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Abstract: Effective lettuce cultivation requires precise monitoring of growth characteristics, quality
assessment, and optimal harvest timing. In a recent study, a deep learning model based on multi-
modal data fusion was developed to estimate lettuce phenotypic traits accurately. A dual-modal
network combining RGB and depth images was designed using an open lettuce dataset. The network
incorporated both a feature correction module and a feature fusion module, significantly enhancing
the performance in object detection, segmentation, and trait estimation. The model demonstrated
high accuracy in estimating key traits, including fresh weight (fw), dry weight (dw), plant height (h),
canopy diameter (d), and leaf area (la), achieving an R2 of 0.9732 for fresh weight. Robustness and
accuracy were further validated through 5-fold cross-validation, offering a promising approach for
future crop phenotyping.

Keywords: deep learning; phenotype; lettuce; RGB-D

1. Introduction

Lettuce, Lactuca sativa L., is a commercially crucial leafy vegetable rich in vitamins,
carotenoids, dietary fiber, and other trace elements [1]. Global lettuce consumption has
increased rapidly in recent years due to its high nutritional and medicinal value [2,3].
Although lettuce has a rapid growth rate [4] and multiple harvesting times, it is sensitive to
its growth environment. For example, it has poor adaptability to saline–alkali soil [5], and
different light environments can affect its growth morphology and nutrient content [6,7]. It
is vital to carefully monitor the crops during critical growth stages to maintain consistent
supply and quality.

Plant phenotypic analysis is an interdisciplinary research field. Plant phenotypic
information reflects various traits of the whole life cycle, such as growth form, development
process, physiological response, etc. These traits result from interactions between plant
genotypes and environmental conditions [8,9]. Linking phenotypic traits to genotypes can
help select high-yield, stress-resistant varieties, thereby improving agricultural productivity
to meet the demands of growing populations and climate change [10]. One of the signif-
icant challenges in crop breeding is the imperfect phenotypic detection technology [11].
Traditional phenotypic monitoring relies on visual observation and manual measurement,
which is time-consuming and error-prone, and it needs to be more accurate in evaluating
trait diversity among different varieties. Therefore, automated phenotyping technologies
are essential for more efficient and accurate plant trait detection.
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Recent advancements in computer vision, algorithms, and sensors have signifi-
cantly progressed plant phenotypic analysis. Many imaging techniques can now capture
complex traits associated with growth, yield, and adaptation to biotic or abiotic stresses,
such as disease, insect infestation, water stress, and nutrient deficiencies. These tech-
niques include digital imaging spectroscopy, chlorophyll fluorescence, thermal infrared,
RGB, and 3D imaging [12,13]. Spectral images can be utilized to analyze the phys-
iological characteristics of lettuce, such as the leaf’s overall physiological condition,
water content, pigment, and structural composition information related to biomass [14].
Eshkabilov et al. [15] employed hyperspectral data and artificial neural network (ANN)
to predict the fresh weight, chlorophyll, sugar, vitamins, and nutrients of lettuce, achiev-
ing an R index ranging from 0.85 to 0.99. Yu et al. [16] used hyperspectral data and
time series phenotype as input, combined with RNN and CNN models, to detect SSC,
pH, nitrate, calcium, and water stress levels of lettuce. Based on hyperspectral images,
Ye et al. [17] estimated the total chlorophyll of greenhouse lettuce, and the average
R2 and RMSE were 0.746 and 2.018. Hyperspectrum contains more information than
multispectrum, but the data processing is more complex, and the equipment is expensive.

The canopy area was estimated by chlorophyll fluorescence imaging to predict
fresh weight, and heavier lettuce or anthocyanins impacted the results [18,19]. Thermal
infrared imaging can obtain the temperature of the plant or leaf, generally as supplemen-
tary data. Concepcion et al. [20] combined thermal imaging and RGB images to estimate
lettuce’s full moisture content and equivalent water thickness. The R2 scores reached
0.9233 and 0.8155, respectively.

RGB imaging is the most commonly used method for crop phenotype studies due
to its low cost, ease of use, and simple data processing [21–25]. Yu et al. [21] collected
multi-view images of lettuce under water and nitrogen stress and used ConvLSTM to
predict the images of lettuce. RMSE, SSIM, and PSNR results were 0.0180, 0.9951, and
35.4641, respectively. The average error of the phenotypic geometric index based on
prediction images was less than 0.55%. Zhang et al. [22] employed a CNN with RGB
images to estimate three lettuce types’ fresh weight, dry weight, and leaf area. They
achieved R2 values of 0.8938, 0.8910, and 0.9156, respectively, with NRMSE values of
26.00%, 22.07%, and 19.94%. Three-dimensional imaging could provide more information
than RGB imaging by capturing an object’s three-dimensional coordinate information and
generating its stereoscopic image [26–28]. Lou et al. [26] used a ToF camera to capture point
cloud data from a top-down perspective, and the lettuce point cloud was reconstructed
using geometric methods. The results showed that the completed point cloud had a high
linear correlation with actual plant height (R2 = 0.961), leaf area (R2 = 0.964), and fresh
weight (R2 = 0.911).

