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Abstract: Plant architecture is an important agronomic trait that impacts crop yield. The tiller angle is a
critical aspect of the plant’s structural organization, which is influenced by both internal and external
factors. The genetic mechanisms underlying the tiller angle have been extensively investigated
in other plants. However, research on wheat is relatively limited. Additionally, mechanics has
emerged as a connection between biochemical signaling and the development of three-dimensional
biological forms. It not only reveals how physical interactions at the cellular level influence overall
morphogenesis but also elucidates the interplay between these mechanical processes and molecular
signaling pathways that collectively determine plant morphology. This review examines the recent
advancements in the study of tillering angle in wheat and other plants. It discusses progress in
research ranging from observable characteristics to the regulation of genes, as well as the physiological
and biochemical aspects, and the adaptability to environmental factors. In addition, this review also
discusses the effects of mechanical on plant growth and development, and provides ideas for the
study of mechanical regulation mechanism of tillering angle in wheat. Consequently, based on the
research of other plants and combined with the genetic and mechanical principles, this approach
offers novel insights and methodologies for studying tillering in wheat. This interdisciplinary research
framework not only enhances our understanding of the mechanisms underlying wheat growth and
development but may also uncover the critical factors that regulate tillering angle, thereby providing
a scientific foundation for improving wheat yield and adaptability.

Keywords: Triticum aestivum L.; tiller angle; plant architecture; mechanics; monocotyledonous plants

1. Introduction

Wheat (Triticum aestivum L.) is a widely cultivated cereal crop, serving as a major
energy source for approximately 4.5 billion people worldwide [1,2]. Given the exponen-
tial expansion of the global population, enhancing wheat production to satisfy escalating
demand has been a primary objective of wheat breeders [3]. Therefore, studying plant
architecture is of great significance in improving crop yield. In the early 1920s, Engle-
dow and Wadham [4] proposed a prototype of the concept of “ideal plant architecture”,
which involved combining high-yield traits through appropriate hybridization methods to
achieve high yields. In 1968, Donald [5] first proposed the concept of “ideal plant architec-
ture”, which was a coordinated strategy for reducing competition among individuals in a
population within a specific environment. This concept involved implementing specific
cultivation measures and maximizing the transport of synthesized substances from the
source to the sink to achieve the highest possible population yield. Plant architecture is a
comprehensive agronomic trait, broadly defined as the morphological characteristics of a
plant, generally including stem, leaf, root, and spike. It is narrowly defined as mainly tall-
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stemmed, short-stalked, lax, dense, erect, and prostrate [6]. Plant architecture, as a species-
specific phenotype, is not only determined by internal factors but also influenced by
external environmental factors such as light, temperature, and population density [7].
However, genetic factors play a decisive role in determining plant architecture, which
affects photosynthetic efficiency and yield of crops [8,9]. The Green Revolution of the 1960s
represented a significant advancement in crop improvement, as it doubled global cereal
yields by modifying plant structure and creating low-straw, robust, high-yielding rice and
wheat varieties [10]. Consequently, improving plant architecture is essential for breeding
new wheat varieties with consistent and high yields.

Tillering is a unique characteristic of the Gramineae family, in which lateral shoots
grow from the main stem or base tissue of non-elongated internodes [11]. This phenomenon
is a vital aspect of above-ground plant morphology and plays a significant role in the
development and stability of grain yield [12]. Tillering is determined by the activity of shoot
apical meristems (SAM) and axillary meristems (AXM). SAM promotes upward growth
while also stimulating lateral growth, whereas AXMs are responsible for initiating lateral
branches and act as the center of the proximal-axial lateral boundary zone of leaf bases.
This separation between SAM and developing leaf primordia ensures the development
of meristematic tissues and organs that influence plant architecture [13–15]. In wheat,
the development of tillering and leaves on the main stem is usually synchronized and
comprises four developmental stages: (1) formation of axillary meristem (AM) during
embryogenesis, (2) production of one AM in each leaf axil, (3) production of leaf primordia
by AM, leading to the formation of tillering buds, and (4) growth of axillary buds to form
tillers [16].

The tiller angle is a significant aspect of plant architecture. According to the different
tillering angles, the wheat during the overwintering period was mainly categorized as erect,
semi-prostrate, and prostrate (Figure 1). Tiller angle affects the morphological structure
of plants in the above-ground part, which in turn influences the photosynthetic efficiency
of the population and the complex traits related to stress tolerance [17,18]. Plants with
a prostrate growth habit have large tiller angles, which increases competition to weeds,
reduces soil water evaporation, and improves water use efficiency, but this growth habit
also leads to a decrease in leaf photosynthetic efficiency and ventilation between plants [19].
Additionally, erect plants with smaller tiller angles exhibited increased light-harvesting
efficiency, yet demonstrated heightened susceptibility to pathogenic microorganisms [20].
Therefore, the proper tiller angle is essential for high-density wheat planting to maximize
yield. In this review, we reviewed the recent research progress on the mechanism of tillering
angle in wheat, including studies of tiller angle QTL localization, light and temperature.
In addition, this review summarized the research progress of rice and other plant-related
fields, and based on this, provided a new perspective and method for wheat. Of particular
interest is the pivotal role that mechanics plays between biochemical signaling and the
development of three-dimensional biomorphic forms. It not only reveals how physical
interactions at the cellular level shape overall morphogenesis, but also sheds light on the
complex interactions between these mechanical processes and the molecular signaling
pathways that co-determine plant morphology. Therefore, this paper also reviewed the
effects of mechanics on plant growth and development, aiming to provide new inspiration
and theoretical basis for the preliminary analysis of the mechanical regulation mechanism
of the tillering angle.
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(TraesCS5D02G322600) as a potential candidate gene for QTA.caas-5DL. Consequently, 
bulked segregant analysis (BSA) was employed to pinpoint the TaTA1-6D gene within a 
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scriptome sequencing data have indicated that TaTA1-6D may control the lignin content 
in the plant by regulating the metabolism of phenylalanine in the body, and ultimately 
regulate the phenotype of the plants (Table 1) [28]. In 2022, Liu et al. [29] used three Re-
combinant Inbred Line (RIL) populations and one inbred F2 population to Identify 
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Figure 1. Different growth habits of wheat during overwintering period.

