were
tobacco; in addition to tobacco E]i:i);r?iii Zﬁéh;i\s,zggles to
planting, a large amount of .
. tobacco samples, totaling
maize and a small amount of
. 1800 samples.
rice and vegetables are
also planted.
Manually labeled samples of
The planting site is in a dam 32,261 plants: the labeled
area, with regular tobacco tobacco seedling images were
planting, flat cultivated fields, binarized and segmented into
E no soil banks, monoculture 224 pixel x 224 pixel-sized
‘Q soil, mulch cover, and varying  slices, and geometric and
A tobacco growth; the major color transformations were

planting crop is tobacco, with
a small amount of maize and
chili peppers also planted.

performed on the samples to
obtain rich and diverse
tobacco samples, totaling

1900 samples.

H-DASTD includes all tobacco samples from both the HSTD and DASTD, with a total of 3700 samples.

2.4. Segmentation Model Selection for Tobacco Plant Seedlings

With the development of deep learning and computational hardware technologies,
many new deep learning models have been proposed and used for image segmentation.
However, the applicability of each model should be considered. There is an urgent need
to select the most suitable deep learning model for the segmentation of tobacco seedlings
in Karst mountainous areas, due to their rugged terrain and complex crop planting envi-
ronments, which lead to difficulties in obtaining high-precision image data. In order to
reduce the sample size, operation time, and computational complexity, as well as improve
the segmentation accuracy and explore the applicability of different semantic segmentation
models for the segmentation of complex underground tobacco seedlings in Karst mountain-
ous areas, eight classical semantic segmentation models were selected as the segmentation
models for tobacco seedlings, namely, U-Net, U-Net++, Linknet, PSPNet, MAnet, FPN,
PAN, and DeepLabV3+. Table 2 provides a detailed overview of when each model was
proposed, its framework, and application.

2.5. Training Environment

During the training process, a semantic segmentation model performs numerous
calculations and occupies memory and video memory features; thus, the operation of the
model has high hardware requirements. In the study framework, we used TensorFlow
2.0.0 to build a DL research environment and test the U-Net, U-Net++, Linknet, PSPNet,
MAnet, FPN, PAN, and DeepLabV3+ models. The hardware and software environments
are described in Table 3.
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Table 2. Detailed overview of the eight deep learning models.

Presentation and Application of

Model Modeling Framework the Model

U-Net was proposed by Olaf
Ronneberger et al. [34] to solve the
problem of biomedical image
segmentation. As the model is used for
small sample segmentation with a good
effect, it has been widely used in various
fields, especially since the field of remote
sensing has greatly developed.

U-Net

!+ Copy and crop }
1 ¥ Max pool 2x2 |
|

i
4 Up-conv2xz |
I

Black indicates the .
original  T-Net, U-Net++ was proposed by Zongwei

green and  blue Zhou et al. [35] to solve the accuracy

show dense : : :
e problem of medical image segmentation,

on  the  skip aiming to reduce the semantic gap
pathways, and red between the feature maps of the encoder

indicat d
e il and decoder subnetworks. It was later
supervision.  Red,

e X E R s green, and blue widely used in the image segmentation of

| 4 Down-sampling - [ x40+, -» Skip connection Sl objects such as roads, water bodies, crops,
i b istinguis! ett+

b from U-Net. and buildings.

N

¥ Up-sampling v X' Convolution

U-Net++

L ¥ Linknet is a framework proposed by
/[ E“C““;B“’“‘“ A\ / D““"d“f‘“““ \ Abhishek Chaurasi et al. [36] to address
[ ¢ the efficiency of pixel-by-pixel semantic
/ Encoder Block3 \ / Decoder Block3 \ segmentation of visual scenes; the
l architecture allows learning without
FEncoder Block o significantly increasing the number of
A é parameters, obtaining a high
[ segmentation accuracy without affecting
F‘mdc;mocm Decodeimmkl the processing time, and can be used for
full-conv[(3x3),(64,32,72] different image resolution segmentation
conv[(3x3),(32.32)] applications, including roads, rivers,
illcon{(2x2) G2 ). 2] crops, buildings, and fruits.

Linknet

max-pool[3x3),/2]
conv[(7x7).(3,64),12]

PSPNet was proposed by Hengshuang
Zhao et al. [37] to solve the problem of
scene analysis. PSPNet corrects the
problems of the FCN network on scene
analysis datasets such as mismatching,
the confusion of segmentation results,
and the loss of small targets, which
enhances the accurate segmentation of
objects of similar color and shape in a
| ‘ scene analysis. It is now applied to
LU Feature map Pyramid pooling module \% objects such as arable land, water bodies,
forests, animals, crops, fruits, roads,
and buildings.

[ —HcoNVIT

HPOOTHH-

PSPNet

CONCAT

s s egera -
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Table 2. Cont.

Presentation and Application of

Model Modeling Framework the Model
MAnet is a model proposed by Tongle
Input image Prediction Fan et al. [38] as a multi-scale attention
e Wt sl network for liver and tumor
M"»ﬁ segmentation to solve the problems that
= null convolution and pooling operations
é : cannot exploit, the spatial and channel
S g relationships between pixels in the global
> . R T 5 o e et S I view, and pqoling operations can easily
l:l Res-Block 3 rAB lose the details from the feature map
B Conv 3x3 stride 2 B MFAB information. It has later been used for
I Lpeorplios B face recognition, expression recognition,
mineral segmentation, and so on.
FPN is a model proposed by TAlexander
- Kirillov et al. [39] to deal with the
B deficiencies of the multiscale variability
problem, reduce the computational time,
£ and improve the model performance.
P
L
Input % Conv-1 b Res2 ¥ Rcs 3 Rcs 4} Rcs-§ PAN was proposed by Hanchao Li et al.
image | ¢ s
GAU X | G xu [ GAU H,A [40] to SfOlYe the problems of the difficulty
e in classifying small categories and
cion |k ¢ Conv-L ¢ + time-consuming model training on
<Zﬂ ' T FPA ORI, multiple scales. This model combines an
~ @’ St *" ’x‘ -‘3"-‘2"0"““8 omxt ¥ Upsanple attention mechanism and spatial pyramid
Low-level Features Comhl | Convixl W& P to extract precise and dense features for
[%';_ﬁi Conv7xT ¥ ConvixT b (16x16) | pixel labeling, which can effectively
] v T— PE— { . . .
\_i‘l/ =t (ConvSxS ¥ ConvsxS | P  (8x8) | increase the sensory field and classify
-
High-level Features GAU Conv3x3 | Convix3 | 5 Small ObjeCtS.
Tincoder 7 prediction DeepLabV3+ is a model proposed by
| i i
V7 Liang Chieh Chen et al. [41] to solve the
LN i problem that the multiple downsampling
+ A‘"f";.C"TW li y of DCNN will cause the resolution of
S D — [""’ feature maps to become smaller, resulting
Q — x3 Conv H . .
< |’ i in a lower prediction accuracy, the loss of
gq Iﬁ Iﬁ boundary information, and excessive
I = R W ; time consumption. It is now widely used
Dncoder in the segmentation of crops, forests, land
by4 i cover information, roads, buildings,
b H .
Tl Conal 0 Cony UP:’"‘:Pl“ : water bodies, tea gardens, weeds, and
SO on.

Table 3. Details on the hardware and software environments.