As can be seen from the above studies, phenotypic analysis based on a single mode has
accumulated many research results. Still, the information provided by a single sensor needs
to be improved. The multimodal information has a certain degree of complementarity and
consistency, which can compensate for each other’s shortcomings. Using multimodal data
to improve model performance has become popular in lettuce phenotype research.

The fusion methods for different modal information can be divided into three cate-
gories: data layer fusion, feature layer fusion, and decision layer fusion. The data layer
fusion method treats multimodal data as indistinguishable multichannel data. It can use
the inherent complementarity between modes to supplement the incomplete information
in the input stage [29]. Taha et al. [30] combined spectral vegetation indices and color
vegetation indices to estimate the chlorophyll content of hydroponic lettuce. The AutoML
model outperformed the traditional model with an R2 of 0.98.

The feature layer fusion method integrates multimodal images into parallel branches,
extracts independent features of different scales, and performs feature fusion. Wu et al. [31]
proposed a hybrid model based on dual-transformer and convolutional neural networks
to detect lettuce phenotypic parameters using RGB-D image data. The average R2 of
phenotypic traits was 92.47.
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The decision-level fusion method is the fusion of the detection results of the previous
stage [32–35]. In the study by Lin et al. [32], the U-Net model was used to segment lettuce,
extract leaf boundary and geometric features, and estimate fresh weight through a multi-
branch regression network fusion of RGB images, depth images, and geometric features.
The experimental results showed that the multimodal fusion model significantly improved
the accuracy of lettuce fresh weight estimation in different growth periods. The RMSE of
the whole growth period was 25.3 g, and the R2 was 0.938.

Using feature layer fusion methods with multimodal data has been relatively rare in
the lettuce phenotyping field. A new multimodal fusion method based on the feature layer
was proposed to address this gap, which mainly performed feature extraction and fusion for
RGB and depth image data. The main contributions are as follows: (1) A feature correction
module is proposed, which filters and corrects each other’s feature noise information in
channel and spatial dimensions, based on the principle that the information and noise
of different modes are usually complementary. (2) A feature fusion module based on SE
attention is proposed to integrate the features of the two models into a unified feature map.
(3) The phenotypic trait header uses a residual structure, replacing linear interpolation in
the feature pyramid network (FPN) with transposed convolution. The experimental results
showed that the model improved lettuce’s object detection and segmentation performance
and performed well in estimating phenotypic traits.

2. Materials and Methods
2.1. Dataset

The data used in the experiment was from the open dataset of Tencent and Wagenin-
gen University’s third Autonomous Greenhouse Challenge [36]. It included images and
measurements of four lettuce varieties (Lugano, Salanova, Aphylion, and Satine) grown
under controlled greenhouse conditions. The RealSense D415 depth sensor (Intel, Santa
Clara, CA, USA), suspended 0.9 m above the crops, captured RGB and depth images with
a resolution of 1920 × 1080. A total of 96, 102, 92, and 98 image pairs were taken over six
weekly intervals for each variety. The four varieties of lettuce are shown in Figure 1.

Fresh weight, dry weight, plant height, canopy diameter, and leaf area were obtained
by destructive measurement. The fresh weight was obtained by measuring the weight of
the lettuce harvested from the first leaf attachment point, and the dry weight was measured
after the fresh weight was obtained and dried in the oven for 3d. Leaf area was calculated
by projecting the surface area onto the plane after separating the leaf from the stem without
considering the increase in leaf area due to leaf curvature. The diameter of the lettuce
projected onto the plane was measured, and the height was measured from the point where
the first leaf was connected to the highest point of the plant in units of “g/plant”, “g/plant”,
“cm”, “cm”, and “cm2”.

