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Abstract: The increasing global population has heightened the demand for food, leading to escalated
food production and, consequently, the generation of significant food waste. Factors such as rapid
ripening, susceptibility to physiological disorders, and vulnerability to microbial attacks have been
implicated as contributing to the accelerated senescence associated with food waste generation. Fruits
and vegetables, characterized by their high perishability, account for approximately half of all food
waste produced, rendering them a major area of concern. Various postharvest technologies have thus
been employed, including the application of phytohormone treatments, to safeguard and extend the
storability of highly perishable food products. This review, therefore, explores the physicochemical
properties and biological aspects of phytohormones that render them suitable for food preservation.
Furthermore, this review examines the effects of externally applied phytohormones on the postharvest
physiology and quality attributes of fresh produce. Finally, the review investigates the mechanisms
by which exogenous phytohormones preserve food quality and discusses the associated limitations
and safety considerations related to the use of these compounds in food applications.
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1. Introduction

In recent years, the global demand for food has significantly increased, driven by
the rapid growth of the global population [1–4]. However, despite this demand, it is
alarming to note that over 30% of the global food produced is lost annually across the
entire food supply chain, with more than 50% of these losses occurring specifically in
fruits and vegetables [1,5,6]. This highlights the urgent need for substantial efforts to
minimise postharvest losses of fresh fruits and vegetables, ensuring food security and
sustainability [2,7].

The highly perishable nature of fruit and vegetables is mainly influenced by several
factors, which include microbial and pathogen attacks, susceptibility to physiological disor-
ders, and faster rate of physiological processes, resulting in accelerated senescence [8–11].
Consequently, various postharvest technologies have been implemented to reduce the
loss of fruit and vegetables and improve their quality management [12–16]. Among these
technologies, cold storage and synthetic chemicals have been widely adopted [16–20].
However, synthetic chemicals are currently being phased out due to increasing health and
environmental concerns [21,22]. Moreover, cold storage alone has limitations, as some
physiological disorders, such as chilling injury (CI), internal browning (IB), and shrivelling,
persist during prolonged storage periods [23–27]. Hence, there is a pressing need to develop
new and innovative technologies that can be integrated into food packaging systems to
protect and maintain the quality of fresh fruits and vegetables.
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Recently, exogenous plant hormone treatments have emerged as a promising natural
postharvest strategy for preserving the quality and prolonging the shelf life of fruits and
vegetables during storage [28–39]. Plant hormones, also known as phytohormones, are
naturally occurring organic compounds in plants that play a crucial role in coordinating
physiological activities, enhancing plant responses to stress, and regulating overall plant
growth and development [40,41]. The efficacy of exogenous plant hormone treatments
is attributed to their ability to enhance bioactive compounds, prolong the shelf life by
delaying ripening and senescence, and increase tolerance to various physiological disor-
ders [30,32–35,37,38,42–44]. Moreover, they play a significant role in reinforcing resistance
against pathogens [45,46]. These beneficial effects have been observed across a range
of fresh horticultural produce such as citrus [47,48], pomegranates [49,50], papaya [28],
avocado [51], peach [52], pineapple [53,54], cucumber [23], tomatoes [55], mango [26,56],
kiwifruit [57], and bananas [58]. Therefore, the use of exogenous plant hormones in food
quality preservation holds promise for several reasons, including combatting food loss
and waste, reducing reliance on synthetic chemicals, and promoting sustainable practices
within the food industry. Consequently, more studies are being conducted to explore the
effects and characteristics of these molecules [59–62].

Despite the recent extensive research on the effect of different exogenous plant hor-
mone treatments on postharvest quality preservation of fresh fruit and vegetables, there is
currently no published review on recent advancements in the formulation, application, and
mechanisms of exogenous plant hormone treatments. Hence, this review aims to elucidate
the impact of exogenous plant hormone treatments on postharvest quality preservation in
fruits and vegetables. It will explore the physicochemical and biological attributes of plant
hormones that render them valuable for food preservation. Furthermore, the review will ex-
plore the formulation and application of these exogenous plant hormone treatments, along
with their ensuing effects on the quality of fruits and vegetables. Additionally, potential
constraints and considerations associated with the utilization of plant hormone treatments
for food preservation will be discussed.

2. Synthesis and Roles of Endogenous Plant Hormones

Plant hormones play vital roles in regulating the growth, development, and responses
to environmental signals in fruits and vegetables [63,64]. Plant hormones act as chemical
messengers produced in one part of the plant and resulting in effects in other parts [63,65].
These phytohormones can be classified into several distinct groups, including ethylene,
auxins, abscisic acid (ABA), cytokinins (CK), gibberellins (GA), jasmonates (JA), brassi-
nosteroids (BR), and salicylic acid (SA). Further, there is an ongoing discussion regarding
classifying other organic molecules like melatonin (MT) and strigolactones (ST) as plant
hormones [59,61,62,66–68]. Each hormone exerts distinct effects on fruit and vegetable
physiology, impacting crucial aspects such as fruit set, enlargement, ripening, and quality
attributes during preharvest and postharvest stages [64,69]. Cytokinins, auxin, and GA
are recognized as hormones that promote plant growth, while ethylene and abscisic acid
act to retard growth [69,70]. Salicylic acid, JA, and BR function as defence hormones,
enhancing plant responses to various environmental stimuli and contributing to quality
management [69,70]. Understanding the roles and presence of these endogenous hormones
is important for optimizing crop production, improving fruit quality, and prolonging the
shelf life of horticultural fresh produce.

2.1. Abscisic Acid (ABA)

Abscisic acid (ABA) is a plant hormone belonging to the terpenoid class of metabo-
lites [71–73]. Abscisic acid plays diverse roles in regulating various physiological processes,
including seed dormancy, stomatal closure, and responses to environmental
stresses [63,72,74–77]. These physiological processes are crucial for plant adaptation to
abiotic stresses, resulting in ABA being widely known as a stress hormone [78].
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The biosynthesis of ABA begins with the action of plastid-localized 9-cis-epoxycarotenoid
dioxygenase (NCED), which catalyses the cleavage of epoxycarotenoid precursors to form
xanthoxin, a direct precursor to ABA (Figure 1) [71–73,76,79]. Subsequently, xanthoxin
undergoes further enzymatic reactions involving cytosolic enzymes, ultimately forming
ABA via abscisic aldehyde [71,72,79,80]. In the cytoplasm, the primary catabolic pathway
of ABA involves the formation of 8′-hydroxy ABA and phaseic acid [71,72,76,79,80]. This
process is catalysed by the cytochrome P450 enzyme ABA 8′-hydroxylase [71,72,76]. Ad-
ditionally, alternative catabolic pathways exist, including conjugation, 4′-reduction, and
7′-hydroxylation, which contribute to the overall turnover of ABA in plant tissues [71,72,76].
The balance between biosynthesis and catabolism tightly regulates the level of ABA in
specific plant tissues.
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Figure 1. Abscisic acid (ABA) biosynthesis in plants. Adapted from [73].