Basic Configuration Project Basic Configuration Content Software Configuration Project Software Version

System Windows 10 professional edition GPU-Drive 560.94
13th Gen Intel(R) Core(TM)
Py i7-13700KF 3.40 GHz CUDA 126
RAM 32GB Python 3.7
Hard disk 1940 GB Tensorflow 2.0.0
Graphics card NVIDIA GeForce RTX4080 Torch 1.7.1




Plants 2024, 13, 3186

10 of 26

2.6. Assessment of Indicators

After training the models on tobacco plant segmentation, five evaluation metrics—
namely, Mean Intersection over Union (mloU), Pixel Accuracy (PA), Precision, Recall, and
the Kappa Coefficient—were selected to quantify the segmentation results and evaluate the
performance of each model. The calculated metrics were compared to determine the most
appropriate semantic segmentation model for the segmentation of tobacco seedlings in the
complex planting environments of Karst mountainous areas. mloU is an evaluation index
of the model prediction results: the closer the value of mlIoU to 1, the better the model’s
segmentation effect, and the closer the value to 0, the worse the model’s segmentation
effect. PA is used to assess the global accuracy of a model and represents the number of
samples that the model correctly classifies as a tobacco growing area divided by the number
of total samples. Recall is the ratio of pixels correctly recognized as tobacco plant pixels
among all the tobacco planting area pixels in a prediction image, and is used to evaluate
the effectiveness of the prediction results. A superior value of these evaluation metrics
indicates the high accuracy and robustness of a model in segmenting tobacco seedling
plants. The formulae for calculating the metrics are as follows:

1 TP T
mloM = ( + N )

2\TP+FP+FN TN+ FN+FP
PA — TP+ TN
TP+ TN+ FP+ FN
Precision—L
~ TP+FN
TP
Recall = 757N
Po — Pe
Kappa = ———
pp 1-p.

where p, denotes the number of correctly recognized phase elements (i.e., the overall
classification accuracy) and p, is the ratio of the sum of the products of the actual and
predicted data volumes corresponding to all the categories to the square of the total number
of samples, which are two parameters that express the degree of how good or bad the
segmentation results are. TP is the number of pixels where the true value and the predicted
segmentation result both indicate a tobacco plant; FP is the number of pixels where the
predicted segmentation result indicates a tobacco plant but the true value is not a tobacco
plant; FN is the number of pixels where the true value is a tobacco plant but the predicted
segmentation result indicates it is not a tobacco plant; and TN is the number of pixels where
neither the true value nor the predicted result indicate a tobacco plant.

3. Results and Discussion

Much progress has been made in pixel-level semantic segmentation, driven by pow-
erful deep neural networks. However, it is extremely challenging to perform pixel-level
information extraction in complex natural scenes. To this end, this study applied U-Net,
U-Net++, Linknet, PSPNet, MAnet, FPN, PAN, and DeepLabV3+ to the segmentation of
tobacco seedling plants in the complex planting environments of Karst mountainous areas,
and the results were comparatively analyzed to evaluate each model’s performance in
tobacco seedling recognition. U-Net, U-Net++, Linknet, PSPNet, MAnet, FPN, PAN, and
DeepLabV3+ were first pre-trained using the HSTD, DASTD, and H-DASTD to obtain the
most suitable model for tobacco seedling segmentation. Then, mloU, PA, Precision, Recall,
and the Kappa coefficient were used to quantitatively evaluate the model training efficiency
and accuracy in segmenting tobacco seedling plants.
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3.1. Analysis of the Optimal Segmentation Model for Tobacco Plants

This study constructed the HSTD, DASTD, and H-DASTD for semantic segmentation
model training, and evaluated and analyzed the accuracy of different semantic segmen-
tation models using five quantitative indices, namely, mloU, PA, Precision, Recall, and
the Kappa Coefficient. The aim was to obtain an optimal model through the training and
extraction of tobacco seedling plants from three kinds of datasets collected from hilly, dam,
and hilly dam areas under complex planting environments in Karst mountainous areas.

3.1.1. Analysis of the Results of HSTD Training Model Segmentation

The selected semantic segmentation models for segmenting tobacco seedlings in
the hilly area were evaluated by comparing mloU, PA, Precision, Recall, and the Kappa
Coefficient. Table 4 shows the segmentation results of the eight semantic segmentation
models, with each trained model being evaluated against a test dataset.

Table 4. Accuracy of the segmentation results of the different DL models in the hilly area.

Model mloU/% PA/% Precision/%  Recall/% Kappa Coefficient
U-Net 83.35 98.38 77.26 79.26 0.7799
U-Net++ 84.17 98.56 75.84 80.13 0.7766
MAnet 83.77 98.47 73.85 81.14 0.7704
Linknet 83.40 96.74 81.55 75.21 0.7800
FPN 81.68 98.21 69.20 77.52 0.7278
PSPNet 71.46 97.27 63.23 52.16 0.5670
PAN 77.90 97.90 68.53 70.49 0.6913
DeepLabV3+ 82.62 98.29 71.63 71.88 0.7142

As shown in Table 4, the U-Net++ model achieved the best segmentation accuracy,
with mloU and PA values of 84.35% and 98.56%, respectively. MAnet achieved the highest
recall of 81.14%, with a value of 83.77% for mloU, 98.47% for PA, 73.85% for Precision,
and 0.7704 for the Kappa Coefficient. Among the eight models, PSPNet had the worst
segmentation performance, with mloU, PA, Precision, Recall, and Kappa Coefficient values
of 71.46%, 97.27%, 63.23%, 52.16%, and 0.5670, respectively. Through an analysis of these
five indicators, the overall PA value was found to be the best, with all eight models having
a PA value over 96%. The overall performance of the Kappa Coefficient was the worst,
with a maximum value of only 0.78 achieved by Linknet. Meanwhile, the accuracy of the
segmentation results of these models was found to vary greatly, with mIoU improving
from 71.46% (PSPNet) to 84.17% (U-Net++), a difference of 12.71%; PA improving from
96.74% (Linknet) to 98.56% (U-Net++), a difference of 1.82%; Precision improving from
63.23% (PSPNet) to 81.55% (Linknet), a difference of 18.32%; Recall improving from 52.16%
(PSPNet) to 81.14% (Manet), a difference of 28.98%; and the Kappa Coefficient improving
from 0.5670 (PSPNet) to 0.7800 (Linknet), a difference of 0.213. Therefore, the research
results indicate that the overall segmentation performances of U-net, U-Net++, Linknet,
and PSPNet were better than those of MAnet, FPN, PAN, and DeepLabV3+.

Overall, the eight deep learning models showed a poor segmentation performance for
tobacco seedlings in the complex hilly area, with Kappa Coefficients below 0.8. Through
comparing and analyzing the performances of the eight models, it can be concluded that
both U-Net and U-Net++ had a better segmentation performance, indicating that they
are more suitable for the segmentation of tobacco seedlings in hilly areas than the other
six models, and that U-Net and U-Net++ can be applied to extract information about
crops in complex planting environments. Figure 4 presents the comparison results of the
performance of the eight different DL models in segmenting tobacco seedling plants in the
hilly area.
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Figure 4. Histogram of the accuracy of the different models in the hilly area.

3.1.2. Analysis of the Results of the DASTD Training Model Segmentation

Table 5 presents the segmentation results of the eight semantic segmentation models
trained on the DASTD. The performance of the selected models in segmenting tobacco
seedlings in a dam area was evaluated by comparing the mloU, PA, Precision, Recall,
and Kappa Coefficient values. It was found that the models achieved excellent results in
segmenting tobacco seedlings in the dam area, with mloU, PA, Precision, Recall, and the
Kappa Coefficient reaching values of at least 87%, 97%, 91%, 85%, and 0.8080, respectively,
Therefore, it can be concluded that, for dam areas with simple planting environments,
using deep learning models can achieve precise segmentation of tobacco seedlings.