2. Regulatory Mechanisms of Wheat Tillering Angle
2.1. QTL Mapping and Gene Analysis for Tillering Angle

The genetic basis of wheat tiller angle has presented a challenge to researchers due
to limitations such as the complexity and large size of the wheat genome, susceptibility
to environmental factors such as temperature and day length, and difficulty in accurate
characterization [21]. Therefore, research on the tillering angle of wheat is considerably
limited. In 1990, Roberts found that Vrn1 on chromosome 5A was associated with prostrate
growth habits in wheat, and speculated that Vrnl was involved in sensing temperature
and partly triggers the formation of vernalization, cold hardening and rosette growth
habits [22] (Table 1). In 2002, Li et al. [23] identified several specific quantitative trait
loci (QTL) in the 6AS, 1DS, and 2DS chromosome region. Specifically, a region near Gli-
A2 (Xpsr104) on the short arm of chromosome 6A exerts a significant influence on tiller
angle, while the photoperiod-insensitive gene Ppd-D1 promotes an erect growth habit
(Table 1). In 2016, Giraldo et al. [24] conducted a comprehensive evaluation of three
tetraploid wheat subspecies (durum, turgidum, and dicoccum) to assess three juvenile
growth habits (prostrate, intermediate, and erect). The study identified two Diversity
Array Technology (DArT) markers, wPt-6509 and wPt-1151, located on chromosomes 3A
and 3BL, respectively, and established an association between these markers and seedling
growth habits. In 2017, Liu et al. [25] identified three significant marker-trait associations
(MTAs): markers A9729 (3B, 104.14 cM), A17278 (6B, 36.84 cM), and A12079 (4A, 215.58
cM) related to the prostrate and erect traits in wheat (Table 1). In 2020, Marone et al. [26]
conducted a genome-wide association analysis, identifying several stably expressed QTLs,
including six DarT-Seq markers (D1202558, D1031337, D1395268, D1720107, D2276320, and
D1721703) located near the known vernalization genes Ppd-B1 and Vrn-A3, suggesting
that vernalization sensitivity and photoperiod response genes may significantly influence
erect/prostrate growth habits [26] (Table 1). In addition, Zhao et al. [27] identified two QTLs
associate, QTA.caas-1AL, which is positioned within a 0.5 cM region between Kasp_1A18
and Kasp_1A90, and QTA.caas-5DL, which is positioned within a 3.0 cM region between
Kasp_5D16 and Kasp_5D17, using recombinant inbred line (RIL) populations, and pro-
posed Ta-TAC-D1 (TraesCS5D02G322600) as a potential candidate gene for QTA.caas-5DL.
Consequently, bulked segregant analysis (BSA) was employed to pinpoint the TaTA1-6D
gene within a 2.8 Mb genomic interval demarcated by the SNP1 and SNP13 markers. Fur-
thermore, transcriptome sequencing data have indicated that TaTA1-6D may control the
lignin content in the plant by regulating the metabolism of phenylalanine in the body, and
ultimately regulate the phenotype of the plants (Table 1) [28]. In 2022, Liu et al. [29] used
three Recombinant Inbred Line (RIL) populations and one inbred F2 population to Identify
QTa.sau-2B-769 (768.6 to 772.1 Mb), QTa.sau-3D-603 (603.2–604.2 Mb), and QTa.sau-3D-607
(607.4–609.3 Mb) QTL, which were linked to tillering angle. Among these, QTa.sau-2B-769
emerged as a significant and consistently expressed quantitative trait locus for tiller angle,
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with TraesCS2B01G583800 being identified as a potential candidate gene [29] (Table 1).
In addition, Liu et al. [30] identified specific genomic regions, including 2B (91–92.6 Mb,
663.1–664.2 Mb), 3D (602.8–606.7 Mb), 4A (41.4–46.2 Mb), 5A (688.9 Mb), 5B (696.7–697
Mb), and 6A (23.8–24.4 Mb). Notably, 2B (91–92.6 Mb, 663.1–664.2 Mb), 3D (602.8–606.7
Mb), 5A (688.9 Mb), and 5B (696.7–697 Mb) were identified as potentially novel regions.
Furthermore, candidate genes TraesCS2B01G123800 and TraesCS4A01G055000, encoding
the C2H2 zinc finger and leucine-rich repeat receptor protein kinase, were pinpointed for
the loci 2B (91.0–92.6 Mb) and 4A (41.4–46.2 Mb), respectively (Table 1) [30]. Recently,
QTA.hau-4B.1, QTA.hau-4B.2, and QTA.hau-4D were identified as QTLs in wheat, with
QTA.hau-4B.1 being particularly noteworthy for its consistent and significant impact as the
most influential QTL, and TraesCS4B02G049700 has been identified as a potential candidate
gene associated with this locus [31].

Table 1. QTLs and genes related to the tillering angle in wheat.

QTL/Genes Chromosome Position Reference

Vrn1 5A - [22]

Near Gli-A2 (Xpsr10) 6A - [23]Ppd-D1 2D -

wPt-6509 3A - [24]wPt-1151 3B -

A9729 3B 104.14 cM
[25]A17278 6B 36.84 cM

A12079 4A 215.58 cM

S1133336 2A 217.5–219.7 cM

[26]

D1202558 2B 60.3–64.7 cM
D2294169 2B 65.1 cM
D1137224 2B 117.7–124.3cM
D1271842 3A 0.6–6.5 cM
D1266232 3B 19.7–29.4 cM
S1049173 3B 68.2–75.3 cM
D1665929 4A 37.1–39.8 cM
D1110414 4B 0–3 cM
D1395268 4B 132.4–138 cM
D1720107 4B 138.4 cM
D2276320 5A 164.3–168.9 cM
D1721703 5A 168.6 cM
D1076422 6A 185.2–191.1 cM
D2289020 6B 35.5–36.8 cM
D2295851 7A 91.2–92.4 cM
D1031337 7A 91.2–92.4 cM
D1112046 7B 181.9–188.8 cM

QTA.caas-1A 1A 308.8–356.7 Mb [27]QTA.caas-5DL 5D 408.6- 418.4 Mb

QTa.sau-2B-769 2B 768.6–772.1 Mb
[29]QTa.sau-3D-603 3D 603.2–604.2 Mb

QTa.sau-3D-607 3D 607.4–609.3 Mb

AX-110938146-AX-
110053306 2B 91–92.6 Mb

[30]

AX-111761871-AX-
109015706 2B 663.1–664.2 Mb

AX-108838201-AX-
110788038 3D 602.8–606.7 Mb

AX-109626990-AX-
108746349 4A 41.4–46.2 Mb

AX-108910180 5A 688.9 Mb
AX-109887203-AX-

108772938 5B 696.7–697 Mb

AX-111577272-AX-
109955515 6A 23.8–24.4 Mb

QTA.hau-4B.1 4B 32,415,741–38,780,285 bp
[31]QTA.hau-4B. 4B 51,187,994–65,940,855bp