Abscisic acid is present in fruits and vegetables, where its levels vary dynamically
during different stages of development and ripening across varieties and in response to
environmental signals [73,79,81]. The level of ABA undergoes dynamic changes during
various stages of fruit development, starting from very low levels in the early stages and
increasing as the fruit matures [82,83]. In line with this, a higher expression of the NCED
gene has been reported in the literature at the onset of ripening, which increases until grape
fruits are harvested [84]. This is correlated with a high expression of ABA biosynthesis
genes during the ripening stage of berries [85]. Similarly, the ABA content has been reported
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to increase gradually during the gradual ripening of tomato and mango fruit [86,87]. As
a result, ABA and ethylene are typically considered maturity and senescence regulation
hormones due to their heightened presence in mature and senescent horticultural fresh
produce during postharvest handling [71,88]. This emphasizes the crucial need to control
the production of ABA to reduce the ripening rate of fruits and vegetables [88]. However,
as already established, the effect of ABA is influenced by the crop or variety; therefore, this
hormone can be exogenously applied to mitigate physiological disorders and diseases in
fruits and vegetables during postharvest storage [88]. Concurrently, the accumulation of
several crucial metabolites in mature fruit may be regulated by ABA, indicating a synergistic
relationship where these metabolites also exert a regulatory influence on ABA synthesis
in fruits [82,89]. Moreover, ABA plays a significant role in regulating the synthesis of
antioxidant enzymes crucial for fruit stress tolerance [82]. These observations underscore
the pivotal role of ABA in fruit crop development and the ripening process, highlighting its
multifaceted impact on fruit quality and postharvest management [78].

The ripening pattern of fruits and vegetables is another critical factor that influences
the effect of ABA [90,91]. In non-climacteric fruits such as strawberries and grapes, ABA
is one of the central regulators of the ripening and senescence process [71,90,92,93]. This
role has also been confirmed in commodities like sweet cherry [94,95], watermelon [96],
jujube [97], litchi [98], blueberry [99], and orange [100].

In contrast, ABA does not have a direct impact on the ripening of climacteric fruits;
however, an increase in endogenous ABA levels triggers autocatalytic ethylene production
in fruits such as pear and peach [91,101]. Concurrently, lower NCED gene expression
in tomato fruit reduced ABA accumulation and enhanced shelf life during storage [102].
In line with this, the suppressed expression of the NCED gene was associated with the
downregulation of the enzyme activities of galactosidase and polygalacturonase, which
are the cell wall-loosening enzymes responsible for the loss of texture and accelerated
senescence [102]. The interplay between ABA and ethylene suggests that ABA is the regu-
latory signal essential for ethylene synthesis [71]. In line with this, ABA is important in the
biosynthesis of anthocyanins, flavonoids, and polyphenols during the ripening of fruits and
vegetables [71]. Carotenoid and xanthophyll biosynthesis is an integral part of the biosyn-
thesis pathway; consequently, ABA biosynthesis may influence carotenoid biosynthesis
during the ripening process [96]. An enhanced lycopene accumulation in sweet water-
melon has been positively associated with phytoene synthase (ClPSY1) expression during
ripening [96]. Similarly, enhanced ABA levels have been associated with higher expression
of the anthocyanin biosynthetic genes in berry fruit [103,104]. The increased anthocyanin
buildup in response to high endogenous ABA also enhances the fruit defence mechanism
by synthesising phenolics, which have potent antioxidant properties [71]. This is attributed
to the function of ABA to upregulate the genes involved in the phenylpropanoid and
flavonoid pathways [85,105–107].

2.2. Ethylene

Ethylene is a gaseous hormone widely known for its role in promoting the ripening
of climacteric fruit. It triggers a series of physiological and biochemical changes lead-
ing to softening, colour changes, flavour development, and aroma production, therefore
enhancing the attraction of properties of fruits for consumption [108–111].

Ethylene biosynthesis is initiated by methionine, a key amino acid in
plants (Figure 2) [112–114]. Methionine undergoes conversion into 1-aminocyclopropane-1-
carboxylic acid (ACC), a non-protein amino acid, and S-adenosyl-L-methionine
(SAM) [112–115]. This conversion process is facilitated by enzymatic action, primarily
by ACC synthase (ACS) [112–115]. Subsequently, ACC is further metabolized into ethylene
through the activity of ACC oxidase (ACO) [112–115]. Once synthesized, ethylene can
diffuse within the plant to exert its physiological effects or be released into the surrounding
atmosphere. Beyond its biosynthesis, ethylene plays vital roles in various plant processes,
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including growth regulation, fruit ripening, and stress responses, often acting as a signalling
molecule in intricate hormonal pathways [116].
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Its physiological activity is notable even at extremely low concentrations, typically
<0.1 ppm, although levels fluctuate significantly across different developmental and ripen-
ing stages [109,113]. Initially, ethylene production remains low during the pre-ripening
phase, with fruits exhibiting reduced sensitivity to exogenous ethylene [82]. However, as
ripening progresses, ethylene synthesis increases, often inducing autocatalytic synthesis at
an accelerated rate [82]. Exogenous ethylene from various sources, such as damaged fruits,
neighbouring crops, and anthropogenic sources, can trigger a burst in ethylene production,
accelerating the ripening process significantly [109,113]. In line with this, significant losses
of fresh fruits and vegetables, up to 80%, have been reported due to ethylene [109,113].
Consequently, effective strategies for ethylene control in the postharvest handling of fruits
and vegetables are paramount for maintaining quality and prolonging shelf life.

2.3. Auxin

Auxin is an important plant hormone, as it regulates various physiological processes
such as cell elongation, root and shoot growth, fruit development, stress response, and
plant movement [117,118]. Recent studies have demonstrated that auxin also regulates the
ripening behaviour of fruits and vegetables, highlighting its complex role in regulating
fruit development and adaptation [117,119]. Indole-3-acetic acid (IAA) is a predominant
form of auxin synthesized in various plant tissues and has been shown to play an essential
role in numerous developmental and physiological processes [120].

The concentration of active auxin varies across different tissues and developmental
stages of the plant [121]. In line with this, young aerial tissues and root tips exhibit a
higher potential for auxin biosynthesis compared to other tissues [121]. Most of the IAA
in the plant exists in its inactive conjugated state; thus, the synthesis and hydrolysis of
these conjugates play pivotal roles in modulating auxin levels, thereby influencing diverse
aspects of plant growth and development [121].

The IAA biosynthesis is proposed to occur via two pathways, the tryptophan (Trp)-
dependent and independent pathways (Figure 3) [122]. The Trp-dependent pathway
involves the conversion of tryptophan to indole-3-pyruvic acid (IPA) by the enzyme trypto-
phan aminotransferase (TAA1) [122–124]. Subsequently, IPA is decarboxylated by YUCCA
flavin monooxygenase enzymes to form IAA [122,123]. The Trp-independent pathway by-
passes tryptophan and involves the conversion of chorismite to indole-3-glycerol phosphate
by the enzyme indole-3-glycerol phosphate synthase [123]. Indole-3-glycerol phosphate is
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then converted to indole by the enzyme indole synthase; subsequently, indole can serve as
a precursor for IAA synthesis, initiating the process without requiring tryptophan [123].
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2.4. Gibberellic Acid

Gibberellins (GAs) are essential phytohormones that regulate numerous plant growth
and developmental processes [126]. They influence key activities such as cell expansion, cell
division, seed germination, internode elongation, flowering, sex expression, and fruit devel-
opment [126,127]. Additionally, GAs play a significant role in the postharvest physiology
of fruits, vegetables, and ornamental plants [128]. Moreover, GAs enhance stress tolerance
in crop plants by improving ion homeostasis, membrane permeability, and the antioxidant
system [128,129]. The modulation of many plant processes by GAs is achieved through
their interaction with other plant hormones, both synergistically and antagonistically.