Table 5. Accuracy of the segmentation results of the different DL models in the dam area.

Model mloU/% PA/% Precision/%  Recall/% Kappa Coefficient
U-Net 93.83 98.83 93.27 96.24 0.9440
U-Net++ 92.90 98.70 96.83 92.78 0.9055
MAnet 92.74 98.66 96.56 93.00 0.9066
Linknet 92.78 98.70 95.57 94.63 0.9194
FPN 92.57 98.64 95.99 93.25 0.9066
PSPNet 87.78 97.66 91.18 86.44 0.8080
PAN 90.02 98.16 95.07 90.14 0.8677
DeepLabV3+ 92.22 98.65 97.21 85.58 0.8251

As shown in Table 5, the U-Net model achieved the best results in segmenting tobacco
seedlings in the entire dam area, with mloU, PA, Precision, Recall, and Kappa Coefficient
values of 93.83%, 98.83%, 93.27%, 96.24%, and 0.9440, respectively. Among the eight models,
PSPNet had the worst segmentation results, with mloU, PA, Precision, Recall, and Kappa
Coefficient values of 87.78%, 97.66%, 91.18%, 86.44%, and 0.8080, respectively. Meanwhile,
it was observed that the difference in the segmentation accuracy of the models was more
obvious, with a difference of 6.05% for mlIoU, 1.17% for PA, 2.09% for Precision, 10.66%
for Recall, and 0.136 for the Kappa Coefficient. Based on the comparison of mloU, it was
found that for the segmentation of tobacco seedlings in the dam area, the higher the mloU
value, the better the model performance; in particular, U-Net (93.83%) > U-Net++ (92.90%)
> Linknet (92.78%) > MAnet (92.74%) > FPN (92.57%) > DeepLabV3+ (92.22%) > PAN
(90.02%) > PSPNet (87.78%).

Overall, for the segmentation of tobacco seedlings in the dam area, U-Net achieved
the best overall performance while PSPNet had the lowest performance. Therefore, U-Net
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is most suitable for crop segmentation in dam areas with simple planting environments,
and it can be applied as an effective model in various crop segmentation tasks. Figure 5
presents the comparison results of the performance of the eight different DL models in
segmenting tobacco seedling plants in the dam area.
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Figure 5. Histogram of the accuracy of the different models in the dam area.

3.1.3. Analysis of the Results of H-DASTD Training Model Segmentation

Table 6 shows the accuracy of the segmentation results of U-Net, U-Net++, Linknet,
PSPNet, MAnet, FPN, PAN, and DeepLabV3+ trained on the H-DASTD, taking into account
the effect of the hilly and dam planting environments on the segmentation performance of
these deep learning models.

Table 6. Accuracy of the segmentation results of the different DL models in the hilly dam area.

Model mloU/% PA/% Precision/%  Recall/% Kappa Coefficient
U-Net 90.70 98.61 96.74 92.82 0.9442
U-Net++ 89.80 98.60 96.44 93.82 0.9150
MAnet 89.46 98.53 96.59 93.15 0.9084
Linknet 89.58 98.57 96.75 92.87 0.9061
FPN 88.13 98.38 96.00 93.69 0.9114
PSPNet 80.49 97.22 94.41 87.14 0.8308
PAN 85.20 97.97 96.04 90.62 0.8777
DeepLabV3+ 89.63 98.50 96.20 93.50 0.9103

Table 6 shows that U-Net achieved the best performance with the highest accuracy
compared with the other deep learning models in segmenting tobacco seedling plants
in the hilly dam area. Thus, U-Net outperformed the other models in tobacco seedling
segmentation. Although the U-Net model had lower Precision than Linknet and lower
Recall than U-Net++, it achieved the best scores for the mIoU (90.70%), PA (98.61%), and
Kappa Coefficient (0.9442) metrics; thus, the U-Net model was best suited to various
scenarios of tobacco seedling segmentation. The segmentation performance of PSPNet
was much lower than that of the other seven models, with mlIoU, PA, Precision, Recall,
and Kappa Coefficient values of 80.49%, 97.22%, 94.41%, 87.14%, and 0.8308, respectively.
Figure 6 presents the comparison results of the performance of the eight different DL
models in segmenting tobacco plants in the hilly dam area.
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Figure 6. Histogram of the accuracy of the different models in the hilly dam area.

3.1.4. Model Segmentation Efficiency

Table 7 summarizes the training time of the eight deep learning models: U-Net, U-
Net++, Linknet, PSPNet, MAnet, FPN, PAN, and DeepLabV3+. MAnet took the longest
time to train at 171.54 min, with all the other parameters being equal. Meanwhile, the
FPN model had the shortest training time of 86.1 min, indicating that FPN is the easiest
and computationally cheapest model to train and is the best model for tobacco seedling
segmentation in terms of speed. Although the training time of PAN was not the shortest,
it was second only to FPN and shorter than that of the U-Net, U-Net++, Linknet, PSPNet,
Manet, and DeepLabV3+ models. The U-Net and U-Net++ models took a relatively long
training time of 122.75 min and 100.27 min, respectively; thus, they were more time-
consuming and failed to outperform the other models.

Table 7. Training time for the selected deep learning models.

Model Time/min
U-Net 122.75
U-Net++ 100.27
Manet 171.54
Linknet 86.3
FPN 80.66
PSPNet 96.81
PAN 86.1
DeepLabV3+ 105.45

3.2. Visualization and Assessment of the Tobacco Seedling Segmentation Results
3.2.1. Visual Evaluation of the HSTD Training Model Segmentation Results

This study explored the problems and advantages of U-Net, U-Net++, Linknet, PSPNet,
MAnet, FPN, PAN, and DeepLabV3+ through the visual evaluation of the segmentation
results of each model and obtained an optimal model for tobacco seedling segmentation
in the hilly areas of the Karst mountains. Figure 7 shows the visualization results of the
eight deep learning models, including the partial segmentation results of eight different
scenarios, denoted by the numbers I-VIII.
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Figure 7. Visualization of the segmentation results of the eight deep learning models trained on the
HSTD. I—tobacco plants of different sizes and the plots are flat; II—small tobacco plants and the
plots are flat; Ill—small tobacco plants and the plots are more fragmented; IV—large tobacco plants
and the plots are flat; V—large tobacco plants and the plots are fragmented; VI—small tobacco plants
and the plots are flat; VII—large tobacco plants, the plots are flat with more weeds in the background,
and the ridges of the soil are wide, high, and shaded; VIII—large tobacco plants, the plots are broken,
and the ridges are wide, high, and shaded.