Data Preprocessing

Depth images taken directly from the camera are often missing, noisy, or sparse. Using
these incomplete data for deep learning training can lead to reduced model performance
and instability. Deep image completion significantly enhances data quality, coherence,
and consistency, providing higher-quality input for deep learning models. The depth
completion method proposed by Ku et al. [37] was used to repair the dataset’s depth images.
The deep completion algorithm first inverts pixel values by Dinverted = 100.0 − Dinput, then
uses the 5 × 5 rhombic kernel to expand them. Secondly, they are processed with small hole
closure, small hole filling, extension to the top of the frame, large hole filling, median, and
Gaussian blur. Finally, Doutput = 100.0 − Dinverted is used to revert to the original depth
encoding. This algorithm relies solely on traditional image processing techniques, does not
require training, and is robust against overfitting. Figure 2 compares the completed images
with the original images.
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All images were cropped from the center to 1024 × 1024 pixels and then resized
to 800 × 800 pixels. The VIA annotation tool was used to manually label the dataset
images, where each image pair contained a lettuce target, categorized into four types:
Lugano, Salanova, Aphylion, and Satine. Data augmentation was applied to improve the
network’s learning and generalization ability, including horizontal and vertical flips and a
10% increase in brightness. The dataset augmentation process is shown in Figure 3. After
data augmentation, the dataset is 1548 images. The K-fold cross-validation method was
used, dividing the data into five subsets. For each training session, one fold was designated
as the test set, while the remaining four were used for training, with 10% of the training set
reserved for validation.
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2.2. Method

The overall architecture of the proposed model framework is shown in Figure 4, which
is based on MaskRCNN. The backbone segment consists of two RepVGG networks, one
accepting RGB image input and the other receiving depth image input. The RepVGG
creation is inspired by ResNet, a multi-branch structure that uses identity, 3 × 3, and
1 × 1 branches during training. The RepVGG infrastructure is shown in the lower-left
corner of Figure 4. The features of different levels of each backbone network are input to
the feature correction module, and the two corrected features are sent to the next stage
and input to the feature fusion module simultaneously. Feature fusion module fuses the
two modal features of the same stage into feature maps. Each layer of fusion features
will be input into the improved feature network pyramid, and the output features will be
processed like the classic MaskRCNN process to obtain the final result.
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2.2.1. FRM

RGB features contain a lot of color and texture information, while depth features focus
on spatial position information. Although the information concerns of the two modes are
different, the information of the different modes is usually complementary, and the noise is
the same [38,39]. Therefore, this feature filters and calibrates the noise information between
the features. CM-FRM was proposed by Zhang et al. [40] in 2023. Figure 5 shows the
structure of the FRM. The module is divided into two parts, dealing with input parallel
flow features in spatial and channel dimensions. In this study, we adjusted the original
basis by replacing the activation function from Relu to Silu. We set the dimensionality
reduction ratio of the first fully connected layer/convolution layer in the channel and
spatial correction module to one-quarter.

First, the details of channel feature correction are introduced. We connect bimodal
features along the channel and apply global maximum pooling and global average pooling
to the connected features. After concatenating the above results, C_MLP is applied. The
C_MLP contains two fully connected layers and activation functions. The first fully con-
nected layer reduces the number of channels to 1/4 dimension, and the next fully connected
layer increases the number of channels to 1/2 dimension. Equation (1) is expressed as

WC
RGB, WC

D = fsplit
(
σ(FC 2

(
Silu

(
FC1

(
Wavg©Wmax

))))
(1)
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Wavg and Wmax represent the features after concatenating input features and applying
adaptive average pooling and adaptive maximum pooling, respectively. © means concate-
nate. σ denotes the Sigmoid function. Then, the Sigmoid function is used, and the result is
split to WC

RGB and WC
D. The dual-modal features are concatenated along the channel in the

spatial feature correction and fed into S_MLP. S_MLP has the same structure as C_MLP
except for replacing the fully connected layer with the convolution layer. The features of
the S_MLP output are further divided into two weight graphs. Equation (2) is expressed
as follows:

WS
RGB, WS

D = fsplit(σ
(

Conv1×1

(
Silu

(
Conv1×1

(
Fin

RGB©Fin
D

))))
) (2)

Fin
RGB and Fin

D represent the RGB and depth characteristics of the input. The channel
weights and spatial weights obtained through the above process are multiplied by the
corresponding elements of the input modal features and then added to the input bimodal
features. Equations (3) and (4) are expressed as follows:

Fout
RGB = Fin

RGB + 0.5Fin
D ∗ WC

D + 0.5Fin
D ∗ WS

D (3)

Fout
D = Fin

D + 0.5Fin
RGB ∗ WC

RGB + 0.5Fin
RGB ∗ WS

RGB (4)

2.2.2. SEF

We designed a feature fusion module to facilitate information exchange and integrate
the features of the two modes into a unified feature map. This approach allows for better
integration of information from different modalities, enhancing the model’s performance.
Since the feature fusion module applies SE attention, it is called Squeeze-and-Excitation
Fusion (SEF). Figure 6 shows the structure of the SEF. SE attention was proposed in 2019
and has inspired many subsequent attention mechanisms. The operation of SE is simple:
applying global average pooling to the features, then using the two-modal attention weight
obtained by the fully connected layer, and cross-multiplying it with the two-modal input
features. Equation (5) is expressed as