The biosynthesis of GAs initiates from geranyl–geranyl diphosphate (GGPP), utilizing
isopentenyl diphosphate (IPP) as a foundational component, which is a common substrate
in the synthesis of various terpenoid/isoprenoid compounds [128]. IPP is derived through
the mevalonic acid (MVA) pathway in the cytoplasm and the methyl erythritol phosphate
(MEP) pathway in plastids [126]. This process unfolds across three discrete stages, each
characterized by specific subcellular localization and enzyme orchestration [128]. The first
stage commences within the proplastids, where soluble enzymes catalyse the conversion of
IPP into ent-kaurene (Figure 4) [126,128]. Subsequently, ent-kaurene undergoes oxidation
to yield GA12-aldehyde, a pivotal precursor within the GA biosynthetic cascade [126].
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This conversion is facilitated by cytochrome P450 monooxygenases in the endoplasmic
reticulum [126]. The final stage of GA biosynthesis unfolds in the cytosol, orchestrated by
2-oxoglutarate-dependent dioxygenases [126,128]. These enzymes play a pivotal role in
culminating the pathway by executing critical modifications essential for the synthesis of
active gibberellic acid molecules.
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Gibberellins exist in various forms, including GA1, GA3, GA4, and GA7. GA1 is
one of the most biologically active and widespread forms found in plants [131]. Other
forms of GAs, such as GA3, GA4, and GA7, are biologically active and play significant
roles in plant growth and development [128]. Some GAs that are not initially biologically
active can be converted into active forms through specific biochemical processes within
the plant [131,132]. Endogenous GA levels are typically high during early fruit develop-
ment [133]. Correspondingly, the application of a GA biosynthesis inhibitor significantly
reduces the rate of tomato fruit set and delays fruit growth [133]. Similarly, the inhibition
of GA4 synthesis leads to a notable decrease in the fruit set, as observed in the tomato
fruit [134]. While the roles of GAs have primarily been studied in the context of fruit set
and development, studies have also highlighted their essential function as regulators in the
ripening process [135].

2.5. Cytokinin

Cytokinins (CKs) are vital plant hormones that stimulate cell division and regulate root
differentiation [136]. Their roles in plants are complex and often depend on interactions
with other hormones like auxins, which influence various growth processes [137]. Besides
promoting cell division, CKs stimulate the growth of lateral buds and inhibit the aging of
plant tissues [137]. This anti-aging effect is linked to the involvement of CKs in the transport
and synthesis of photosynthetic substrates, indirectly impacting various physiological and
biochemical processes [137,138].

Cytokinins are primarily produced in root apical meristems and leaves, though recent
research has also indicated their production in fruits [137,139]. The concentration of endoge-
nous CKs varies with the developmental stages of cells, tissues, and the entire plant [140].
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High CK concentrations are observed in the immature fruits of crops such as strawberries,
kiwis, raspberries, and grapes, coinciding with periods of high cell division rates [140,141].
Factors such as light intensity and stress, which affect the plant’s photosynthetic ability, also
influence CK levels [137]. Moreover, auxins, known to suppress CK biosynthesis, reduce
endogenous cytokinin levels in plants [137].

The biosynthesis of CKs involves several enzymes (Figure 5) [136,142]. Isopentenyl-
transferase (IPT) initiates the process by transferring an isoprenoid moiety to the N6 posi-
tion of an adenine nucleotide [136,142]. Cytochrome P450 enzymes, particularly CYP735A,
convert isopentenyl adenine (iP) to trans-zeatin (tZ) [142]. The LOG enzyme cleaves ribose
5′-monophosphate from CK nucleotides to form CK [136,142]. Among the most abundant
CKs in plants are tZ, iP, cis-zeatin (cZ), and dihydrozeatin, each playing distinct roles in
growth and development [140]. The role of CKs in the later stages of development and
ripening is poorly understood, although a sharp increase in CK levels in kiwifruits and
grapes suggests their potential involvement in the ripening process [140].
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2.6. Jasmonates

The family of jasmonates (JAs), derived from fatty acids, includes key compounds
such as jasmonic acid (JA) and its derivatives, including jasmonoyl isoleucine (JA-Ile),
methyl jasmonate (MeJA), cis-jasmone, JA-glucosyl ester, JA-Ile methyl ester, jasmonoyl-
amino acid, and 12-carboxy-JA-Ile [143–145]. MeJA is the most used JA derivative due to
its wide availability and is recognized as a significant plant volatile compound that acts
as a signal in various cellular responses [144,146,147]. It is known to enhance oxidative
stress and induce the accumulation of many secondary metabolites, which influence plant
physiological responses [146,147]. This aligns with the general role of other JAs, which pri-
marily regulate defensive responses, including stomatal closure, the activity of antioxidant
enzymes, and the biosynthesis of compounds such as phenols, ascorbic acid, and other
secondary metabolites [144,147].

JA biosynthesis begins with the oxidation of linolenic acid, a type of polyunsaturated
fatty acid present in plant cell membranes (Figure 6) [144]. Lipoxygenase (LOX) initially
catalyses this conversion, changing linolenic acid into 13-hydroperoxylinolenic acid [144].
Then, allene oxide synthase (AOS) converts 13-hydroperoxylinolenic acid into a less stable
epoxide called 12,13-epoxy-octadecatrienoic acid, followed by its further modification into
12-oxo-phytodienoic acid (OPDA) by allene oxide cyclase (AOC) [144,148,149]. The OPDA
is then transferred to the peroxisome, where OPDA reductase (OPR3) reduces it to form
3-oxo-2-(2′-(Z)-pentenyl) cyclopentane-1-octanoic acid (OPC-8:0) [144,148,149]. The final
steps of JA synthesis involve a sequence of reactions known as β-oxidation, which shorten
the carbon chain of OPC-8:0, ultimately creating JA [148,149].
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Endogenous JAs play crucial roles in the development and ripening of fruits. Studies
have shown that JA induction regulates ethylene biosynthesis enzymes such as ACC
synthase, promoting ethylene production in crops like apples [151]. Additionally, increased
endogenous JA levels have been observed to enhance ethylene production and accelerate
fruit ripening in pears [152]. In strawberries, the JA content rises sharply during the
early stages of fruit development and declines after full maturity [145]. Similarly, JA
concentrations in apples and sweet cherries increase initially and decrease as the fruits
approach the harvest period [145,153]. These dynamic changes in JA levels are essential for
coordinating various physiological processes that determine fruit quality and shelf life.