As shown in Figure 7, the overall performance of the eight deep learning models in seg-
menting tobacco seedlings was better, with good segmentation results for flat-fragmented
plots, plots with good—poor tobacco seedling growth, and plots with more-less weeds.
However, there were still a high number of tobacco plant seedlings that were omitted in
the splitting process or incorrect splitting of other objects into tobacco plants, as well as a
high number of incomplete splits of whole tobacco plants: (1) Missed segmentation: this
problem affected tobacco plants of a small size more; the PSPNet model especially showed
greater missed segmentation (Figure 71,VI). In addition, tobacco plant missed segmen-
tation was more severe with ridge shading, with the most affected models being U-Net,
U-Net++, PSPNet, and Deeplabv3+, while Linknet and FPN were affected to a lesser extent
(Figure 7IV,VIII). Furthermore, there was more missed segmentation of tobacco plants when
the plots were fragmented, with the greatest impact on U-Net++ and PSPNet (Figure 7V);
(2) Mis-segmentation situation: the MAnet, FPN, PAN, and Deeplabv3+ models showed
more mis-segmented results due to the influence of weed color (Figure 7L VII, VIII); (3) In-
complete segmentation of tobacco plants: because of the plant size, background brightness,
and plot fragmentation, tobacco plants could be incompletely segmented, which affected
the segmentation accuracy of the models (Figure 7ILIII, V). By analyzing the segmentation
results of the eight models, it was found that the models with the worst segmentation
accuracy, PSPNet and PAN, had problems with tobacco plant segmentation in all eight
scenarios; when the seeds are large, they should be segmented as single tobacco seedlings,
but these two models segmented multiple plants as one plant, which directly affected the
accurate counting of tobacco plants (Figure 7LILIV,VII, VIII).
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Overall, the segmentation performances of U-Net and U-Net++ were the best, while
those of PSPNet and PAN was poor. Meanwhile, weeds were the main influencing factor
of model mis-segmentation, and the small sizes of the tobacco plants and shading were the
main influencing factors of model missed segmentation.

3.2.2. Visualization and Evaluation of the DASTD Training Model Segmentation Results

Figure 8 illustrates the segmentation results of U-Net, U-Net++, Linknet, PSPNet,
MAnet, FPN, PAN, and DeepLabV3+ for tobacco seedlings in the dam area. Compared
with the segmentation of the tobacco seedlings in the hilly area (Figure 7), the planting
environment in the dam area is simpler, with flat plots, fewer weeds in the tobacco fields,
and regular tobacco planting; therefore, all eight semantic segmentation models showed
better overall segmentation results for the dam area. Visually, U-Net outperformed the
other models in distinguishing between tobacco and non-tobacco seedlings without exces-
sive confusion and misclassification; all the regions were accurately segmented, except for
some missed segmentation (Figure 8IV) due to tree shading and some mis-segmentation
(Figure 8IV,VI) due to the influence of trees and weeds. The other models showed less accu-
rate segmentation results compared with U-Net: (1) For the case of missed segmentation,
the models were affected by the shade of trees and the small size of tobacco plants, with
the main influencing factor being the shade of trees (Figure 81V,VI,VIII); the most affected
models were the PSPNet and PAN models, where none of the tobacco plants that were
shaded by trees were segmented out (Figure 8IV); (2) The case of mis-segmentation was
influenced by the presence of a small number of weeds and trees in the tobacco field, which
the models mis-segmented as tobacco plants (Figure 8II-VIII).

U-Net U-Net++ MAnet Linknet PN PSPNet PAN  DeepLabV3+

Original image True label

Figure 8. Visualization of the segmentation results of the eight deep learning models trained on the
DASTD. I—presence of road, lots of weeds, and large tobacco plants; II—presence of trees, small
amount of weeds, and small tobacco plants; Ill—small tobacco plants; I[V—presence of trees, road,
and other debris; V—large tobacco plants; VI—presence of trees and small tobacco plants; VII—large
tobacco plants; VIII—presence of large trees, large tobacco plants, and brighter light in the region.
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In conclusion, based on the above observations, U-Net was better able to segment
the tobacco seedlings from the whole image, especially in avoiding the misclassification
of trees and weeds. In contrast, PSPNet segmented more weeds into tobacco plants in the
tobacco field, resulting in the worst segmentation performance. Meanwhile, weeds posed
greatest influence on the segmentation of tobacco plants in the dam area.

3.2.3. Visualization and Evaluation of the H-DASTD Training Model Segmentation Results

The accuracy of U-Net, U-Net++, Linknet, PSPNet, MAnet, FPN, PAN, and DeepLabV3+
trained on the H-DASTD in segmenting tobacco seedlings in the hilly and dam areas was
analyzed. Figure 9 shows a visualization map of the segmentation results in the dam
(Figure 91-1V) and hilly areas (Figure 9V-VIII) to more clearly observe the performance of
each model.

U-Net++ MAnet FPN PSPNet PAN DeepLabV3+

Figure 9. Visualization of the segmentation results of the eight deep learning models trained on the
H-DASTD. I—presence of road, lots of weeds, and large tobacco plants; II—presence of trees, small
amount of weeds, and small tobacco plants; Ill—small tobacco plants; I[V—presence of trees, road,
and other debris; V—large tobacco plants and fragmented plot; VI—small tobacco plants and flat plot;
VII—large tobacco plants, flatter plot, more weeds in the background, and soil ridge is wide and high
with shading; VIII—large tobacco plants, fragmented plots, and wide and high ridges with shading.

Comparing the segmentation results for the dam and hilly areas, it was found that
although the various parameter models were the same, the prediction results for the dam
and hilly areas showed a big difference: (1) The division of tobacco plants in the dam area
was complete, and there were few cases of misdivision (Figure 91-1V), while in the hilly
area, the tobacco plant segmentation was incomplete, there were more fine weed patches,
and the performances of PSPNet and PAN were the best (Figure 9VI, VII). At the same time,
due to the better growth of some tobacco plants in the hilly area, the gap between plants
was small, and there was incomplete segmentation of multiple plants into a single plant,
which was especially obvious in the segmentation results of the PSPNet and PAN models
(Figure 9VIL VIII); (2) In the case of plants of the same length and size (Figure 91I,V), the
results of splitting were clear at a glance and wrongly split tobacco plants could be quickly
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observed due to the flatness of the plots in the dam area, whereas in the hilly area, the plots
were broken up, there was a large number of weeds, and, therefore, the results of splitting
were observed to be haphazard.

A comparison of the eight models revealed that U-Net was the model with a good
cutting performance, achieving good segmentation results in both the dam and hilly areas,
with the complete segmentation of tobacco plants and a small number of mis-segmentations
(Figure 91V, VIII). Compared with U-Net, the performance of U-Net++ was relatively poor
with more wrong and omitted segments, but it still achieved better results than the other
models, with the complete extraction of tobacco plants (Figure 9V,IV,VIII). Among the other
models, FPN, PSPNet, and PAN showed the poorest segmentation performance, especially
in the complex hilly area, where a large number of missed and incomplete segmentations
of tobacco plants were observed.

4. Discussion
4.1. Analysis of Errors and Omissions of Deep Learning Models in Dam and Hilly Areas
This study analyzed the results of U-Net, U-Net++, Linknet, PSPNet, MAnet, FPN,

PAN, and DeepLabV3+ models in segmenting tobacco plants in the dam and hilly areas
(Figure 10).
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Figure 10. Histograms of mis-segmented tobacco plants in dam and hilly areas: (a) histogram of
mis-segmented tobacco plants; (b) histogram of mis-segmented tobacco plants.