QTA.hau-4D 4D 11,870,078–16,588,296 bp

TaTAC1-A1 5A [32,33]

TaHST1L 5A [3]

TaTA1-6D 6D 467.31–470.10 Mb [28]
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However, the extant research on the mechanisms underlying wheat tillering angle is
confined to a limited number of QTLs, and the functional examination of candidate genes
has been the subject of only a modest number of studies. TILLER ANGLE CONTROL1
(TaTAC1), a homologous gene of rice TAC1, was positively regulated tillering angle at
m-RNA level, and it may be involved in auxin polar transport process to change the size of
tillering angle [32]. In addition, it was also found that TATAC1-A1 was the main allele for
TATAC1 function, and promoter region analysis showed that a 242 bp insertion/deletion
polymorphism in the promoter region of cultivar wheat with larger tiller angle and smaller
tiller angle [33]. In recent years, through a synergistic approach combining genome-wide
association studies (GWAS) and bulk segregation analysis (BSA), the deacetylase HST1-like
(TaHST1L) gene has been identified as a potential regulator of wheat tillering angle [3].
This gene is hypothesized to mediate auxin signal transduction and modulate endogenous
growth hormone levels. Transgenic plants overexpressing (OE) TaHST1L demonstrated
significantly enlarged tiller angles and an increase in tiller numbers in both winter and
spring wheat varieties. In contrast, plants with TaHST1L-silenced RNAi exhibited markedly
reduced tiller angles and a decrease in tiller numbers [3].

2.2. Regulation of Tiller Angle Plasticity in Wheat

The phenotypic plasticity of plants is an ecological adaptation to dynamic changes
in the external environment, aiming to achieve maximum fitness, and it is the most direct
external expression of crop trade-off characteristics [34]. Plants are frequently subjected to
fluctuating environmental conditions, and their cellular components perceive these environ-
mental stimuli, thereby initiating a cascade of responses that drive the adaptive evolution
of the plant species [35]. Adaptation is a long-term evolutionary process, whereas domesti-
cation is a comparatively short-term process that aids plants in overcoming stress [36]. Both
adaptation and domestication processes contribute to the elimination of environmental
stress and ensure plant survival. Moreover, tiller angle is a type of plant architecture, and
environmental factors play an important role in determining it [37]. Agronomists and
winter wheat breeders have long been aware that, with some exceptions, tender winter
wheats typically have an erect growth habit, while some very cold-hardy winter wheats
exhibit a prostrate or rosette growth habit in the field in autumn [38]. Klages [39] demon-
strated that there was no absolute relationship between cold tolerance and different tiller
angle. Nonetheless, prostrate wheat cultivars generally showed greater cold tolerance,
lower biomass, and smaller leaf areas than erect cultivars, and empirical research indi-
cated that tillering angle in wheat seedlings was significantly temperature-dependent, with
cooler temperatures promoting a prostrate growth habit [26]. Light is one of the important
environmental signals that regulate plant growth and development [40]. The erect and
prostrate growth habits of wheat are associated with light. Studies have showed that the
prostrate growth habit of wheat does not depend on photoperiod, as it can develop under
photoperiods of 10, 16, or 24 h [41]. But it was closely related to light intensity, and the light
intensity required to induce prostrate-type growth is dependent on the photoperiod. For
instance, 16 klux was sufficient to produce prostrate growth with a 24 h exposure per day,
but it was not sufficient under 8 or 16 h of exposure per day [41]. Besides, under a given
photoperiod, expression of this trait intensified as light intensities increased. Therefore,
to produce cold-hardy winter wheat varieties in a growth cabinet with the typical rosette
habit, air temperatures must be in the hardening range and total daily incident light energy
above a threshold which is in the order of the energy provided by 350 klux·h·day−1 of
cool-white fluorescent plus incandescent light [41].
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3. Regulation Mechanism of Tillering Angle in Other Plants

In comparison with other agronomic traits such as plant height and tillering number,
research on tillering angle lags behind, with a limited number of reports available. Rice
stands as the pioneer crop in tillering angle studies and remains at the forefront of research
in this domain. Extensive work has been conducted on the QTL mapping, gene cloning,
and elucidation of the molecular regulatory mechanisms governing tillering angle [42–46].
The Tiller Angle Control 1 (TAC1) gene was identified as the first gene, which is composed of
5 exons and 4 introns encoding 259 amino acids in total [20]. The OE of TAC1 leads to an
increase in tiller angle, whereas the loss of TAC1 function reduces tiller angle, which has
made a significant contribution to the development of high-yielding rice varieties [20,47].
Tiller Angle Control 3 (TAC3), which encodes a conserved hypothetical protein that regulates
tiller angle, is preferentially expressed at the tiller base, and mutants deficient in TAC3
exhibit a large tiller angle [18]. The TILLER INCLINED GROWTH 1 (TIG1), encoding
a TCP transcriptional activator, is mainly expressed in the upper side of the tiller base,
where it promotes cell elongation to control tiller angle by activating the expression of
SMALL AUXIN UP-RNA 39 and the expansin genes EXPA3 and EXPB5 [48]. However,
it is interesting that TIG1 allele acts additively with the TAC1 allele and that the TIG1
allele may partially offset the effects of TAC1 to produce an optimal tiller angle in indica
cultivars [48]. In addition, some genes related to the domestication of rice tiller angle play a
key role in the transition from prostrate to erect. For example, several C2H2-type zinc finger
transcription factors, including PROSTRATE GROWTH 1 (PROG1), PROSTRATE GROWTH
7 (PROG7), and RICE PLANT ARCHITECTURE DOMESTICATION (RPAD), have been
identified as playing a role in the shift from prostrate to erect growth in the process of rice
domestication (Table 2) [49–52]. The PROG1 and PROG7 genes are situated within the
zinc finger transcription factor genes on chromosome 7 of rice [49,51]. The PROG1 gene
has experienced significant artificial selection, leading to the transition from the prostrate
growth characteristic of the PROG1 allele in Asian wild rice to the erect growth trait in
Asian cultivated rice, while the shift from prostrate to erect growth in African rice during
domestication was regulated by PROG7 (Table 2) [49–51]. Similarity, a 110-kb deletion and
a 113-kb deletion at the RPAD locus also were contributed to the prostrate-to-erect growth
habit transition in in Asian and African cultivated rice, respectively (Table 2) [52]. These
studies have an important guiding role and reference significance for the genetic research
of wheat tillering angle.