2.7. Salicylic Acid

Salicylic acid (SA) is a phenolic compound and a crucial plant hormone that enhances
resistance to various stresses, including drought, UV radiation, heat shock, chilling, salinity,
and other abiotic factors [154–156]. Endogenous SA has also been reported to modulate sev-
eral plant growth and developmental processes, such as seed germination, photosynthesis,
respiration, thermogenesis, flowering, and senescence [154–156]. However, maintaining a
balance between plant growth and stress defence is critical, as a higher accumulation of
endogenous SA enhances plant protection but can suppress growth [155,156].

Salicylic acid biosynthesis in plants starts from chorismite as a primary source for
the SA biosynthetic pathway, produced by the shikimic acid pathway [156,157]. This
pathway is crucial for the production of various secondary metabolites in plants [157]. SA
biosynthesis operates through two primary pathways: the isochorismate synthase (ICS)
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pathway and the phenylalanine ammonia-lyase (PAL) pathway (Figure 7) [156,157]. While
plants concurrently use both pathways, IC predominates, contributing to over 90% of SA
synthesis, with the PAL pathway accounting for the remaining 10% [155,156].
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The PAL pathway involves a series of enzymatic reactions that convert phenylalanine
into salicylic acid [156,157]. Phenylalanine, derived from chorismate via the shikimic acid
pathway, is the starting point. It undergoes deamination by phenylalanine ammonia-lyase
(PAL), resulting in the formation of trans-cinnamic acid [155–157]. Subsequently, cinnamic
acid undergoes several transformations, including conversion to ortho-coumaric acid
and benzaldehyde [155,156]. Ortho-courmaric acid can form SA spontaneously, whereas
benzaldehyde is further metabolized to produce benzoic acid [155,156]. Finally, benzoic acid
undergoes hydroxylation to yield SA. ICS pathway involves the conversion of chorismite
to isochorismate by the ICS enzyme and then isochorismate is further converted to salicylic
acid by isochorismate pyruvate lyase (IPL) [156].

Recent studies have unveiled additional roles of SA, such as its involvement in reg-
ulating fruit ripening by inhibiting ethylene biosynthesis and maintaining postharvest
quality [159,160]. Zhu et al. [55] observed the upregulation of ICS expression in tomato fruit
under cold stress, indicating heightened SA levels. Similarly, Zhang et al. [161] reported
induced ICS expression in apples in response to pathogen attack, underscoring the diverse
roles of SA in plant physiology and stress responses [159,160].

2.8. Brassinosteroids

Brassinosteroids (BRs) are steroid-based plant hormones found in various parts of
plants, including fruits, seeds, leaves, flower buds, and pollen [162,163]. Brassinosteroids
can exist in a free state or be conjugated with sugars or fatty acids within plants [162,163].
Recent findings have identified approximately 70 distinct BRs in plants [162]. Among
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these, brassinolide (BL), 24-epibrassinolide (24-EBL), and 28-homobrassinolide (28-HBL)
are particularly well studied due to their significant effects on plant growth and develop-
ment [162,164]. Notably, 24-epibrassinolide is recognized as the most biologically active
and commercially available BR analogue, making it a common choice for physiological
studies [165,166]. Recognized as relatively new plant hormones, BRs are now widely used
in physiological and experimental research to understand their role in plant biology [164].

The role of BRs is linked to various physiological responses, including stem elongation,
pollen tube growth, cell enlargement, root growth, senescence, and the regulation of
metabolite contents [165,166]. Furthermore, BRs also modulate the plant response to
abiotic and biotic stress [166,167]. The concentration of BRs varies across different parts
of the plant [165]. For instance, pollen and immature seeds have been reported to contain
1–100 ng/g, whereas shoots and leaves typically contain around 0.01–0.1 ng/g, indicating
a significant variation in BR distribution within the plant [165].

The BRs are synthesized from campesterol (CR) through two main pathways: the
campestanol (CN)-dependent and CN-independent routes, as shown in Figure 8 [167–169].
In the CN-dependent pathway, campestanol undergoes oxidation to form 6-oxocampestanol
(6-oxoCN), followed by hydroxylation to produce cathasterone (CT) [167,169,170]. Sequen-
tial enzymatic reactions involving enzymes such as dwarf 4 (DWF4), constitutive photomor-
phogenesis and dwarfism (CPD), rotundifolia 3/cytochrome P450 90D1 (ROT3/CYP90D1),
and cytochrome P450 85A1/cytochrome P450 85A2 (CYP85A1/2) convert CT into castas-
terone (CS), which is further metabolized to brassinolide [167,168,170,171]. Alternatively,
the CN-independent pathway directly converts campesterol into BL through an eight-step
enzymatic cascade involving the same key enzymes [167,168,170]. These pathways under-
score the enzymatic complexity inherent in BR biosynthesis, which is crucial for regulating
plant growth and development.

2.9. Strigolactones

Strigolactones (SLs) are carotenoid-derived hormones characterized by a structure that
includes a four-ring system, generally identified as an ABC tricyclic core linked to a fourth
ring, known as the D-ring (Figure 9) [172]. These newly identified hormones play crucial
roles in various growth and development processes, such as regulating the architecture of
plant organs, inducing germination, flowering, leaf senescence, and enhancing plant re-
sponses to stress [172–177]. There has been growing interest in the use of SLs in sustainable
agricultural practices; however, there are still relatively few studies on SLs compared to
traditional hormones [172,176].

Strigolactones are categorized into two main classes: canonical and non-canonical, dis-
tinguished by the presence or absence of the complete ABC-ring, while the D-ring remains
a core structure in both classes [172,174,176–178]. However, there is limited information
on the biological properties of SLs concerning their structural variations. The potential
agricultural applications of SLs have primarily depended on synthetic SLs, such as GR3,
GR7, GR5, Nijmegen-1a, and GR24, which have been pivotal in elucidating the signalling
and biological roles of SLs [172,174,175,177]. GR24 stands out for its highest activity and is
the most extensively used synthetic analogue [173–175].

Strigolactones are synthesized from carlactone (CL) derived from β-carotene (Figure 10).
The synthesis process involves three key enzymes: dwarf27 (D27), carotenoid cleavage
dioxygenase 7 (CCD7), and carotenoid cleavage dioxygenase 8 (CCD8)
(Figure 10) [172,174,176,179]. The biosynthesis pathway begins with the enzyme D27
catalysing the isomerization of all-trans-β-carotene to 9-cis-β-carotene [174,176,179]. This
intermediate is then processed by CCD7, which converts it into 9-cis-apo-10′-
carotenal [174,179]. Following this, CCD8 catalyses the conversion of 9-cis-apo-10′-carotenal
into (Z)-(R)-carlactone (CL) [176,179]. The carlactone produced in this manner is sub-
sequently oxidized by cytochrome P450 monooxygenase MAX1, or other homologous
enzymes, resulting in the formation of various strigolactones [174,176,179]. The SLs are
primarily reported to accumulate in roots, serving as the main storage organs before being
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transported to other parts of the plant where they exert their effects [172,176,179,180]. Lim-
ited research has explored the synthesis of SLs in fruits [172]. Interestingly, a single plant
species can produce multiple types of strigolactones in varying concentrations [176].
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2.10. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) (MT) has recently been identified as a
pivotal signalling molecule in the regulation of plant growth and development [181,182].
It is present in various plant tissues, including seeds, leaves, roots, and, most notably,
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fruits [181,182]. Melatonin profoundly influences key physiological processes such as
flowering, fruit development, ripening, senescence, and the plant’s responses to both biotic
and abiotic stresses [181–186]. Recent studies have extensively explored how MT impacts
the quality management and storability of fresh fruits, elucidating its beneficial effects and
underlying mechanisms [181,182].