(1) The analysis of the missed segmentation of tobacco seedlings revealed (Figure 10a)
that the number of tobacco seedlings that were missed in the dam area was much less
than the number of tobacco seedlings that were missed in the hilly area. Among the eight
semantic segmentation models, the one with the smallest number of missed segmentations
in the dam area was the U-Net++ model, which missed only 135 plants, and the one with
the highest number of missed segments was the PSPNet model, with 878 plants. However,
when comparing the results of tobacco plant seedling missed segmentation in the hilly area,
PSPNet also achieved better results in the dam area; the model with the lowest missed
segmentation rate in the hilly area was the FPN model, with 2813 plants being missed,
while the missed segmentation of PSPNet was the highest, with 12,344 plants being missed,
showing a difference of 9531 plants; thus, the difference in the performances of FPN and
PSPNet in the hilly area was extremely large, indicating that the PSPNet model is greatly
affected by complex terrain, broken plots, and the crop-planting environment, and it is not
applicable for tobacco plant seedling segmentation in complex hilly areas. The models with
the next worse performance were PAN and DeepLabv3+, with 5974 and 4989 plants being
missed in the hilly area and 567 and 645 plants being missed in the dam area, respectively.
However, the segmentation performances of PAN and DeepLabv3+ were still better than
that of PSPNet, while a better segmentation performance was achieved by U-Net, U-Net++,
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Linknet, MAnet, and FPN, with 2867, 2986, 2933, 3164, and 2813 plants missed in the hilly
area and 149, 135, 134, 147, and 194 plants missed in the dam area, respectively, implying
that U-Net, U-Net++, Linknet, MAnet, and FPN are more applicable to the segmentation of
crop seedlings in dam areas.

(2) The analysis of misclassified tobacco seedlings revealed (Figure 10b) that the
mis-segmentation of tobacco seedlings in the hilly area was much higher than in the
dam area. PSPNet showed the smallest difference of 341 plants, while PAN showed the
largest difference of 6568 plants. Comparing the eight models, the U-Net++ segmentation
performance was the best in the dam area, with only 387 mis-segmentations, followed
by U-Net (526), MAnet (637), and then DeepLabv3+ (930), whereas Linknet (1179), FPN
(1108), and PSPNet (1321) had a comparable number of mis-segmentations, suggesting
that they segmented equally well in the dam area, while PAN had the highest number of
1321 mis-segmentations in the dam area. When analyzing the mis-segmentation problem
in the hilly area, the model with the lowest mis-segmentation rate was PSPNet, with
only 1662 plants being mis-segmented; the highest mis-segmentation rate was observed
for PAN, with 9871 plants being mis-segmented. As shown in the figure, the model
segmentation performance is in the order of PSPNet (1662 plants) > Linknet (1767 plants) >
U-Net (3024 plants) > U-Net++ (3882 plants) > MAnet (4626 plants) > FPN (5617 plants) >
DeepLabV3+ (5644 plants) > PAN (9871 plants). Among the eight segmentation models,
Linknet and PSPNet had a comparable number of wrong segmentations in the dam and hilly
areas, indicating that topography and parcel fragmentation do not have much influence
on them; the other models are more influenced by factors such as topography and parcel
fragmentation.

In summary, for tobacco plant seedling segmentation, topography and land fragmen-
tation have a large impact on model segmentation, with missed segmentation of tobacco
plant seedlings in dams being far lower than in hilly areas. The U-Net model has the lowest
missed segmentation rate in the dam and hilly areas, while PSPNet has the highest missed
segmentation rate. In the dam area, U-Net++ mis-segmentation is the lowest and PAN
mis-segmentation is the highest, while, in the hilly area, PSPNet mis-segmentation is the
lowest and PAN mis-segmentation is the highest.

4.2. Analysis of Factors Affecting Model Misclassification in the Dam Area

In the Karst region, the dam area is an area with a relatively flat topography with
contiguous plots. The performance of different models in segmenting tobacco seedlings
in the dam area was analyzed in detail to identify the influencing factors of model mis-
segmentation.

Figure 11 illustrates the influencing factors of missed segmentation and their per-
centage for different models in the dam area. As shown in Figure 11a, in the dam area,
PSPNet was the model with the highest missed segmentation rate of 30.82%, followed
by PAN and DeepLabv3+ with rates of 19.90% and 22.64%, respectively, whereas U-Net,
U-Net++, Linknet, MAnet, and FPN showed lower missed segmentation rates in the dam
area. As shown in Figure 11b, in the dam area, the two factors affecting model missed
segmentation were small tobacco plants (STPs) and tree cover (TC), with STPs being the
main influencing factor. There were some differences in the degree of influence of the
factors on the different models, with STPs having the greatest influence on DeepLabv3+,
with a missed segmentation rate of 88.4%, and the least influence on Linknet, with a missed
segmentation rate of 78.2%.

Figure 12 illustrates the influencing factors of mis-segmentation and their proportions
for the different models in the dam area. As shown in Figure 12a, in the dam area, PAN
was the model with the highest mis-segmentation rate among the eight models, accounting
for 35.17% of all mis-segmentations, while the mis-segmentation rates of PSPNet, Linknet,
FPN, and DeepLabv3+ were relatively lower, accounting for 14.07%, 12.55%, 11.8%, and
9.90%, respectively. MAnet and U-Net mis-segmentation accounted for 6.78% and 5.6%
of all mis-segmentations, while U-Net++ had the lowest mis-segmentation rate at 4.12%.
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As shown in Figure 12b, there were five types of objects affecting model mis-segmentation
in the dam area, namely, weeds, corn plants (CPs), trees, chili pepper plants (CPPs), and
others. The most mis-segmented object was weeds, with Linknet showing the highest
mis-segmentation rate of 80.66%, and the lowest rate was shown by PSPNet at 57.31%.
U-Net, U-Net++, MAnet, Linknet, and PFN mis-segmented more trees, and PSPNet, PAN,
and DeepLabv3+ mis-segmented more CPs; meanwhile, CPPs and other objects were rarely
mis-segmented.
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Figure 12. Map of factors influencing the mis-segmentation of different models in the dam area.

In summary, the main factor affecting model missed segmentation in the dam area
was STP, while the main factor affecting model mis-segmentation was weeds.

4.3. Factors Affecting Model Misclassification in Hilly Areas

In the Karst region, the hilly area is an area with high topographic relief and frag-
mented plots. This study analyzed the performance of different models in segmenting
tobacco seedlings in the hilly area in detail.

Figure 13 illustrates the missed segmentation of different models for tobacco seedlings
in the hilly area. As can be seen in Figure 13a, PSPNet was the model with the highest
missed segmentation rate among the eight models, accounting for 32.42%, followed by
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PAN and DeepLabv3+, with a missed segmentation rate of 15.69% and 13.10%, respectively.
The U-Net, U-Net++, Linknet, Manet, and FPN mis-segmentation rates were comparable,
being in the range of 7.39% to 8.31%. As shown in Figure 13b, the factors affecting missed
segmentation in the hilly area were shadows, numerous weeds (NW), STP, and image blur
(IB). Among them, the most influential factor was STP, with the eight models showing a
missed segmentation rate of STP between 54.41% and 74.74%, followed by NW with a rate
between 13.93% and 27.55%. The mis-segmentation rate of shadows was between 5.28%
and 17.11%, and the least influential factor was IB, with a rate between 1% and 2.3%. In
summary, the main influencing factor of model mis-segmentation was STP.
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Figure 13. Map of factors affecting the mis-segmentation rates of different models in the hilly area.

Figure 14 illustrates the mis-segmentation of different models in the hilly area. As can
be seen in Figure 14a, PAN had the highest mis-segmentation rate in the hilly area, account-
ing for 27.35% of all mis-segmentations; PSPNet showed the lowest mis-segmentation rate,
accounting for 4.6% of all mis-segmentations. As shown in Figure 14b, the factors affecting
model mis-segmentation in the hilly area were weeds, CP, rocks, and others; among them,
weeds were the main factor affecting model mis-segmentation, with the largest influence
on Linknet, accounting for 91.62% of all mis-segmentations, and the lowest influence on
PAN, accounting for 68.32% of all mis-segmentations. CP is the next most influential factor,
with the greatest impact on PAN, accounting for 23.96% of all mis-segmentations, and the
lowest influence on Deeplabv3+, accounting for 4.22% of all mis-segmentations. Rocks had
the greatest influence on U-Net, accounting for 10.52% of all mis-segmentations, and the
lowest influence on PSPNet, accounting for 2.83%.
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Figure 14. Map of factors influencing the mis-segmentation of different models in the hilly area.
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In summary, the main factors affecting model mis-segmentation in the hilly area were
STP, shadows, and NW; meanwhile, the main factor affecting model mis-segmentation
was weeds.