Table 2. Genes associated with tiller angle in rice domestication.

Gene Accession
Numbers

Gene Product
Function

Transgenic
Method Phenotype Reference(s)

PROG1 LOC_Os07g05900 C2H2 transcription
factor Knockdown Small tiller angle [50,51]

PROG7 - C2H2 transcription
factor Overexpression Large tiller angle [49]

RPAD - C2H2 transcription
factor

Functional
complementation Small tiller angle [52]

TAC1 LOC_Os09g35980 IGT family protein Overexpression Wider tiller angle [20,32,53,54]

TAC3 LOC_Os03g51660
Conserved

hypothetical
protein

Knockdown Wider tiller angle [18]

TIG1 LOC_Os08g33530
TCP

transcriptional
activator

Knockdown Small tiller angle [48]
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3.1. Regulation of Rice Tiller Angle by Shoot Gravitropism

Gravity is a significant environmental factor that regulates plant growth and mor-
phogenesis [55]. The gravity response is a phenomenon in which plants reposition and
grow in response to gravity stimulation in order to maintain the optimal angle between
each organ and the direction of gravity [56]. The response of plants to gravity primarily
involves the induction of gravity signals, the transduction of these signals, and the bending
of organs [57]. The starch-statolith hypothesis was proposed one hundred and twenty years
ago, in which sedimentation of amyloplasts was considered to initiate gravity sensing [58].
In Arabidopsis thaliana, it has been demonstrated that root columella cells and stem endo-
dermis cells are important sites for sensing gravitational stimulation, thereby regulating
stem gravitropism and branch angle [59,60]. In rice, the perception of gravity is attributed
to amyloid, and the deposition of amyloid affects the tillering angle of rice [61,62]. Loose
Plant Architecture1 (LPA1), an indeterminate domain protein involved in shoot gravitropism,
regulates the sedimentation rate of amyloplasts in the coleoptile to influence gravity percep-
tion and signal transduction, thereby affecting tillering angle, with overexpression of the
LPA1 gene leading to a decrease in rice tillering angle (Table 3 and Figure 2) [19]. However,
ONAC10, which belongs to the family of NAM/ATAF1/ATAF2/CUC2 (NAC) transcription
factors, inhibits LPA1 transcription by directly binding to its promoter region, leading to an
increased tillering angle (Table 3) [63].

In recent years, the continuous development of genomics has laid the foundation for
studying the tiller angle. Transcriptomic and proteomic analysis of the erect stem and
the prostrate of bermudagrass showed that there were significant differences in starch
accumulation between them [64–66]. Amyloplasts are rich in starch, and it is speculated
that genes involved in starch metabolism can regulate stem gravitropism and affect tillering
angle by modulating gravity perception. ADP-glucose pyrophosphorylase (AGP) is one of
the key enzymes in starch synthesis [67]. The gene OsAGPL1, which encodes the large
subunits of AGP, has been discovered to reduce the gravity response of rice shoots by sup-
pressing starch synthesis in stems, resulting in an increased tiller angle [68] (Table 3). The
CO2-Responsive CONSTANS, CONSTANS-like, and Time of Chlorophyll a/b Binding Protein1
(CCT) Protein (CRCT) is a positive regulator of starch accumulation in rice nutrient tissue,
and CRCT-overexpressing transgenic lines exhibit an increased tiller angle (Table 3) [69].
Furthermore, genes involved in starch metabolism such as Arabidopsis phosphoglucomu-
tase encoding gene phosphoglucomutase (PGM) and STARCH EXCESS 1 (SEX1) could
regulate plant gravitropism via modulating gravity perception [70–73]. The study illus-
trated that the loss of function mutant of STARCH EXCESS 1 (SEX1), which encodes a
starch-related alpha-glucan/water dikinase, exhibited excess starch accumulation in both
the hypocotyl and the inflorescence stem in Arabidopsis, resulting in enhanced sensitivity to
gravity [74]. The PGM gene, encoding a starch biosynthesizing enzyme, catalyzes the con-
version of glucose-6-phosphate (G6P) to glucose-1-phosphate (G1P) [75]. Loss-of-function
mutant of OspPGM leads to impaired starch biosynthesis and an increased tillering angle
in rice (Table 3 and Figure 2) [76]. Recently, A novel gene, LAZY2 (LA2), which encodes a
chloroplast-localized protein, has been identified to specifically modulate starch biosynthe-
sis in gravity-sensing cells (Table 3) [70,76]. The loss-of-function of LA2 leads to few starch
granules, which in turn decreases the magnitude of shoot gravitropism resulting in loose
plant architecture (Figure 2) [76]. The LAZY3 (LA3) gene encodes a tryptophan-rich protein
localized in the chloroplasts and forms a complex with LA3-LA2-OspPGM, which includes
starch biosynthesis regulators LA2 and OspPGM (Table 3 and Figure 2) [77]. This complex
is involved in regulating starch biosynthesis in rice gravity-sensing tissues, amyloplast
sedimentation, and negatively regulates the tillering angle of rice (Figure 2) [77]. Moreover,
other genes play an important role in regulating the change of tillering angle in rice. Os-
PIL15, a phytochrome-interacting factor (PIF) in rice, exerts a negative regulatory effect on
tillering angle by reducing shoot gravitropism, as evidenced by OsPIL15-overexpressing
plants which exhibit a smaller tiller angle associated with enhanced shoot gravitropism
(Table 3) [78]. OsbZIP49, a member of the bZIP family of TGA-like transcription factors,
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plays a pivotal role in regulating tillering angle in response to gravity in rice buds; overex-
pression of OsbZIP49 leads to an increased tillering angle, whereas CRISPR/Cas9-mediated
knockout of OsbZIP49 results in a decreased tillering angle [79].
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Figure 2. A Core Regulatory Pathway Controlling Rice Tiller Angle Mediated by the LA1-Dependent
Asymmetric Distribution of Auxin. Note: The red arrow denotes positive regulation, while the
blue arrow denotes negative regulation. Loss of LA1 function enhances PAT, leading to an uneven
distribution of auxin, which induces asymmetric expression of auxin response factors WOX6 and
WOX11, reduces stem gravity, and results in an increased tiller angle. HSFA2D, an upstream positive
regulator of LA1-dependent auxin asymmetrical distribution, reduces the expression of the LA1 gene
when its function is lost. HOX1 and HOX28 are positive regulators upstream of HSFA2D, regulating
tillering angle by inhibiting the HSFA2D-LA1 pathway and controlling the asymmetric distribution of
auxin, thereby increasing the tillering angle. BRXL4, a LA1-interacting protein, affects the localization
of LA1 and the tiller angle through physical interaction. Normally, a lower OsBRXL4/LA1 ratio
maintains a smaller tiller angle; however, an increase in OsBRXL4 leads to a gradual increase in the
tillering angle due to decreased nuclear localization of LA1. The LA3-LA2-OspPGM complex acts on
the same pathway upstream of LA1 to mediate the asymmetric distribution of auxin and negatively
regulate the tillering angle of rice. Loss of OsPINb function promotes PAT, resulting in an increased
tiller angle, while overexpression of OsPIN2 leads to an increased tiller angle by inhibiting LA1. The
OsmiR167a-OsARF12/17/25 module regulates the tiller angle through auxin-mediated asymmetric
distribution of WOX6 and WOX11.
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Table 3. Regulatory genes associated with tiller angle and stem gravitropism in rice.