Wmid = Fin
RGB ∗ WSE

D + Fin
D ∗ WSE

RGB (5)
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In the next stage, we used operations similar to the residual structure to integrate the
dual-modal features further. One branch consists of SCConv, 1 × 1 convolution, BN, and
Silu activation functions, and the other branch has only one BN. SCConv was proposed in
2023 [41]. SCConv is designed to reduce redundant computing and consists of a spatial
reconstruction unit (SRU) and a channel reconstruction unit (CRU). Using SCConv can
reduce redundant features and better fuse features to improve performance. Equation (6) is
expressed as follows:

Fout
merge = Silu(BN(Conv1×1(ScConv(Wmid)))) + BN(Wmid) (6)

2.2.3. Other Improvement Points

Feature pyramid network (FPN) uses a top-down architecture combined with hor-
izontal connections to build high-level semantic feature maps at all scales, significantly
improving multi-scale object detection performance. The network replaces linear interpola-
tion with transposed convolution to further boost performance, allowing for more efficient
recovery of high-resolution feature maps. This method can retain more spatial information
and improve the model’s accuracy in object detection and segmentation tasks.

Depth images are grayscale images in which each pixel value represents the distance
from the camera to the object, and they contain less information than RGB images. To
extract features from depth images better, convolution kernels of different scales were used.
Parallel 1 × 1 and 3 × 3 convolution was added to the header of the backbone network,
and the resulting features were superimposed.

It was found that the phenotypic branch head used eight convolutional layers to
extract RGB features well, but the results were poor after the fusion of RGB images and
depth images. To improve the prediction effect of phenotypic traits, 8-layer convolution
was replaced with the residual structure. The structure of the Phenotypic Head is shown
in the lower-right corner of Figure 4. The number of parameters and GFLOPs remained
unchanged, but the experimental result was improved.

2.2.4. Training Strategy and Experimental Environment

The model training process began by training the overall model and then all layers
of the backbone network while freezing the other network layers. Next, only all branch
subnetworks were trained, including detection, segmentation, and phenotype branches.
Finally, other parts of the network were frozen. Only the first two stages of the backbone
network, which contain corresponding FRM and SEF modules, were trained.
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The initial learning rate of this study was 0.0012. Each new training session reduced
the learning rate to one-tenth of the original. The batch size was 6, the total number of
training rounds was 140, and the optimizer was Adam. This study used the Ubuntu 22.04.3
operating system with a kernel of 6.5.0-35-generic. The computer configurations included
an NVIDIA GeForce RTX 4070 Ti graphics card (12 GB VRAM), 32 GB RAM, and an Intel®

CoreTM i7-13700KF processor. The model was written in Python 3.8 and pytorch1.10. The
details are listed in Table 1. All experiments were trained and evaluated using the same
hardware setup to compare their performance fairly.

Table 1. Training configuration parameters and hardware configuration of the experiment.

Training Configuration Parameters Hardware Configuration

Epoch 140 CPU Intel® CoreTM i7-13700KF
Original_lr 0.0012 GPU NVIDIA GeForce RTX 4070 Ti
Batch size 6 Operating System Ubuntu 22.04.3
Optimizer Adam RAM 32 GB

3. Results
3.1. Evaluation Index

In this study, COCO evaluation indexes were used for detection and segmentation.
The COCO index is a mainstream evaluation criterion for object detection and segmentation,
including AP (Average Accuracy) and AR (Average Recall). It uses ten different IoU thresh-
olds (0.5 to 0.95, separated by 0.05) to assess how closely the detection box or segmentation
mask matches the actual annotation. The primary metric for COCO is AP0.5:0.95, which is
the AP average across all categories and all IoU thresholds. In addition, we also introduce
F1, which is an essential indicator for evaluating the performance of binary classification
models, especially in the case of class imbalance. It is the harmonic average of Precision
and Recall, considering the performance of these two metrics. Equation (7) for calculating
F1 is

F1 = 2 × Precision × Recall
Precision + Recall

(7)

Precision refers to the proportion of all samples predicted by the model to be positive
that are positive. Recall is the percentage of all positive samples the model correctly predicts
will be positive.