4.4. Differences from Existing Research

The results of this study indicate that semantic segmentation models can effectively
segment tobacco seedlings when trained on low-altitude drone images. Considering the
challenging conditions created by the topography and landforms of Karst mountainous
areas (e.g., dam areas and hilly areas), this study found that semantic segmentation models
performed better in segmenting tobacco seedlings in the dam area than in the hilly area. It is
difficult to consistently segment tobacco seedlings in the hilly area because of the complex
plots, significant differences in the growth of tobacco seedlings, and the diversity of tobacco
seedling plants in the labeled images. Compared with tobacco seedlings in the dam area,
the tobacco contours are less distinct and there are more weeds. Although including the
annotation of a large number of tobacco seedling samples when training models can help
to increase sample diversity and improve segmentation accuracy, terrain fragmentation in
hilly areas still has an impact on the model segmentation of tobacco seedlings.

Although there are few studies that show direct similarities with this study, we com-
ment on other works in the relevant literature and how they compare with our study. Liang
Huang et al. [8] used DeeplabV3+, PSPNet, SegNet, and U-Net to segment tobacco planting
areas in high-altitude mountainous areas, and obtained mloU values of 0.9436, 0.9118,
0.9392, and 0.9473, respectively, verifying the feasibility of using semantic segmentation
models to extract tobacco planting areas from drone remote-sensing images. Xiaodong
Bai et al. [42] designed an RPNet model to count rice plants after the tillering stage and
compared this model with MCNN, CSRNet, SANet, TasselNetV2, and FIDTM. The MAE,
RMSE, rMAE, and rRMSE values increased by 8.3%, 11.2%, 1.2%, and 1.6%, respectively.
Therefore, RPNet can be used to accurately count rice plants in paddy fields, replacing
traditional manual counting methods. Jie Li et al. [43] designed RapeNet and RapeNet+
models for the automatic counting of rapeseed flower clusters. The experimental results
showed that the RapeNet series outperformed other state-of-the-art counting methods,
providing important technical support for field rapeseed flower cluster counting statis-
tics. In the existing research, Liang Huan et al.’s method is the most similar to ours, and
although their method segments different objects, it uses the same model for segmentation
and achieves better segmentation accuracy.

4.5. Limitations of the Study

This study used semantic segmentation models to segment tobacco seedlings in dams
and hilly areas. Although good results were achieved, there are still limitations, mainly in
the following aspects:

(1) The terrain in Karst mountainous areas is fragmented, and the composition of
near-ground objects is complex, with staggered power lines, signal base stations, and other
objects. It is difficult for drones to collect high-resolution images by flying at ultra-low
altitudes close to the ground. Due to interference factors such as meteorology, topography,
and signal base stations that affect the safe flight of drones, the spatial resolution of images
may not be able to meet the precise segmentation of tobacco seedlings. For practical
applications, factors such as the spatial resolution of data, the planting structure of the
research area, and the fragmentation of farmland should be considered to determine the
optimal monitoring time and required image spatial resolution, as well as to develop the
corresponding segmentation method with the lowest cost to meet the accuracy requirements
for segmenting tobacco seedlings.

(2) The results of this study are based only on drone images from two areas: a dam
area and a hilly area. Although this study selected tobacco seedling planting sites based on
the topography and landforms of Karst mountainous areas, it cannot guarantee that these
sites fully represent other tobacco planting areas in Karst mountainous areas. Similarly,
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obtaining high-resolution drone images is difficult, and a large number of tobacco seedling
plant samples cannot be obtained. Although various processing methods were applied to
the samples to increase their diversity, they cannot represent all types of tobacco cultivation
in Karst mountainous areas, which affects model training and reduces the performance of
model segmentation.

5. Conclusions

Considering the challenging conditions (e.g., intercropping, fragmented plots, weeds,
trees, shadows, and soil canopies) posed by the topography of the Karst mountainous
region and the environment in which crops are grown, this study chose two areas—namely,
a dam area and a hilly area—for the precision segmentation of tobacco seedlings. It was
found that the semantic segmentation models (U-Net, U-Net++, Linknet, PSPNet, MAnet,
FPN, PAN, and DeepLabV3+) trained on low-altitude UAV RGB imagery could efficiently
segment tobacco seedlings grown in the complex environments of Karst mountainous areas
(dams and hilly areas).

(1) Topography and geomorphology have a greater impact on the model segmentation
of tobacco seedlings, and the accuracy of the model segmentation results for tobacco
seedlings in the dam area is much better than the accuracy of the segmentation results in
the hilly area. U-Net, U-Net++, Linknet, PSPNet, MAnet, FPN, PAN, and DeepLabV3+
show excellent results in segmenting tobacco seedlings in the dam area, with mean mloU,
PA, Precision, Recall, and Kappa Coefficient values reaching 87%, 97%, 91%, 85%, and 0.81,
respectively. In the hilly area, U-Net, U-Net++, Linknet, PSPNet, MAnet, FPN, PAN, and
DeepLabV3+ segmentation are relatively poor, with the mean mloU, PA, Precision, Recall,
and Kappa Coefficient values for these models being 81.04%, 97.97%, 72.64%, 73.47%, and
0.73, respectively.

(2) The tobacco plant seedling segmentation performance of different models varied
widely. Overall, in the hilly area, the segmentation performances of U-Net, U-Net++,
Linknet, and PSPNet were better than those of MAnet, FPN, PAN, and DeepLabV3+, with
higher mloU, PA, Precision, Recall, and Kappa Coefficient values of 83.35%, 98.38%, 77.26%,
79.26%, and 0.7799 for U-net and 84.17%, 98.56%, 75.84%, 80.13%, and 0.7766 for U-Net++,
respectively. In the dam area, the overall model segmentation accuracy was superior, with
higher values associated with better model performance, according to the mloU, with
U-Net (93.83%) > U-Net++ (92.90%) > Linknet (92.78%) > MAnet (92.74%) > FPN (92.57%) >
DeepLabV3+ (92.22%) > PAN (90.02%) > PSPNet (87.78%), where U-Net had the best overall
performance and PSPNet had the worst performance. Therefore, U-Net is well-suited for
crop segmentation in dams with simple cropping environments and can provide effective
modeling applications for various crop segmentation tasks.