The endogenous levels of MT in plants vary depending on the species, tissue type,
growth stage, and environmental conditions [187]. For instance, approximately 1700 ng/g
of endogenous MT content has been reported in date palms, whereas only 0.1 ng/g has been
found in bananas, underscoring the significant effect of plant species [188,189]. Additionally,
more than 50% higher endogenous MT content was observed in the peel of ‘Merlot’ grapes
compared to the flesh [190]. The impact of different cultivars has been highlighted by Zhang
et al. [191], while Wang et al. [183] reported the effects of fruit processing on endogenous
MT content. Like other plant hormones, the concentration of MT in plants is relatively low,
contributing to its recent recognition and adoption as a plant hormone [187].

As previously indicated, the content of endogenous MT in fruit is influenced by the
stage of development. Tijero et al. [192] reported higher MT content during the matura-
tion of sweet cherries, which subsequently declined during ripening. Similarly, the MT
content in strawberries and bananas decreased significantly during postharvest handling,
suggesting a dynamic change influenced by postharvest conditions [188,193].

Melatonin biosynthesis begins with tryptophan, a precursor for auxin and mela-
tonin (Figure 11) [182,194]. Initially, tryptophan is converted to tryptamine by trypto-
phan decarboxylase [182]. Tryptamine is then hydroxylated by 5-hydroxylase to form
5-hydroxytryptamine (serotonin) [182,195].
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Figure 11. The biosynthesis of melatonin under normal growth conditions (A) and under sero-
tonin boost conditions (B). Catalytic efficiency (CE) means the Kcat/Km values (mmol/L min−1),
which were measured at 37 ◦C except for SNAT, which was measured at 30◦C. *CE indicates val-
ues measured at 55 ◦C. TDC, tryptophan decarboxylase; T5H, tryptamine 5-hydroxylase; SNAT,
serotonin N-acetyltransferase; COMT, caffeic acid O-methyltransferase; ASMT, N-acetylserotonin
methyltransferase [195].

The synthesis of melatonin proceeds through two main pathways (Figure 11A,B).
In the first pathway, serotonin is acetylated by serotonin N-acetyltransferase to form N-
acetylserotonin (Figure 11A) [182,195]. This intermediate can then be methylated to melatonin
by either N-acetylserotonin methyltransferase or caffeic acid O-methyltransferase [182,195].
In the second pathway, serotonin is methylated directly by caffeic acid O-methyltransferase
to form 5-methoxytryptamine, which serotonin N-acetyltransferase subsequently acetylates
to produce melatonin (Figure 11B) [182,195].
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3. Application of Plant Hormones in Postharvest Preservation of Fruits and Vegetables

Fruits and vegetables are characterized by rapid ripening rates, resulting in faster
quality deterioration and accelerated senescence [196,197]. Therefore, postharvest quality
preservation of fruits and vegetables is crucial for maintaining the quality and improving
the storability of fresh produce during storage [198]. Among the various methods employed
for postharvest quality preservation, exogenous plant hormone treatments have emerged
as a promising approach due to their natural role in regulating plant growth, development,
and stress responses. Plant hormones such as ethylene, auxins, ABA, GAs, CKs, SA, JAs,
BRs, STs, and MT have been investigated for their ability to influence ripening processes,
delay senescence, and enhance resistance to physiological disorders [88]. By regulating
hormonal pathways, exogenous plant hormone treatments can suppress deterioration
processes, maintain nutritional quality, and improve the overall marketability of fruits
and vegetables [88]. This approach uses the natural biochemical mechanisms of plants
to maintain quality while offering a sustainable alternative to synthetic chemicals, thus
aligning with the increasing demand for natural and safe preservation methods in the food
industry [199].

3.1. Auxin

Exogenous auxins, such as IAA and 2,4-dichlorophenoxyacetic acid (2,4-D), have
demonstrated considerable potential in extending shelf life and preserving the quality
of fresh fruits and vegetables through their influence on various physiological and bio-
chemical processes [117,200–203]. However, the literature on the postharvest application
of auxins such as napthalane acetic acid is still missing, as most studies have focused on
preharvest application. Auxins regulate ethylene biosynthesis, a critical factor in fruit
ripening and senescence [204]. By downregulating key genes and enzymes involved in
ethylene production, such as ACS and ACO, auxins reduce ethylene production, thereby
delaying ripening [204]. Treatments with IAA and 2,4-D have been shown to delay the
ripening and senescence of tomatoes [204], citrus [205], and raspberries [201].

The efficacy of exogenous auxin treatments in delaying fruit ripening is attributed
to their ability to modulate the activity of cell wall-modifying enzymes, which are crucial
for maintaining fruit firmness and texture [200]. These enzymes include polygalactur-
onase (PG), pectin methylesterase (PME), and β-galactosidase. In strawberries, exogenous
auxin treatment (IAA; 1 µM) has been observed to maintain firmness by delaying pectin
depolymerization and suppressing genes encoding pectate lyase, endoglucanase, and
β-galactosidase [200]. This preservation of firmness is crucial for consumer acceptance
and marketability of fruits. Similarly, Tao et al. [206] reported the efficacy of exogenous
auxin treatments (2,4-D; 0.45 mM) to maintain the firmness of tomato fruit during posthar-
vest storage.

Exogenous auxin treatments influence the biosynthesis of secondary metabolites, such
as flavonoids and anthocyanins, which contribute to the colour, flavour, and nutritional
quality of fruits and vegetables [203]. Auxin treatments also delay the breakdown of
chlorophyll, maintaining the green colour and freshness of produce. In studies on tomatoes,
the exogenous auxin treatment (2,4-D; 0.45 mM) was effective in delaying colour formation
by suppressing chlorophyll degradation and accumulation of carotenoids [203]. Similarly,
Moro et al. [201] demonstrated the inhibitory effect of exogenous IAA treatment (0.1 mM)
on the colour development of raspberry fruit during ripening. This inhibitory effect of
IAA was strongly associated with a delay in anthocyanin biosynthesis. The IAA treatment
also maintains higher ellagic acid content, an important secondary metabolite with potent
antioxidant properties, suggesting that the exogenous IAA treatment could maintain the
nutritional value of the fruit [201]. The study by Li et al. [117] demonstrated that exogenous
auxin treatment (2,4-D; 0.45 mM) significantly suppressed chlorophyll degradation and
reduced the accumulation of lycopene and β-carotene during the ripening of tomato
fruit. This suppression correlated with the auxin treatment’s effectiveness in delaying
the accumulation of phytochemicals such as total phenolics and flavonoids. Additionally,
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upregulation of metabolites like galactose-1-phosphate and threonic acid, associated with
ascorbic acid biosynthesis, further supported the beneficial effects of auxin treatment on
fruit quality [117].