In the regression prediction of lettuce phenotypic traits, R2, MAPE, and NRMSE
indexes were used. R2 is the evaluation index of regression analysis, representing the
proportion of all the variation in the dependent variable that the independent variable can
explain through the regression relationship. The range is [0, 1]. The closer R2 is to 1, the
better the model fit; the closer R2 is to 0, the worse the fit. Equation (8) for calculating R2 is

R2 = 1 − ∑i(yi − y′
i)

2

∑i(yi − y)2 (8)

In the formula, y is the average of the actual value, y′
i is the i-th model predicted value,

and yi is the i-th true value.
MAPE (Mean Absolute Percentage Error) represents the relative difference between

predicted and actual values. It provides a percentage that indicates the accuracy of a model.
The range of MAPE is from 0 to infinity. A MAPE of 0% indicates a perfect model, while
higher percentages indicate a less effective model. Equation (9) for calculating MAPE is as
follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − y′
i

yi

∣∣∣∣× 100% (9)

In the formula, y′
i is the i-th model predicted value, and yi is the i-th true value.
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NRMSE (Normalized Root Mean Square Error) is derived by normalizing the square
root of the Mean Squared Error (MSE). The value of NRMSE ranges from 0 to 1. MSE
represents the average of the squares of the differences between predicted and actual values.
Unlike MAPE, NRMSE emphasizes the impact of more significant errors. Equation (10) for
NRMSE is as follows:

NRMSE =

√
1
n ∑n

i=1
(
y′

i − yi
)2

max(y)− min(y)
(10)

In the formula, y′
i is the i-th model predicted value, yi is the i-th true value, and

max(y)/min(y) indicates the largest/smallest value out of the true values.

3.2. Model Performance

The test set results are shown in Figure 7 and Tables 2–4. The three subgraphs in
Figure 7 correspond to the evaluation scores of R2, MAPE, and NRMSE indicators in
fw, dw, h, d, and la growth traits, and each subgraph contains the results of the K-fold
cross-validation method. Bold fonts in all tables represent the best results.
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Table 2. R2 results for the five phenotypes in the 5-fold cross-validation experiment.

NE fw dw h d la

k1 0.9747 0.9736 0.9396 0.9263 0.9712
k2 0.9736 0.9730 0.9382 0.9300 0.9679
k3 0.9740 0.9774 0.9421 0.9242 0.9547
k4 0.9734 0.9740 0.9467 0.9455 0.9767
k5 0.9701 0.9716 0.9455 0.9078 0.9740

average 0.9732 0.9739 0.9424 0.9268 0.9689
std_dev 0.0018 0.0021 0.0037 0.0135 0.0086

NE refers to the number of experiments. The std_dev means standard deviation.

When R2 is 0–1, the larger the R2 value, the better the estimation effect. The smaller
the MAPE and NRMSE values, the better the network performance. Our proposed method
performs well in various indicators, among which the predicted R2 of fw, dw, h, d, and la
are 0.9732, 0.9739, 0.9424, 0.9268, and 0.9689, respectively, and MAPE is 0.1003, 0.1622, 0.074,
0.0516 and 0.0864. NRMSE is 0.0398, 0.0387, 0.0577, 0.0517 and 0.0409. In the standard
deviation results, d’s R2 and dw and la’s MAPE standard deviation are greater than 0.01,
and the rest are less than 0.01.
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Table 3. MAPE results for the five phenotypes in the 5-fold cross-validation experiment.

NE fw dw h d la

k1 0.0977 0.1505 0.074 0.0482 0.0783
k2 0.1014 0.1864 0.0789 0.0542 0.0959
k3 0.1073 0.1629 0.0749 0.0541 0.0997
k4 0.1003 0.1667 0.0747 0.05 0.078
k5 0.0947 0.1444 0.0677 0.0517 0.0802

average 0.1003 0.1622 0.074 0.0516 0.0864
std_dev 0.0047 0.0163 0.0040 0.0026 0.0105

NE refers to the number of experiments. The std_dev means standard deviation.

Table 4. NRMSE results for the five phenotypes in the 5-fold cross-validation experiment.

NE fw dw h d la

k1 0.0388 0.0365 0.062 0.0504 0.0426
k2 0.0387 0.043 0.0579 0.0515 0.0441
k3 0.0388 0.0328 0.0555 0.0533 0.0476
k4 0.0395 0.0417 0.0547 0.0454 0.0344
k5 0.0431 0.0394 0.0583 0.0578 0.0358

average 0.0398 0.0387 0.0577 0.0517 0.0409
std_dev 0.0019 0.0041 0.0029 0.0045 0.0056

NE refers to the number of experiments. The std_dev means standard deviation.

As can be seen from Figure 1, the R2 results of the 5-fold cross-validation experiment
of fw and dw are the closest and highest, while the R2 results of d are the lowest and most
dispersed. However, among the MAPE error values, dw is the largest but most dispersed,
and d is the smallest. The maximum error value of NRMSE is h, and the minimum error
value is dw. While the R2 of fw and dw is the highest and closest, the MAPE of dw (0.1622)
is significantly higher than that of fw (0.1003), suggesting that while the model explained
the overall change in dw well, there were large relative errors in some predictions.