(3) Through an analysis of the performance of U-Net, U-Net++, Linknet, PSPNet,
MAnet, FPN, PAN, and DeepLabV3+ in tobacco segmentation in the dam and hilly areas, it
was found that factors such as topography and land fragmentation had significant impacts
on model errors and omissions during segmentation. U-Net, U-Net++, Linknet, MAnet,
and FPN showed a better segmentation performance, with missed segmentation of 2867,
2986, 2933, 3164, and 2813 plants in the hilly area and 149, 135, 134, 147, and 194 plants in
the dam area, respectively. This means that U-Net, U-Net++, Linknet, MAnet, and FPN are
more suitable for the segmentation of crop seedlings in dam areas. The misclassification
of tobacco seedlings in the hilly area was much higher than in the dam area, with PSPNet
showing the smallest difference at 341 plants, while PAN showed the largest difference
at 6568 plants. Among the eight segmentation models, Linknet and PSPNet had similar
numbers of misclassifications in the dam and hilly areas, and the terrain, landforms, and
fragmentation of the land parcels had little impact on them. U-Net, U-Net++, MAnet,
FPN, PAN, and DeepLabV3+ were greatly affected by factors such as terrain, landforms,
and land fragmentation. Therefore, for Karst mountainous areas with diverse landforms,
accurate crop segmentation was mainly influenced by terrain and landforms, the effects of
which cannot be generalized and require zoning research.
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(4) Among the different models, the U-Net model had the lowest mis-segmentation
rate in both the dam and hilly areas, while PSPNet had the highest mis-segmentation rate.
In the dam area, U-Net++ had the lowest mis-segmentation rate and PAN had the highest
mis-segmentation rate while, in the hilly area, PSPNet had the lowest mis-segmentation rate
and PAN had the highest mis-segmentation rate. In addition, the factors affecting model
segmentation differed between the dam area and the hilly area; the factors affecting model
missed segmentation in the dam area were few tobacco plants and trees, with STP being
the main influencing factor. The factors affecting model mis-segmentation included weeds,
CP, trees, and CPP, among others, with weeds, CP, and trees being the main influencing
factors. In the hilly area, shadows, NW, STP, and IB were the factors affecting model missed
segmentation, with STP, shadows, and NW being the main factors; weeds, CP, rocks, and
others were the factors affecting model mis-segmentation, with weeds being the main
influencing factor.

Author Contributions: Conceptualization, Q.L. and L.Y.; methodology, Q.L.; software, Q.L.; valida-
tion, Q.L., LY., D.H. and Y.Q.; formal analysis, Q.L.; investigation, Q.L., D.H., LY., Y.L. and Y.Q.; data
curation, Q.L., D.H. and Y.Y.; writing—original draft preparation, Q.L.; writing—review and editing,
Q.L,D.H, LY. and Y.Q,; visualization, Q.L.; supervision, Z.Z.; project administration, Z.Z.; funding
acquisition, Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Guizhou Provincial Key Technology R&D Program (Grant
No. Qiankehe Zhicheng 2023 Yiban 211); Guizhou Province High-level Innovative Talent Training
Plan “Hundred” Level Talents (Qiankehe Platform Talents [2016] 5674).

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Musk, AW, De Klerk, N.H. History of tobacco and health. Respirology 2003, 8, 286-290. [CrossRef] [PubMed]

2. Fiore, M.C,; Bailey, W.C.; Cohen, S.J.; Dorfman, S.F; Goldstein, M.G; Gritz, E.R.; Heyman, R.B.; Jaen, C.R.; Kottke, T.E.; Lando,
H.A. Treating Tobacco Use and Dependence: Clinical Practice Guideline Respiratory Care; U.S. Department of Health and Human
Services: Irving, TX, USA, 2008.

3.  Wang, Y.S.; Zou, ]J. The Thinking about the Origin and Development of Tobacco in Anhui. Anhui Agric. Sci. 2001, 6, 733-737.
[CrossRef]

4. Zhang, Y,; Deng, Y.; Zeng, X.N. Application of Microbial Technology in Tobacco Planting. Jiangxi Agric. 2020, 8, 40-41. [CrossRef]

5. Tao,].; Shen, G.M,; Xu, YM.; Liang, H.B. Prospect of applying remote sensing to tobacco planting monitoring and Management.
Acta Tabacaria Sin. 2015, 21, 111-116. [CrossRef]

6. Huang, J.G.; Li, S.; Wei, X.H.; Wei, X.H. Model for Rock Desertification Control and Agricultural Comprehensive Development in
Karst Mountainous Area of Northern Guangdong. J. Desert Res. 2008, 1, 39-43.

7. Li, YM,; Xiong, K.N.; Luo, Y. Research on driving factors of agriculture development in Karst rockydesertification management
areas: Based on Solow growth speed equation. Sci. Soil Water Conserv. 2013, 11, 47-54. [CrossRef]

8. Huang, L.; Wu, X; Peng, Q.; Yu, X. Depth semantic segmentation of tobacco planting areas from unmanned aerial vehicle remote
sensing images in plateau mountains. J. Spectrosc. 2021, 2021, 6687799. [CrossRef]

9. Stein, M.; Bargoti, S.; Underwood, J. Image based mango fruit detection, localisation and yield estimation using multiple view
geometry. Sensors 2016, 16, 1915. [CrossRef]

10. Bargoti, S.; Underwood, ].P. Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 2017, 34,
1039-1060. [CrossRef]

11. Liu, X.Y,; Li, J.Y.; Zhao, Y.W.; Song, J.; Chen, C. Effect of Climatic Factors on Tobacco Transplanting Period in Lushi County. Mod.
Agric. Sci. Technol. 2017, 15, 200-202.

12.  Yang, Y.P. Discussion on Tobacco Planting Technology and Field Management. Seed Technol. 2021, 39, 41-42. [CrossRef]

13.  Qin, H.C. Tobacco Seedling and Field Management Measures. Rural. Sci. Technol. 2020, 11, 99-100. [CrossRef]

14. Li, TK. The Research of Extracted Tobacco Planting Area Based onObject-Oriented Classification Method. Master’s Thesis,
Sichuan Agriculture University, Ya’an, China, 2013.

15. Dong, M,; Su, ].D.; Llu, G.Y,; Yang, ].T.; Chen, X.Z.; Tian, L.; Wang, M.X. Extraction of tobacco planting areas from UAV remote
sensing imagery byobject-oriented classification method. Sci. Surv. Mapp. 2014, 39, 87-90. [CrossRef]

16. Zhu, X,; Xiao, G.; Wen, P.,; Zhang, ].; Hou, C. Mapping Tobacco Fields Using UAV RGB Images. Sensors 2019, 19, 1791. [CrossRef]

[PubMed]


https://doi.org/10.1046/j.1440-1843.2003.00483.x
https://www.ncbi.nlm.nih.gov/pubmed/14528877
https://doi.org/10.13989/j.cnki.0517-6611.2001.06.019
https://doi.org/10.19394/j.cnki.issn1674-4179.2020.08.026
https://doi.org/10.16472/j.chinatobacco.2014.322
https://doi.org/10.16843/j.sswc.2013.03.009
https://doi.org/10.1155/2021/6687799
https://doi.org/10.3390/s16111915
https://doi.org/10.1002/rob.21699
https://doi.org/10.19904/j.cnki.cn14-1160/s.2021.13.018
https://doi.org/10.19345/j.cnki.1674-7909.2020.22.050
https://doi.org/10.16251/j.cnki.1009-2307.2014.09.015
https://doi.org/10.3390/s19081791
https://www.ncbi.nlm.nih.gov/pubmed/30991636

Plants 2024, 13, 3186 25 of 26

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

Zhang, Y.; Tu, N.M.; Chen, S.Y; Xie, H.Y.; Fu, X.P; Deng, L.P. Extraction of flue-cured tobacco planting area on county scale based
on Sentinel-2A data. Tob. Sci. Technol. 2020, 53, 15-22. [CrossRef]

Shi, Z.; Liang, Z.H.; Yang, Y.Y.; Guo, Y. Status and Prospect of Agricultural Remote Sensing. Trans. Chin. Soc. Agric. Mach. 2015,
46, 247-260.