Gene Accession
Numbers

Gene Product
Function

Transgenic
Method Phenotype Reference(s)

AGPL1/3 LOC_Os05g50380
LOC_Os03g52460

Subunit of
ADP-glucose Knockout Large tiller angle [68]

LPA1 LOC_Os03g13400 Indeterminate
domain protein RNAi Large tiller angle [19,80]

ONAC106 LOC_Os08g33670 NAC transcription
factor Overexpression Large tiller angle [63]

CRCT Os05g0595300 Contains a CCT
domain Overexpression Large tiller angle [69]

OsPIL15 Os01g0286100
Phytochrome-

interacting
factors-like 15

Overexpression Smaller tiller angle [78]

LAZY2 LOC_Os02g08380 YbaB-like RNAi Small tiller angle [76]

OsbZIP49 LOC_Os06g41100
Leucine zipper
transcription

factors
Overexpression Large tiller angle [79]

OspPGM LOC_Os10g11140 phosphoglucomutase Knockdown Large tiller angle [70,76]

LA2 LOC_Os02g08380 YbaB-like RNAi Large tiller angle [76]

LA3 LOC_Os03g04100

Chloroplast-
localized

tryptophan-rich
protein

knockout Large tiller angle [77]

3.2. Microstructure Plasticity in the Regulation of Tillering Angle

The structure of plants serves as the foundation for their function, and any alterations
in structure can have an impact on their physiological and ecological functions. Throughout
the extended process of plant evolution, specific morphological structures and functional
traits have gradually developed to address the intricate environmental changes [81]. Mi-
crostructural characteristics are pivotal in dictating the adaptive capacity and physiological
functions of plants in specific environmental contexts. Nonetheless, the extant research
on the microstructural underpinnings of tillering angle remains scarce. Studies on the
erect and prostrate growth habits of rice have demonstrated that the tiller base of prostrate
varieties exhibits asymmetric growth, with the near-ground border was longer than that
of the far-ground border, whereas the tiller base of erect varieties displays symmetrical
development [51]. Histological analyses revealed no significant difference in cell size be-
tween the near-ground border and the far-ground border of the erect varieties [51]. The
result indicated that the longer near-ground border, which led to erect growth, should be
attributable to an increase in cell number [51]. Meanwhile, investigations into the prostrate
and erect growth habits of alfalfa and Bermudagrass have revealed that the stem diameter
and the degree of lignification in the internode vascular bundles and mechanical tissues
of erect varieties were significantly greater than those of prostrate varieties [64,82]. In
wheat, the microstructure of different tiller angles at the jointing stage revealed significant
differences in cell size and alignment between erect and prostrate varieties. The base cells
of the prostrate varieties were uniformly arranged and larger in size, whereas the cells of
the erect varieties were smaller and more scattered. Additionally, the vascular tissue of the
erect varieties was considerably smaller than that of the prostrates [28].
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3.3. Cell Wall Plasticity in the Regulation of Tillering Angle

The plant cell wall is a natural nanoscale network structure primarily composed of
polysaccharide polymers, including cellulose, hemicellulose, pectin, glycoproteins, and
lignin [83]. The composition and arrangement of cell walls vary across species, tissues, and
cells, exhibiting a high degree of diversity and complexity that affects cell wall structure and
function [84]. Cellulose is a glucan chain formed from β-D-glucose units connected by β-
1,4-glycosidic bonds to form cellulose microfilaments, which is the basic skeleton of the cell
wall [85,86]. As well as, cellulose is an important component of constituent of both primary
and secondary cell walls, serving to safeguard and reinforce the structure of plant cells [87].
Lignin is a complex aromatic polymer and an important component of plant secondary
cell walls [88]. The content of cellulose and lignin plays an important role in the structural
rigidity and mechanical support of plant tissues [87]. The correlation analysis conducted by
the researchers on the mechanical parameters and cellulose content of both brittle and non-
brittle barley revealed a significant relationship between the maximum bending stress of
grass stems and the cell wall cellulose content (r = 0.93) [89,90]. The findings indicated that
lower cellulose content was associated with increased brittleness, and that an 80% reduction
in vitex content resulted in a twofold decrease in breaking strength [91]. In addition, a
severe lignin mutant, irx4, has been identified in Arabidopsis thaliana due to its collapsed
xylem phenotype, which exhibited 50% less lignin compared to wild-type plants, while
the cellulose and hemicellulose content remained unchanged [92]. The regression analysis
of stem bending modulus and maximum yield stress at yield and lignin content between
irx4 mutant and wild type showed that both bending modulus and maximum yield stress
at yield both rose significantly with increasing lignin content., indicating the importance
of lignin’s contribution to each of these mechanical properties [92]. Transcriptomic and
proteomic analysis showed that lignin biosynthesis may be related to upright growth habit
in bermudagrass [64–66]. Concurrently, it was found that the content of lignin and cellulose
in the erect stems and prostrate of Medicago ruthenica was significantly higher than that in
the prostrate, and transcriptome sequencing indicated that the biosynthetic pathways of
cellulose and lignin might account for the different stem types in Medicago ruthenica [82].
In the biosynthesis of lignin, laccases participate in the polymerization and cross-linking
process of lignin by oxidizing monolignols, which is a key step in the formation of plant
cell walls [93,94]. The role of laccase in stem lignification has been clearly demonstrate.
In Arabidopsis, loss of function of LAC4 and LAC17 resulted in reduced lignin content in
the stem, and the LAC4 LAC17 LAC11 triple mutant resulted in severe retardation of plant
growth and vascular development [95,96]. The miR397 has been identified to directly target
laccase transcripts in Arabidopsis, Populus trichocarpa and rice [97–99]. In Arabidopsis,
the OE of miR397b results in a decrease in lignin deposition, whereas the OE of miR397b-
resistant laccase mRNA leads to an opposite phenotype [100]. In rice, the mir397 laccase
gene regulatory module can also alter lignification and promote upright stem growth [101].
In Medicago ruthenica, the MrLAC17, which is significantly expressed in erect growth stems,
was identified as the target of mr-miR397a [82]. Low abundance of miRNA397a in erect
stem resulted in reduced cleavage of MrLAC17 transcript, leading to high expression of
MrLAC17 compared to that in the prostrate-stem [82].