MAPE is sensitive to negligible values and may perform poorly when dealing with
negative or near-zero scenes. The early growth value of dw is small, which may be one of
the reasons for the high MAPE value. The R2 of h is relatively high, but the prediction error
of NRMSE is greatest in 5 phenotypic traits. The R2 of d shows some fluctuation, indicating
that the prediction fit degree fluctuates, but MAPE and NRMSE both show minor and
stable prediction errors. The R2 value of la is 0.9689, the MAPE is 0.0864, and the NRMSE
is 0.0409, all showing high Precision and low error. The model is the most robust in la
prediction, with high accuracy and consistency.

The model’s object detection and segmentation results on the lettuce dataset are shown
in Table 5. The average AP50:95, AP50, and AP75 of the object detection results of the
5-fold cross-validation experiment are 0.8881, 0.9979, and 0.9945, respectively, and the
average AP50:95, AP50:95, and AP75 of the segmentation results are 0.9041, 0.9979, 0.9969,
respectively. As you can see, the fourth fold is the best result in the phenotypic trait
prediction section. However, the second fold of object detection and segmentation has the
best effect.

The inference results of the four varieties of lettuce model are shown in Figure 8. It
can be seen from the figure that no matter the type of lettuce, the early segmentation effect
is better, and different lettuce shows different forms as it grows. Both Lugano and Satine
show leaf clumping and folding at the later stage of growth, but Satine has more prominent
small leaf folds than Lugano, and the effect is relatively poor at the edges. The leaves of
Salanova are more spread than other varieties, and careful observation shows that the effect
is indeed the worst in the later stage. In Aphylion and Salanova, it can be observed that less
of the edge is not covered, which means that the edge covers more of the non-leaf position,
decreasing segmentation results, as evidenced by the indicators in the Section 4.2.
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Table 5. Object detection and segmentation results for the five phenotypes in the 5-fold cross-
validation experiment.

NE
DEL SEG

AP50:95 AP50 AP75 F1 AR AP50:95 AP50 AP75 F1 AR

k1 0.8829 0.9899 0.9846 0.9501 0.913 0.9002 0.9899 0.9846 0.9578 0.928
k2 0.9013 0.9999 0.993 0.9617 0.9263 0.906 0.9999 0.9999 0.9645 0.9316
k3 0.8875 1 1 0.9564 0.9165 0.9028 1 1 0.9625 0.9278
k4 0.8971 0.9998 0.9998 0.9606 0.9244 0.9059 0.9998 0.9998 0.9637 0.9302
k5 0.8716 1 0.995 0.9494 0.9037 0.9058 1 1 0.9653 0.933

average 0.8881 0.9979 0.9945 0.9556 0.9168 0.9041 0.9979 0.9969 0.9628 0.9301
std_dev 0.0118 0.0044 0.0063 0.0057 0.0091 0.0026 0.0045 0.0069 0.0030 0.0023

NE refers to the number of experiments. AR stands for Average Recall. The std_dev means standard deviation.
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4. Discussion
4.1. Ablation Experiment

In this section, we performed ablation experiments on all the proposed modules. The
results are shown in Tables 6 and 7. The bold font indicates the best results. The first line
indicates that the model data input is only RGB data, and the specific experimental details
can be seen [42]. The second row of data represents a simple addition of the corresponding
elements only for RGB and depth data. After introducing the depth image, the object
detection and segmentation indexes are significantly improved, indicating that depth



Plants 2024, 13, 3217 13 of 18

information is crucial to enhancing the performance of object detection and segmentation.
However, the phenotypic trait index is lower than that of only RGB images, which means
that although RGB and depth images complement each other, they also introduce many
redundant data. After adding the FRM and SEF modules, the highest AP50:95 score for
object detection and segmentation is obtained. The R2 scores of phenotypic traits are
improved, but d and h are still lower than those of only RGB input. The values of MAPE
and NRMSE generally decline compared to the simple addition of RGB and depth data.
Although the depth of information enhances the model’s performance in some aspects,
there may be information redundancy in the evaluation of phenotypic traits, which affects
the overall effect of the model.

Table 6. Ablation experiment results for object detection and segmentation, and R2 scores for
phenotypic traits.