Wang, X.Q.; Wang, M.M.; Wang, S.Q.; Wu, Y.D. Extraction of vegetation information from visible unmanned aerial vehicle images.
Trans. Chin. Soc. Agric. Eng. 2015, 31, 152-159.

Ahmed, N.; Atzberger, C.; Zewdie, W. Integration of remote sensing and bioclimatic data for prediction of invasive species
distribution in data-poor regions: A review on challenges and opportunities. Environ. Syst. Res. 2020, 9, 32. [CrossRef]

Shahi, T.B.; Xu, C.Y.; Neupane, A.; Guo, W. Machine learning methods for precision agriculture with UAV imagery: A review.
Electron. Res. Arch. 2022, 30, 4277-4317. [CrossRef]

Zhang, Y.; Zhao, D.; Liu, H.; Huang, X,; Deng, |; Jia, R.; Lan, Y. Research hotspots and frontiers in agricultural multispectral
technology: Bibliometrics and scientometrics analysis of the Web of Science. Front. Plant Sci. 2022, 13, 955340. [CrossRef]
Sishodia, R.P; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136.
[CrossRef]

Xia, Y.; Huang, L.; Wang, X.X.; Chen, P.D. Fine Extraction of Tobacco based on UAV images. Remote Sens. Technol. Appl. 2020, 35,
1158-1166.

Xie, H.H. Tobacco Plant Recognition and Counting Based on Drone Aerial Images. Master’s Thesis, Shantou University, Shantou,
China, 2017. Available online: https://d.wanfangdata.com.cn/thesis/D01241604 (accessed on 21 March 2018).

Xie, H.; Fan, Z.; Li, W.; Rong, Y.; Xiao, Y.; Zhao, L. Tobacco Plant Recognizing and Counting Based on SVM. In Proceedings of the
2016 International Conference on Industrial Informatics Computing Technology, Intelligent Technology, Industrial Information
Integration (ICIICII), Wuhan, China, 3-4 December 2016; pp. 109-113. [CrossRef]

Fan, Z.; Lu, J.; Gong, M.; Xie, H.; Goodman, E.D. Automatic tobacco plant detection in UAV images via deep neural networks.
IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 876-887. [CrossRef]

Chen, D.Y,; Zhang, J.; Huang, G.G.; Yang, H.M.; Guo, L.; Llu, ].Y. A Statistic Method for Tobacco Based on Airborne Images. Hubei
Agric. Sci. 2017, 56, 1348-1350. [CrossRef]

Zhang, G.; Zhao, S.; Li, W.; Du, Q.; Ran, Q.; Tao, R. HTD-Net: A deep convolutional neural network for target detection in
hyperspectral imagery. Remote Sens. 2020, 12, 1489. [CrossRef]

Gouiaa, R.; Akhloufi, M.A.; Shahbazi, M. Advances in convolution neural networks based crowd counting and density estimation.
Big Data Cogn. Comput. 2021, 5, 50. [CrossRef]

Samiei, S.; Rasti, P.; Ly Vu, ].; Buitink, ].; Rousseau, D. Deep learning-based detection of seedling development. Plant Methods
2020, 16, 103. [CrossRef]

Jiang, Y.; Li, C.; Paterson, A.H.; Robertson, J.S. DeepSeedling: Deep convolutional network and Kalman filter for plant seedling
detection and counting in the field. Plant Methods 2019, 15, 141. [CrossRef]

Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid detection and counting of wheat ears in the field using YOLOv4 with attention module.
Agronomy 2021, 11, 1202. [CrossRef]

Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich,
Germany, 5-9 October 2015; proceedings, part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234-241.

Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, ]. Unet++: A nested u-net architecture for medical image segmentation.
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. In Proceedings of the 4th
International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018,
Granada, Spain, 20 September 2018; Proceedings 4. Springer: Berlin/Heidelberg, Germany, 2018; pp. 3-11. [CrossRef]
Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings
of the 2017 IEEE Visual Communications and Image Processing (VCIP), Petersburg, FL, USA, 10-13 December 2017; pp. 1-+4.
[CrossRef]

Zhao, H,; Shi, J.; Qi, X.; Wang, X.; Jia, ]. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 2881-2890.

Fan, T.; Wang, G.; Li, Y.; Wang, H. Ma-net: A multi-scale attention network for liver and tumor segmentation. IEEE Access 2020, 8,
179656-179665. [CrossRef]

Kirillov, A.; He, K.; Girshick, R.; Dollar, P. A unified architecture for instance and semantic segmentation. In Proceedings of the
Computer Vision and Pattern Recognition Conference, CVPR, Honolulu, HI, USA, 21-26 July 2017.

Li, H,; Xiong, P; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180. [CrossRef]
Chen, L.C; Zhu, Y,; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018;
pp. 801-818.


https://doi.org/10.16135/j.issn1002-0861.2020.0013
https://doi.org/10.1186/s40068-020-00195-0
https://doi.org/10.3934/era.2022218
https://doi.org/10.3389/fpls.2022.955340
https://doi.org/10.3390/rs12193136
https://d.wanfangdata.com.cn/thesis/D01241604
https://doi.org/10.1109/ICIICII.2016.0037
https://doi.org/10.1109/JSTARS.2018.2793849
https://doi.org/10.14088/j.cnki.issn0439-8114.2017.07.038
https://doi.org/10.3390/rs12091489
https://doi.org/10.3390/bdcc5040050
https://doi.org/10.1186/s13007-020-00647-9
https://doi.org/10.1186/s13007-019-0528-3
https://doi.org/10.3390/agronomy11061202
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1109/VCIP.2017.8305148
https://doi.org/10.1109/ACCESS.2020.3025372
https://doi.org/10.48550/arXiv.1805.10180

Plants 2024, 13, 3186 26 of 26

42. Bai, X.; Gu, S; Liu, P; Yang, A.; Cai, Z.; Wang, J.; Yao, J. Rpnet: Rice plant counting after tillering stage based on plant attention
and multiple supervision network. Crop J. 2023, 11, 1586-1594. [CrossRef]

43. 1i,].; Wang, E.; Qiao, J.; Li, Y;; Li, L.; Yao, J.; Liao, G. Automatic rape flower cluster counting method based on low-cost labelling
and UAV-RGB images. Plant Methods 2023, 19, 40. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.cj.2023.04.005
https://doi.org/10.1186/s13007-023-01017-x
https://www.ncbi.nlm.nih.gov/pubmed/37095540

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition 
	Construction of the Seedling Tobacco Dataset 
	Segmentation Model Selection for Tobacco Plant Seedlings 
	Training Environment 
	Assessment of Indicators 

	Results and Discussion 
	Analysis of the Optimal Segmentation Model for Tobacco Plants 
	Analysis of the Results of HSTD Training Model Segmentation 
	Analysis of the Results of the DASTD Training Model Segmentation 
	Analysis of the Results of H-DASTD Training Model Segmentation 
	Model Segmentation Efficiency 

	Visualization and Assessment of the Tobacco Seedling Segmentation Results 
	Visual Evaluation of the HSTD Training Model Segmentation Results 
	Visualization and Evaluation of the DASTD Training Model Segmentation Results 
	Visualization and Evaluation of the H-DASTD Training Model Segmentation Results 


	Discussion 
	Analysis of Errors and Omissions of Deep Learning Models in Dam and Hilly Areas 
	Analysis of Factors Affecting Model Misclassification in the Dam Area 
	Factors Affecting Model Misclassification in Hilly Areas 
	Differences from Existing Research 
	Limitations of the Study 

	Conclusions 
	References