Pectin, a highly intricate polysaccharide, interacts with cellulose and hemicellulose to
create a complex cell wall structure. It serves as the primary component of the cell wall in
monocotyledonous and dicotyledonous plants, and is crucial for cell adhesion and cell wall
plasticity [102]. Homogalacturonan (HG), which are major components of the primary cell
wall, possess the potential for modifications such as methyl-esterification and can also form
cross-linked structures with divalent cations [103]. HG undergoes polymerization at the
Golgi apparatus through the action of glycosyltransferases, and is subsequently substituted
with a methyl group at the C6 position [104]. Then, it is then secreted into the cell wall in a
highly methyl-esterified state, where it undergoes de-methyl-esterified by pectin methyl-
esterase (PME), leading to the presence of various methyl-esterification degrees [105,106].
The non-homogeneous distribution of HG of various methyl-esterification degrees has an
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impact on the growth and differentiation of plant cells and organs. The study revealed
that the cell wall of the most rapidly growing section of the Arabidopsis inflorescence stem
contains a greater amount of pectin and a higher level of methyl-esterification degrees [107].
The elongation pollen tube tip was significantly correlated with the degree of methyl-
esterification. Within the pollen tube, the Golgi apparatus transports secretory vesicles
along with highly methylated pectin and pectin methyl esterase to the apex of the pollen
tube, facilitated by the apical F-actin [108]. The rapid elongation of the pollen tube tip is
associated with the existence of highly methyl-esterified state, while the slower growth
in the stem region of the pollen tube is attributed to the presence of de-methyl-esterified
degrees [109]. The decrease in methyl-esterification degrees resulted in a slowed growth
rate of the pollen tube tip. When the expression of the PME genes were inhibited, the
expansion of the pectin cell wall was also restricted, leading to the cessation of pollen tube
growth [108,110,111]. Simultaneously, the leaf dorsoventral of Arabidopsis and tomato
leaves showed asymmetric growth. Studies have shown that the asymmetric growth of
leaves is due to the different methyl-esterification status of cell wall pectin on the leaf
dorsoventral (adaxial-abaxial), resulting in the non-uniformity of cell wall elasticity, and
thus the formation of asymmetrical growth of leaves [112,113]. Similarly, our study of
prostrate wheat showed significant asymmetrical growth at the tiller base of the stem,
similar to the asymmetrical growth of Arabidopsis and tomato leaves. Therefore, we
speculate that it is also possible that the degree of methyl-esterified on the near side
and the far side of the stem is different, leading to the mechanical heterogeneity on both
sides, inducing the expression of related genes and leading to the prostrate growth habit.
However, this is only a conjecture and needs to be further studied.

3.4. Regulation of Tillering Angle by Endogenous Hormones

The growth and development of plants are influenced by numerous internal and external
factors. Over the course of long-term domestication, a system has gradually evolved to re-
spond to developmental and environmental signals [114]. Plant hormones and small signaling
molecules are organic compounds produced by plant metabolism that can elicit significant
physiological effects at very low concentrations [115–117]. These molecules are of great im-
portance for the regulation of biological processes and the response to environmental stimuli.
Plant endogenous hormones are produced within plant tissues and induce the expression
of various genes through signal transduction processes, including the reception of hormone
receptors with varying affinities, protein-protein interactions, post-translational modifications,
and modulation of transcription factor (TF) activity [118,119]. Auxin, Strigolactones (SLs) and
brassinosteroids (BRs) play an important role in the regulation of tillering angle in rice [120].

3.4.1. Auxin and Tiller Angle

Auxin is widely acknowledged as a key determinant of plant structure [121,122].
Auxin is primarily synthesized in the apical meristems and young leaves of the above-
ground plant parts, and it reaches the target site through Polar Auxin Transport (PAT) to
modulate plant growth, development, and architecture [123]. PAT and the asymmetric
distribution of auxin are the basis of tiller angle change in rice [15]. Studies have demon-
strated that PLANT ARCHITECTURE AND YIELD 1 (PAY1) can affect PAT, change the
distribution of endogenous auxin, optimize plant structure and increase rice yield, and
overexpression of PAY1 leads to decrease of tiller angle (Table 4) [124]. In addition, genes
involved in auxin transport and redistribution under gravity stimulation play important
roles in the regulation of stem gravitropism and tiller angle in rice [120]. Therefore, we
established a control network for tiller angle with LA1 as the central component (Figure 2).
The LAZY1 (LA1) is thought to regulate the gravitropism of rice shoot through the negative
regulation of PAT, thereby controlling tiller angle [125,126]. The loss of LA1 function has
been observed to significantly enhance PAT and alter the distribution of endogenous IAA
within the shoot, which results in a reduced gravitational response and an increased tiller
angle (Table 4 and Figure 2) [125]. LA3-LA2-OspPGM complex negatively regulate tiller
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angle in the same pathway acting upstream of LA1 to mediate asymmetric distribution of
auxin (Figure 2) [77]. In addition, Brevis Radix Like 4 (BRXL4) is a protein that interacts
with LA1 on the plasma membrane within the cytoplasm and controls the tillering angle
of rice by influencing the nuclear localization of LA1 (Figure 2) [127]. Overexpression
of OsBRXL4 leads to enhanced PAT, which alters the distribution of IAA, regulates the
downstream asymmetric expression of WOX6 and WOX11, and increases the tillering angle
(Table 4 and Figure 2) [127]. In Arabidopsis studies, BRXL4 may negatively regulate LA1
by transferring it from the plasma membrane to the nucleus [128]. It is speculated that
BRXL4 overexpression may transfer more LA1 from the plasma membrane to the nucleus,
where its EAR domain inhibits its own expression, resulting in weak gravitropism and wide
branch angles [128]. HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) has the same
function as LA1 in regulating auxin redistribution under gravity stimulation, and HSFA2D
is an upstream positive regulator in the LA1-dependent asymmetric auxin pathway in
controlling tiller angle (Figure 2) [17]. Loss of HSFA2D function leads to decreased LA1
gene expression, resulting in asymmetric distribution of auxin in stem base, which induces
asymmetric expression of two functionally redundant transcription factors USCHEL RE-
LATED HOMEOBOX6 (WOX6) and WOX11, resulting in increased tiller angle (Table 4 and
Figure 2) [17]. Two class II homeodomain-Leu zipper genes, OsHOX1 and OsHOX28, act as
upstream positive regulators of HSFA2D and LA2, which regulate tiller angle (Table 4 and
Figure 2) [129]. They inhibit the HSFA2D-LA1 pathway by binding to the CAAT [G/C]ATTG
binding site in the HSFA2D promoter, resulting in an increase in tiller angle (Table 4 and
Figure 2) [129]. Furthermore, auxin response factors (ARFs) are a class of transcription
factors that specifically bind to the AuxRE element with the sequence TGTCTC in the
promoters of early auxin response genes, mediate auxin signal transduction, and ultimately
regulate plant growth and development [130]. The research has demonstrated that single
mutants of OsARF12, OsARF17, and OsARF25 exhibit modest increments in tiller angles
(Table 4) [131]. In contrast, double mutants of OsARF12/OsARF17 and OsARF12/OsARF25
display a markedly enhanced increase in tiller angle (Table 4) [131]. OsARF12, OsARF17
and OsARF25 are the promising target genes of OsmiR167a [132,133]. Overexpression
of OsMIR167a results in larger tiller angle in rice [131].The OsmiR167a-OsARF12/17/25
modules regulated tiller angle via the auxin-mediated asymmetric distribution of WOX6
and WOX11 (Figure 2) [131].