RGB Depth FRM SEF D_Pre I_FPN R_Head
DEL SEG R2

AP50:95 AP50 AP75 AP50:95 AP50 AP75 fw dw h d la
√

0.8684 0.9964 0.9854 0.8804 0.9964 0.9933 0.96 0.9596 0.9329 0.9136 0.9592√ √
0.8804 0.9955 0.9908 0.8973 0.9955 0.9955 0.9597 0.9593 0.9056 0.8731 0.9566√ √ √
0.8881 0.9969 0.995 0.9041 0.9969 0.9969 0.9628 0.9609 0.9093 0.8791 0.9605√ √ √ √
0.889 0.9968 0.9958 0.9055 0.9968 0.9968 0.9655 0.9636 0.9076 0.8828 0.9596√ √ √ √ √ √

0.8838 0.9958 0.9944 0.9041 0.9958 0.9958 0.963 0.9648 0.9109 0.884 0.9579√ √ √ √ √ √
0.8836 0.9948 0.9927 0.9002 0.9948 0.9917 0.9726 0.9727 0.9413 0.9229 0.9649√ √ √ √ √ √
0.8872 0.9983 0.9978 0.9043 0.9983 0.9983 0.9727 0.9732 0.9436 0.9229 0.9639√ √ √ √ √ √ √
0.8881 0.9979 0.9945 0.9041 0.9979 0.9969 0.9732 0.9739 0.9424 0.9268 0.9689

D_Pre, I_FPN, and R_Head represent the multi-scale convolution kernels added in front of the depth backbone
network, the improved FPN, and the phenotypic trait head using a residual structure, respectively. The symbol
‘
√

’ indicates that the model introduces this operation.

Table 7. Ablation experiment results for MAPE and NRMSE scores for phenotypic traits.

RGB Depth FRM SEF D_Pre I_FPN R_Head
MAPE NRMSE

fw dw h d la fw dw h d la
√

0.1072 0.1522 0.0757 0.0548 0.0899 0.0508 0.0518 0.0649 0.0634 0.0548√ √
0.1227 0.1721 0.1001 0.0704 0.1081 0.0485 0.0483 0.0737 0.0688 0.0486√ √ √
0.1152 0.1631 0.0958 0.0675 0.0995 0.0463 0.047 0.0717 0.0664 0.046√ √ √ √
0.1181 0.1739 0.098 0.0667 0.1029 0.0449 0.0458 0.0729 0.0659 0.047√ √ √ √ √ √
0.11731 0.1725 0.0981 0.0677 0.1049 0.047 0.0452 0.0719 0.0659 0.0478√ √ √ √ √ √
0.1104 0.1744 0.0715 0.0520 0.0935 0.04 0.0396 0.0581 0.0535 0.0436√ √ √ √ √ √
0.0971 0.1551 0.0724 0.0524 0.0871 0.04 0.0393 0.0569 0.0534 0.0443√ √ √ √ √ √ √
0.1003 0.1622 0.074 0.0516 0.0864 0.0398 0.0387 0.0577 0.0517 0.0409

D_Pre, I_FPN, and R_Head represent the multi-scale convolution kernels added in front of the depth backbone
network, the improved FPN, and the phenotypic trait head using a residual structure, respectively. The symbol
‘
√

’ indicates that the model introduces this operation.

According to the data in the last four rows, the most noticeable improvement in the
score of phenotypic traits occurs when replacing the convolutional layer of the phenotypic
trait head with a residual structure. Compared with only RGB input, the R2 scores of fw
and dw are more than 0.97, the R2 of d and h increase by nearly 0.01, and the values of
MAPE and NRMSE also generally decrease. These results show that the residual structure
can capture critical information more effectively and reduce information loss during feature
extraction, thus enhancing the model’s overall performance. Although the introduction of
the improved FPN and replacement with the residual structure (i.e., line 7) obtained the
highest AP50 and AP75, our final model achieves the best overall result in the score of the
phenotypic trait index. Moreover, the overall effect of target detection and segmentation
can be ranked second. In summary, the results of this ablation experiment not only validate
the importance of depth information in target detection and segmentation tasks but reveal
the critical impact of feature extraction structure on the evaluation of phenotypic traits.
These findings provide a valuable basis for optimizing subsequent models, and future
work can further explore how to more effectively combine data from different modes to
achieve more comprehensive and accurate phenotypic analysis.
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4.2. Category Analysis

To analyze the model’s performance on different types of lettuce in the dataset, we
detected and segmented four varieties and calculated their phenotypic traits. The index
lines of the four kinds of lettuce are presented in Figure 9. The detection’s AP50:95 scores for
the four lettuce categories are generally lower than those for segmentation, with the AP50
scores being consistent. Notably, the AP75 detection scores for Aphylion and Salanova are
lower than their segmentation scores, while the scores for the other two varieties remain
consistent. This score is consistent with what we see with our naked eyes. Although
Lugano, Aphylion, and Satine differ in color and shape, they exhibit more curled and
folded leaves, resulting in an overall clumped growth pattern. In contrast, Salanova and
Satine share similar colors but have significant differences in their leaf structures; Salanova
features flat leaves that are relatively elongated. Consequently, despite Salanova being the
most prevalent variety in the dataset, its evaluation index score is the lowest among the
four categories.
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In terms of phenotypic parameter prediction, it can be seen from the figure that there
are differences in the results obtained by different varieties. The R2 scores of dry and
fresh weight are higher than 0.96, and Aphylion shows the best performance: 0.9797 and
0.9821, respectively. Salanova’s R2 score in h and Satine’s R2 score in d are only 0.90 or less.
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MAPE and NRMSE show the same trend as the K-fold cross-validation results in five traits.
Salanova performs poorly in all other traits except for the top two evaluation indexes of
the d trait. On the contrary, Satine has the top two traits except d. Overall, Salanova is the
worst performer of the four categories.