The method of application of auxins plays a significant role in their effectiveness.
Spraying has been reported for applying IAA on raspberries [201], providing uniform
coverage without excessive moisture exposure. Meanwhile, the vacuum infiltration method
is mainly used to apply 2,4-D on tomatoes [117,203,206], ensuring deep penetration into
the fruit tissues [207]. This method is particularly effective for fruits prone to surface
damage [207]. These approaches suggest that the choice of application method of auxins
depends on the specific fruit type and the type of auxins used.

3.2. Ethylene

Ethylene is a key phytohormone that regulates the ripening and senescence of var-
ious fruits and vegetables, especially climacteric fruits [208,209]. Notably, exogenous
ethylene treatments have been shown to synchronize ripening in bananas [210–212] and
tomatoes [213,214], ensuring uniform ripening [215,216]. This process is vital for mar-
ket consistency and consumer satisfaction, as it involves the coordinated activation of
ripening-related genes and enzymes, leading to uniform colour, texture, and flavour de-
velopment [216–218]. However, exogenous ethylene can either promote or delay ripening,
depending on the fruit and the concentration of the formulation.

Exogenous ethylene treatments have also been reported to play an important role
in inducing or alleviating cold tolerance in different fruits and vegetables during storage.
For example, exogenous ethylene treatments alleviate chilling injury (CI) in pears [219],
peaches [220], and bananas [221]. Zhou et al. [221] indicated that the efficacy of ethylene
treatments in bananas is associated with the suppression of electrolyte leakage (EL) and mal-
ondialdehyde content (MDA). This suppression was attributed to lower phosphatidic acid,
which results from hydrolysing structural membrane phospholipid molecules, thus reduc-
ing ROS and maintaining cell membrane integrity. Similarly, Zhu et al. [220] reported that
ethylene treatment in peaches suppresses genes such as PPO1 and POD2, which encode for
the enzymes polyphenol oxidase (PPO) and peroxidase (POD), responsible for tissue brown-
ing. Additionally, ethylene treatments have been shown to increase the activities of superox-
ide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), pyrroline-5-carboxylate
synthetase (P5CS), and ornithine-delta-aminotransferase (OAT), while suppressing proline
dehydrogenase (PDH) activity and hydrogen peroxide content [219]. This increase in proline
content and antioxidant capacity is important in alleviating CI symptoms [219].

While ethylene treatments show promising effects in some contexts, they unfortunately
enhance CI symptoms and ripening in crops such as zucchini [222] and pomegranate [223].
This adverse effect is attributed to ethylene’s ability to accelerate senescence, leading
to the accumulation of reactive oxygen species and compromising cell membrane in-
tegrity [222,224]. Understanding the complex interactions between ethylene and other
plant hormones is crucial for optimizing postharvest treatments and developing strate-
gies to mitigate these negative effects [69,71,78,101,123,165]. In addition, the use of ethy-
lene action inhibitors, such as 1-methylcyclopropene (1-MCP), can delay ripening and
extend shelf life by binding to ethylene receptors and preventing ethylene from exerting
its effects [14,225–228]. Other studies where ethylene has been applied exogenously on
horticultural crops of fresh fruit during postharvest handling are summarized in Table 1.
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Table 1. Effect of exogenous ethylene treatments on fresh fruit during postharvest handling.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Pomegranate 0.5, 1, 1.5 µL Dipping 2 ± 1 ◦C;
120 days

Increased MDA, EL, ROS, PPO,
and lipid peroxidation. [223]

Grapes
Ethephon (200, 400, 600,
800, and 1000 mg/L) +
0.1% Tween 80

Vacuum 25 ◦C; 8 days

Increased colouration.
Increased softening rate.
Increased TSS and
decreased TA.

[229]

Blueberries 10 µL/L Fumigation 20 ± 0.5 ◦C and
90% RH; 8 days

Increased softening rate.
Increased sucrose catabolism. [224]

Peach 100 µL/L Fumigation 5 ◦C; 28 days
Suppressed internal browning.
Maintained firmness.
Reduced PPO, POD, and LOX.

[220]

Pear 100 µL/L Fumigation 0 ± 0.5 ◦C and
90% RH; 30 days

Suppressed CI.
Increased proline content.
Suppressed accumulation
of ROS.
Suppressed MDA accumulation.
Maintained higher enzyme
activity of SOD, CAT, and APX.

[219]

Pear 5 µL/L Fumigation 0 ± 0.5 ◦C and
90% RH; 30 days

Reduced EL, browning, and
respiration rate.
Reduced the activities of CAT,
SOD, POD, and APX.

[230]

Kiwifruit 200 µL/L Fumigation 20 ◦C; 9 days

Induced firmness loss.
Increased weight loss.
Reduced the ascorbic
acid content.
Reduced the content of
carbohydrates.

[231–233]

Banana 500 µL/L Fumigation 6 ± 0.5 ◦C and
85% RH; 4 days

Suppressed CI.
Reduced EL and MDA. [234]

Total soluble solids—TSS, titratable acid—TA, polyphenol oxidase—PPO, peroxidase—POD, lipoxygenase—LOX,
reactive oxygen species—ROS, catalase—CAT, superoxide dismutase—SOD, ascorbate peroxidase—APX, chilling
injury—CI, electrolytic leakage—EL, and malondialdehyde content—MDA.

3.3. Cytokinins (CK)

Exogenous CK treatments, such as benzylaminopurine (BA) and N-phenyl-N-(2-
chloro-4-pyridyl) urea (CPPU), have been extensively studied for their potential to extend
shelf life and maintain quality during postharvest storage of various fruits and vegetables.

One of the primary effects of exogenous CK treatments is the delay in ripening and
senescence of fresh produce. For example, Huang and He [235] demonstrated that treating
banana fruit with 10 mg/L of CPPU delayed chlorophyll degradation, resulting in a shelf
life extension of about four days. Similar effects have been reported in Chinese flowering
cabbage dipped in a 50 µM BA solution [236]. The efficacy of CPPU and BA treatments in
prolonging the shelf life of fresh produce is associated with their ability to suppress ROS
production and downregulate genes associated with ethylene production [236]. Moreover,
these treatments upregulate the transcript levels of genes involved in cytokinin synthe-
sis, maintaining higher levels of endogenous CKs [235]. The postharvest application of
200 mg/L of BA also delayed the ripening of mango fruit by suppressing ethylene produc-
tion and associated enzymes [237]. This was linked to the delayed senescence of mango
fruit, which was attributed to reduced ROS production and membrane lipid peroxidation.

Regarding firmness retention, peach fruit treated with 500 mg/L of BA showed better
firmness than untreated fruit [238]. Similar results were observed in summer squash
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treated with varying concentrations of BA [239]. This effect is associated with BA’s ability
to suppress ethylene production and inhibit the activities of enzymes involved in cell
wall degradation [136]. However, the impact of exogenous CK treatment on the sensory
attributes and flavour profile of fresh produce requires further investigation. For instance,
Huang et al. [240] reported that CPPU (10 mg/L) significantly delayed the accumulation
of soluble sugars in banana fruit, while Massolo et al. [239] and Kawai et al. [241] found
no significant effects of BA on TSS, TA, and the sugar–acid balance of summer squash and
calamondin, respectively.