At the cellular level, PAT arises from the imbalanced distribution of AUX1 gene-
encoded auxin input vectors and PIN gene family-encoded auxin output vectors [134,135].
It has been determined that both PIN1b and PIN2 participate in auxin-dependent regula-
tory pathways that modulate the tillering angle in rice, yet they are implicated in distinct
regulatory mechanisms [136,137]. The loss of function of the OsPINb promotes PAT, re-
sulting in an increased tiller angle (Table 4) [136]. Over-expression of OsPIN2 leads to
increased tiller angle through suppression of OsLA1 (Table 4 and Figure 2) [137]. The
α1,3-fucosyltransferase-1 (FucT-1) catalyzes the transfer of fucose from GDP-fucose to
asparagine-linked GlcNAc of the N-glycan core in the medial Golgi, a function it shares
with OsPINb (Table 4) [138]. They demonstrate that reduced basipetal auxin transport and
low auxin accumulation at the base of the shoot in FucT-1 account for both the reduced
gravitropic response and the increased tiller angle (Table 4) [138]. Notably, a novel gene,
Tiller Angle Control 4 (TAC4), regulates tillering angle in rice. The mutation in TAC4 de-
creased the endogenous auxin content, ultimately leading to reduced gravitropism and a
tiller-spreading phenotype (Table 4) [9].
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3.4.2. Other Plant Hormones and Tiller Angle

In addition to auxin, other phytohormones, such as SLs and BRs also participate in the
regulation of plant gravity response via directly or indirectly regulating the PAT [139]. SLs, a
novel group of terpenoid lactones identified in higher plants in recent times, are significant in
the regulation of tiller angle [140,141]. DWARF3 (D3), an F-box component of the SKP–Cullin–
F box (SCF) E3 ubiquitin ligase complex, is essential for SLs signal perception [142]. The loss
of D3 gene function resulted in a more compact tillering angle than LA1 plants, but a larger
tillering angle than wild-type plants, suggesting that D3 can rescue the spreading phenotype of
LA1 (Table 4) [143]. Furthermore, research examining the signal transduction and biosynthetic
pathways of SLs in D14 and D27 mutant has revealed that SLs predominantly suppress
auxin biosynthesis, diminish local auxin levels, and attenuate the gravitational influence
on the tillering angle in rice buds [143]. Although SLs and LA1 both function as negative
regulators of polar auxin transport, SLs do not modulate the transverse auxin transport at the
aboveground node, in contrast to LA1, which acts as a positive regulator of transverse auxin
transport in rice [143]. The results show that SLs and LA1 gene are involved in regulating
aboveground gravity and tiller angle through distinct genetic pathways. BRs, established
as potent regulators of plant growth, are ubiquitously present in the floral, stem, and root
tissues of plants, where they exert substantial physiological effects [144]. OsLIC, identified as
a novel CCCH-type zinc finger protein endowed with transcriptional activation capabilities,
plays a pivotal role in modulating the architectural development of rice through BRs signaling
pathways [145]. Suppression of OsLIC expression results in an increase in tillering angle in rice
through modulation of the BR signaling pathway (Table 4) [145]. Furthermore, the tillering
angle in DWARF2 (D2) mutants, which are characterized by a deficiency in cytochrome P450
and are encoded by the rice BR biosynthetic gene, was found to be smaller compared to that of
the wild-type plants [18]. Although the regulation mechanism of plant hormones on tillering
angle of wheat has not been reported, these studies can provide important guidance guiding
role and reference significance for the genetic research of wheat tillering angle.
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Table 4. Genes related to plant endogenous hormones of tillering angle.

Gene Accession Numbers Gene Product Function Transgenic Method Phenotype Reference(s)

PAY1 LOC_Os08g31470 Plant architecture and yield Knockdown Large tiller angle [124]

LA1 LOC_Os11g29840 IGT family protein Knockdown Large tiller angle [125,126,146–150]

HSFA2D LOC_Os03g06630 Heat stress transcription factor RNAi Large tiller angle [17]

WOX6/11 LOC_Os03g20910/LOC_Os07g48560 WUSCHEL-related homeobox Knockdown Large tiller angle [17]

BRXL4 LOC_Os08g36020 Plant-specific Brevis Radix Like 4 Overexpression Large tiller angle [127]

OsHOX1 Os10g0561800 HD-ZIP II transcription factor Overexpression Large tiller angle [129]

OsHOX28 Os06g0140400 HD-ZIP II transcription factor Overexpression Large tiller angle [129]

OsPIN2 LOC_Os06g44970 auxin efflux carrier Overexpression Large tiller angle [137]

OsPIN1b LOC_Os11g04190 auxin efflux carrier Large tiller angle [151]

TAC1 LOC_Os09g35980 IGT family protein Overexpression Large tiller angle [20,53,54]

Fuct-1 Os08g0472600 α1,3-fucosyltransferase Knockdown Large tiller angle [138]