4.3. Comparison with Other Modules

In order to thoroughly verify that our proposed module has excellent effects on the
detection, segmentation, and prediction of phenotypic traits of lettuce, we conducted a
comparative experiment with SAGate, which was proposed by Chen et al. [38], CM-FRM
and FFM proposed by Zhang et al. [40], CRM proposed by Ji et al. [43], and RGB-D Fusion
proposed by Seichter et al. [44]. Tables 8 and 9 show the results of the average value of
the five-fold cross-validation experiment for each module. The best result of each column
is marked in bold. As seen from Table 8, although our model is not optimal in terms
of speed, AP50:95 for both detection and segmentation is optimal. Table 9 shows the
results of phenotypic trait indicators. The suboptimal phenotypes rank second and have
little difference from the optimal results. Our proposed module achieves significantly
better results than other modules in most indicators, and only the MAPE index of dw
is slightly lower than other methods but still maintains a relatively close performance.
Although the running time is not dominant, our indicators are generally optimal in all
aspects. Subsequent research can improve the lightweight module.

Table 8. Results of object detection and segmentation compared with other modules.

Module
DEL SEG

Params(MB) Time(s)AP50:95 AP50 AP75 AP50:95 AP50 AP75

ours 0.8881 0.9979 0.9945 0.9041 0.9979 0.9969 229.1 0.0281
Chen et al. [38] 0.881 0.9973 0.9964 0.89936 0.9973 0.9954 167.1 0.0195
Zhang et al. [40] 0.8779 0.9928 0.9886 0.89496 0.9928 0.9912 454.9 0.0301
Ji et al. [43] 0.8583 0.9947 0.9869 0.895 0.9947 0.9929 191.5 0.0207
Seichter et al. [44] 0.8765 0.9975 0.9908 0.8961 0.9975 0.9956 166.2 0.0207

Table 9. Results of R2, MAPE, and NRMSE scores for phenotypic traits compared with other modules.

Module
R2 MAPE NRMSE

fw dw h d la fw dw h d la fw dw h d la

ours 0.9732 0.9739 0.9424 0.9268 0.9689 0.1003 0.1622 0.074 0.0516 0.0864 0.0398 0.0387 0.0577 0.0517 0.0409
Chen et al. [38] 0.967 0.9644 0.9297 0.9181 0.9632 0.1059 0.1635 0.0796 0.0531 0.091 0.0435 0.0448 0.0633 0.0543 0.0443
Zhang et al. [40] 0.9703 0.9680 0.9316 0.9130 0.9610 0.1077 0.1612 0.0806 0.0580 0.0941 0.0419 0.0429 0.0624 0.0565 0.0455
Ji et al. [43] 0.9647 0.9673 0.9268 0.9169 0.9616 0.11 0.1716 0.0829 0.0545 0.0933 0.045 0.0432 0.0645 0.0544 0.0455
Seichter et al. [44] 0.9701 0.9718 0.9365 0.9153 0.9641 0.1032 0.1547 0.0744 0.0531 0.0898 0.0414 0.0396 0.0601 0.0550 0.0438

5. Conclusions

In this study, we proposed a method for detecting lettuce objects, segmenting images,
and estimating phenotypic traits by fusing multimodal features from RGB and depth
images. We employed a dual-flow convolutional neural network to extract multi-scale
features from both modes. We used feature rectification and fusion modules for efficient
information interaction and integration. The AP50:95 scores of the model in object detection
and segmentation of lettuce were 0.8881 and 0.9041, respectively. Furthermore, it performed
exceptionally well in estimating fresh weight, dry weight, plant height, canopy diameter,
and leaf area, with predicted R2 values for fresh and dry weight reaching 0.9732 and
0.9739, respectively. The experimental results show that the fusion of multimodal data
can make up for the limitation of single-modal data and improve the prediction accuracy
and robustness of the model. Future research could focus on optimizing feature fusion
strategies and expanding the dataset to include various environmental conditions and
phenotypic analyses of other crops. At the same time, we are developing a Raspberry
Pi-based lettuce phenotype estimation system to provide an accurate growth condition
monitoring solution for lettuce cultivation in greenhouses. This study provides a new
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technical approach and practical foundation for phenotypic monitoring in crop breeding
and agricultural production.
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