Exogenous CK treatments have also been documented to influence the synthesis and
accumulation of secondary metabolites, such as phenolics and flavonoids [136].
Zhang et al. [242] reported that a 100 mg/L treatment enhanced the accumulation of an-
thocyanin, total phenolics, and DPPH in litchi fruit. Jia et al. (2017b) observed similar
results, with 300 mg/L of BA maintaining high levels of total phenolics and flavonoids in
Chinese chives. This effect is attributed to CPPU and BA enhancing proline content and
the activities of antioxidant enzymes such as APX, SOD, CAT, and POD [242,243]. Other
studies where exogenous CK treatments have been applied to fruits and vegetables during
postharvest handling are summarized in Table 2.

Table 2. Effect of exogenous cytokinin treatments on fruits and vegetables during postharvest handling.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Banana CPPU
(10 mg/L) Dipping

23 ± 2 ◦C and
85% RH;
28 days

Suppressed chlorophyll degradation.
Suppressed CKX activity and maintained
higher t-zeatin, subsequently
maintaining a higher endogenous
cytokinin content.
Upregulated the transcript levels of
genes involved in cytokinin synthesis.
Downregulated the transcript levels of
genes involved in
chlorophyll degradation.
Inhibited oxidative damage and
maintained higher membrane integrity.

[235]

Chinese
flowering
cabbage

BA (50 µM) Dipping 15 ◦C; 7 days

Significantly retarded leaf senescence.
Delayed chlorophyll degradation, ROS
production, and MDA levels.
Prevented the decline in endogenous
cytokinin content and the increase
in ethylene.

[236]

Mango BA (200 mg/L) Dipping 25 ± 1 ◦C and
85% RH; 8 days

Delayed the ripening and senescence in
mango fruit.
Inhibited ethylene production and
related enzymes.
Lowered the ROS production and
membrane lipid peroxidation.

[237]

Chinese
flowering
cabbage

CPPU
(20 mg/L) Spraying

4 ± 1 ◦C and
85% RH;
20 days

Delayed the yellowing of Chinese
flowering cabbage.
Reduced H2O2 accumulation, O2

.−

production rate, and MDA content.
Reduced lipid peroxidation.
Suppressed transcript levels of
chlorophyll catabolic genes and
senescence-associated genes.

[244]
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Table 2. Cont.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Calamondin

BA (0, 1, 10,
and 100 mg/L)
in light and
dark
conditions

Spraying
25 ◦C and
85% RH;
9 days

Delayed degreening of the
calamondin fruit.
Had no significant effect on TSS, TA,
sugar content, or AA.

[241]

Litchi BA (100 mg/L) Dipping
25 ◦C and
85% RH;
8 days

Inhibited the decay incidence of fruits.
BA significantly suppressed browning
along with lower PPO activity.
Enhanced PAL SOD, CAT, and APX
enzyme activities.
BA enhanced phytochemical contents
such as anthocyanin, total phenolics
and DPPH.
Reduced the content of H2O and
lipid peroxidation.

[242]

Chinese chive BA (300 mg/L) Spraying
2 ◦C and
85% RH;
54 days

Delayed yellowing and chlorophyll
degradation.
Maintained the total phenolic and
flavonoid content.
Improved the activities of antioxidant
enzymes, including SOD, CAT, and POD.

[243]

Peach BA (500 mg/L) Dipping
25 ◦C and
90% RH;
18 days

Maintained fruit firmness.
BA protected cell membrane.
Induced PPO and POD activities, which
triggered host defensive responses.
BA induced higher enzyme activities of
SOD and CAT.

[238]

Summer
squash

BA (0, 10, 50,
and 100 mM) Spraying

5 ◦C and
85% RH;
25 days

Reduced decay rate.
BA maintained fruit firmness along with
lower pectin solubilization.
Did not affect colour, respiration and
sugar–acid balance.
Suppressed the accumulation of
phenolic compounds.

[239]

Benzyladenine—BA, N-phenyl-N-(2-chloro-4-pyridyl) urea—CPPU, total soluble solids—TSS, titratable acid—TA,
ascorbic acid—AA, superoxide dismutase—SOD, catalase—CAT, ascorbate peroxidase—APX, phenylalanine
ammonia-lyase—PAL, polyphenol oxidase—PPO, hydrogen peroxide—H2O2, malondialdehyde—MDA, and
cytokinin oxidase—CKX.

3.4. Gibberellins

Exogenous GAs have demonstrated a significant role in delaying the ripening rate and
maintaining the quality of fresh fruits and vegetables during storage [132]. Many literature
reports have documented this phenomenon, which helps prolong their perishability during
postharvest handling. For instance, Wang et al. [245] showed that GA3 treatment at a
concentration of 10 mg/L effectively regulated chlorophyll metabolism and delayed the
yellowing of broccoli florets stored at 20 ◦C for 3 days. Similarly, Qu et al. [246] found that
GA3 treatment suppressed browning in litchi fruit, significantly correlated with higher
anthocyanin content. The molecular mechanisms underpinning the efficacy of GA3 in-
volve downregulating genes related to anthocyanin degradation, such as cinnamic acid
4-hydroxylase (C4H), chalcone synthase (CHS), and UDP-flavonoid glucosyl transferase
(UFGT) [246]. These findings suggest that GAs impact fruit pigmentation by regulating
various enzymes and genes [132]. Additionally, exogenous GA3 treatment was found
to delay the increase in phenylalanine ammonia-lyase (PAL) activity and the decline in
chlorophyllase, thereby suppressing the colour change of strawberry fruit during stor-
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age [132]. Furthermore, exogenous GA3 treatment also plays a crucial role in maintaining
the organoleptic properties and other quality attributes of fruits. In line with this, Ozturk
et al. [247] reported that exogenous GA3 treatment delayed weight loss and colour change
and maintained firmness in sweet cherries during postharvest storage. Similarly, exoge-
nous GA3 treatments have been effective in delaying the loss of firmness and total soluble
solids of kiwis, which are critical for maintaining fruit quality during storage [248]. While
exogenous GA treatments are primarily used during preharvest applications [249,250],
further studies are needed to understand their impact when applied postharvest.

Several literature reports have indicated that exogenous GA treatments have been
reported to enhance cold tolerance during postharvest storage [132]. Ding et al. [251] found
that GA3 treatment mitigated chilling injury in cherry tomatoes, significantly correlated
with lower EL and MDA content and increased proline content, thereby maintaining cell
membrane integrity during low-temperature storage. Similarly, Zhu et al. [55] reported a
lower cold damage index in cold-stored tomato fruit, which was attributed to maintained
cell membrane integrity and was associated with the expression of C-repeat binding tran-
scription factor 1 (CBF1), an important regulator of cold resistance in tomatoes. The efficacy
of exogenous GA treatments in suppressing oxidative stress by reducing reactive oxygen
species accumulation and enhancing antioxidant capacity is an important mechanism for
reducing cold damage in fruits during storage.

Exogenous GA treatments are primarily applied by dipping the fruits in the solution,
a method that has been demonstrated to be effective for broccoli [245], litchi [246], and
tomato [55]. This is particularly important for broccoli florets and litchi fruit, which have
uneven surfaces and benefit from immersion for uniform coverage and penetration. How-
ever, spray treatments are also used, particularly for fruits like sweet cherries [247] and
kiwis [248], which are prone to decay if exposed to excessive moisture. This suggests that
the choice of application method for exogenous GA treatment depends on fruit characteris-
tics and susceptibility to water damage. Further research into optimizing these application
methods and formulations can maximise the benefits of exogenous GA treatments for
postharvest quality management of a wide range of fruits.