OsMIR167a MI0000676 MicroRNA Overexpression Large tiller angle [131]

OsARF12 LOC_Os04g57610 auxin response factor Knockdown Large tiller angle [131]

OsARF17 LOC_Os06g46410 auxin response factor Knockdown Large tiller angle [131]

OsARF25 LOC_Os12g41950 auxin response factor RNAi Large tiller angle [131]

OsGRF7 Os12g0484900 Plant-specific transcriptional
regulator Overexpression Small tiller angle [152]

OsLIC Os06g0704300 Novel CCCH-type zinc-finger
protein Antisense Large tiller angle [145]

D2 LOC_Os01g10040 cytochrome P450 Knockdown Small tiller angle [18]

TAC4 LOC_Os02g25230 Conserved protein with
unknown function RNAi Large tiller angle [9]

D3 LOC_Os06g06050
An F-box component of the
SKP–Cullin–F box (SCF) E3

ubiquitin ligase complex
RNAi Large tiller angle [143]
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4. Mechanical Regulation of Asymmetric Plant Growth

The investigation into the mechanisms by which the orchestrated behavior of plant
cellular constituents determines the morphogenesis and three-dimensional architecture
of organs and tissues represents a pivotal and enduring inquiry within the biological sci-
ences [153]. Whereas organ shapes are encoded by the genome, it is largely unknown how
gene activities are translated into variations in cell growth and tissue deformation. How-
ever, the research showed that mechanical forces are a key component in the relationship
between gene activity and organ shape [154]. In the process of plant development, environ-
mentally related mechanical factors such as precipitation, wind, gravity, touch, sound, and
vibration can influence plant growth and development, leading to morphological changes
in plants [155]. For instance, soil strength affects the penetration of roots. This affects
various aspects of root development, including root length, density, angle of divergence,
curvature, and compensatory growth mechanisms, ultimately culminating in the formation
of distinct root architectures [156]. In addition, mechanical stimulus-induced gene expres-
sion is significant [157]. Such as, about 2.5% of the genome in Arabidopsis thaliana encoding
calcium-binding proteins, cell wall modifying enzymes, kinases, and transcription factors
are upregulated at least twice within 30 min after touch stimulation [158]. Therefore, the
study of the mechanical regulation mechanism of the three-dimensional structure of plant
organs and tissues has guiding significance for how gene activity is translated into cell
growth and tissue deformation.

In addition to their pivotal roles in the transport of water and inorganic salts, as well as
in the storage of starch and minerals, plant stems display a significant level of responsiveness
to external mechanical stimuli, as evidenced by their capacity to furnish structural support
against the gravitational forces and pressures exerted by the biomass of flowers, leaves, and
fruits, thereby maintaining the normal growth and development of plants [159]. The concept
of “mechanical properties of materials” refers to the mechanical attributes of materials when
subjected to different environmental conditions and various external loads, including tensile,
compression, bending, torsion, impact, and alternating stress. The mechanical stimulation
such wind or rain can affect the elastic modulus, bending characteristics, and stiffness of
seedling stems, leading to changes in their adaptive growth patterns and potentially influ-
encing their morphological and physiological traits [159]. Recent studies have demonstrated
that appropriate mechanical stimulation intensity can restrain the growth rate of seedlings,
decrease plant height, and increase stem diameter [160,161]. The sunflower plants (Helianthus
annuus) were exposed to mechanical stimulation through bending at a frequency of 2 Hz for
60 s daily over a period of 6 weeks [162]. The findings indicated significant enhancements
in various parameters, including stem diameter ratio, stem height ratio, bending stiffness,
stem growth rate, and stem thickness tissue ratio, following the mechanical stimulation [162].
Simultaneously, mechanical stimulation of tomato seedlings with varying flow frequencies
and velocities demonstrated that increased flow speed significantly inhibited the elongation of
the seedlings’ stems, thereby resulting in a more compact and stable plant phenotype [163,164].
These findings demonstrate the notable impact of mechanical stimulation of wind, snow, rain
and other external environmental factors on the initial morphological alterations observed in
seedlings. As a result, we speculate that these environmental stimuli may also play a role in
wheat erect and prostrate growth habits.

Moreover, the occurrence of stem lodging or root lodging may manifest in cereal crops
when subjected to mechanical forces, such as wind, rain, and hail [165]. The lodging of crops
is strongly linked to the excessive lateral displacement or bending of stems, which disrupts
the regular growth and development of stems [165]. This phenomenon is a significant
contributing factor to the decline in both the quality and yield of agricultural products.
Gomez et al. [166] employed a three-point bending test to investigate the mechanical
characteristics of sorghum stems with different lodging resistance and revealed that the
elastic modulus, strength, and bending stiffness at the internode were notably lower
compared to those at the node. Additionally, it was observed that sorghum varieties with
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greater resistance to lodging showed reduced elastic modulus and bending stiffness in the
stems [166]. Therefore, to endure increased mechanical stimuli and sustain regular plant
growth and development, plants have evolved to augment their flexibility or rigidity, or
have strived to achieve a balance between these two traits, in order to acclimate to the
perpetually changing environment [167]. We speculate that the stems of erect and prostrate
wheat exhibit distinct mechanical properties. Consequently, a suite of mechanical assays,
including the stem bending test, tensile test, and shear test, has been utilized to elucidate
the disparities in mechanical properties between stems exhibiting erect and prostrate
growth habits. These investigations have established a basis for further exploration into
the mechanisms by which the changes of three-dimensional architecture and gene activity
of wheat stems with erect and prostrate growth habits are converted into cellular growth
and tissue deformation phenotypes.

5. Conclusions

Currently, the research of the prostrate/erect growth habit in wheat is currently in its
early stages. Research on the mechanisms underlying the tiller angle has been limited to
identifying only a few numbers of QTLs. Although regulatory genes related to tillering
angle have been found in wheat, there are few studies on their functions. However, the
molecular mechanism of tillering angle regulation has been extensively studied in rice.
Consequently, the utilization of rice as a research model serves to establish a genetic
framework for understanding tiller angle variation in wheat. In recent years, the mechanics
has become the focal point for understanding the interplay between biochemical signaling
and the three-dimensional morphology of plants. Mechanical heterogeneity within the
tissue can lead to asymmetrical growth of plant organs [168]. we briefly discuss the
feedback mechanisms of cell wall mechanics and material mechanics in plant growth and
the development of three-dimensional organ morphologies, with the aim of providing
research insights into the erect and prostrate growth habits of wheat.
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