3.5. Abscisic Acid (ABA)

The application of exogenous ABA has been thoroughly investigated for its poten-
tial to improve postharvest quality and prolong the shelf life of fresh produce. One
critical aspect of exogenous ABA treatments is their effect on modulating the ripening
process. For instance, in tomatoes, ABA application has been shown to accelerate ripening
by promoting ethylene biosynthesis and enhancing the expression of ripening-related
genes [252,253]. Conversely, ABA can also delay ripening in some non-climacteric fruits,
such as strawberries, by reducing ethylene production and slowing the degradation of cell
wall components [254].

In addition to its role in ripening, ABA treatment can improve the stress tolerance of
postharvest produce. For example, ABA application has been found to enhance the cold
tolerance of zucchini fruits by reducing CI symptoms such as browning and electrolyte
leakage [255,256]. This protective effect is attributed to the ability of ABA to upregulate
antioxidant enzyme activities, thereby mitigating oxidative stress and maintaining cell
membrane integrity [54]. Similar effects have been observed in pineapples, where ABA
treatment reduced CI symptoms and preserved fruit quality during cold storage [54].

Furthermore, ABA has been reported to impact the texture of fruits. In jujube and
strawberries, exogenous ABA treatment delayed softening by regulating the activities
of cell wall-modifying enzymes [254,257]. However, the effect of exogenous ABA varies
across different fruits. For instance, Zhou et al. [258] reported higher activity of cell wall-
modifying enzymes in blueberry fruits treated with ABA (2 mM), which correlated with
increased softening. In contrast, Qiao et al. [259] reported no significant effect of ABA on
the softening rate of blueberry fruits.
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Abscisic acid application has been shown to enhance the accumulation of various
phytochemicals and aromatic volatiles, improving the flavour, colour, and antioxidant
properties of the produce. For example, ABA application in blueberries has been shown
to enhance total phenol and anthocyanin content, along with improved production of
aromatic volatiles [259]. Similar observations have been noted in tomatoes, where the
application of ABA increased the accumulation of total phenolic and flavonoid contents,
the content of DPPH and FRAP, and the accumulation of volatile compounds [252,260].
Other studies where ABA has been exogenously applied to fruits and vegetables during
postharvest handling are summarized in Table 3.

Table 3. Effect of exogenous abscisic acid treatments on fruits and vegetables during postharvest handling.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Strawberry ABA (0.1 µM) Spraying
4 ◦C and
90% RH;
12 days

Increased the concentration of sucrose
and glucose.
Enhanced the quality index of fruits.
Delayed weight loss increase and loss
of texture.
Suppressed ethylene production.

[254]

Zucchini ABA (0.5 mM) Dipping
4 ◦C and
85% RH;
14 days

Induced chilling tolerance of fruits.
Activated t-zeatin and riboflavin
biosynthesis.
Enhanced the accumulation of sugars,
organic acids, and amino acids.

[255]

Zucchini ABA (0.5 mM) Dipping
4 ◦C and
85% RH;
14 days

Improved the chilling tolerance of fruit.
Increased ascorbate, carotenoids, and
polyphenolic compounds.
Enhanced PAL and suppressed PPO and
POD enzyme activities.

[256]

Jujube ABA (0.2 mM) Dipping
0 ± 1 ◦C and
85% RH;
50 days

Delayed colour change and firmness loss.
Reduced respiration rate and ethylene
production.
Inhibited the activities of PG, PME,
β-galactosidase, and PAL.

[257]

Peach ABA (0.1 mM) Dipping
0 ± 1 ◦C and
85% RH;
21 days

Reduced internal flesh browning.
Increased the content of soluble sugars
along sucrose synthase and sucrose
phosphate synthase.

[261]

Blueberry ABA (2 mM) Dipping
20 ± 0.5 ◦C
and 85% RH;
8 days

Increased the softening rate of fruit.
Enhanced the activities of PG, PME, and
β-galactosidase.
Enhanced endogenous abscisic
acid biosynthesis.

[258]

Tomato ABA (1 mM) Vacuum
20 ± 0.5 ◦C
and 90% RH;
15 days

Enhanced enzyme activities of PAL, POD,
PPO, CAT, and APX.
Upregulated the expression of genes
involved in the
phenylpropanoid pathway.

[260]
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Table 3. Cont.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Cherry tomato ABA (1 mM) Vacuum
20 ± 0.5 ◦C
and 90% RH;
15 days

Accelerated colour development and
ethylene production.
Enhanced the accumulation of
carotenoids, total phenolics, and
linoleic acid.
Increased the accumulation of
volatile compounds.

[252]

Kiwifruit ABA (0.5 mM) Dipping 20 ± 0.5 ◦C;
4 days

Increased POD and PAL enzyme activity.
Enhanced the accumulations of total
phenols and total flavonoids to accelerate
the wound healing effect.

[262]

Pineapple ABA (0.38 µM) Spraying 5 ◦C; 9 days

Reduced internal browning by >50%.
Suppressed PAL enzyme activity and
subsequently lowered phenolic content
and PPO activity.
Inhibited the production of ROS
and MDA.

[54]

Abscisic acid—ABA catalase—CAT, ascorbate peroxidase—APX, polyphenol oxidase—PPO,
malondialdehyde—MDA, polygalacturonase—PG, pectin methylesterase—PME, and β-galactosidase,
reactive oxygen species—ROS, phenylalanine ammonia-lyase—PAL, peroxidase—POD.

3.6. Jasmonates (JA)

Methyl jasmonate (MeJA) is an important JA analogue that is commonly used in
postharvest applications, typically applied through dipping at concentrations between
0.01 and 0.4 mM. The effects of MeJA on ripening are contradictory and require further
investigation. For instance, Lv et al. [263] demonstrated increased ethylene production in
apples treated with 0.5 mM of MeJA during 28 days of ambient storage. Similar results
have been observed in apples treated with 0.1 mM of MeJA [264]. In contrast, peach fruit
treated with 0.01 mM of MeJA showed suppressed ethylene production and a reduced
ripening rate [265]. These differing results could be due to crop differences, highlighting
the need for comparative studies to explain the mechanisms of JA across different crops.

Methyl jasmonate has also been reported to delay senescence by maintaining firmness,
delaying colour change, and suppressing weight loss (Table 4). For example, MeJA has been
shown to delay colour change in pineapples [266], dragon fruit [267], and guava [268]. Ex-
ogenous MeJA application has also been demonstrated to maintain other quality attributes,
such as TSS [33,267].

Methyl jasmonate treatments also play an important role in scavenging free radicals
in fresh produce during postharvest storage [269]. This is attributed to the role of MeJA in
enhancing antioxidant enzyme activities such as SOD, CAT, and APX. This effect has been
observed in strawberries [270], pineapple [266], and kiwifruit [271]. Higher phytochemical
contents, including ascorbic acid, glutathione, and phenolics, have been reported in MeJA-
treated fruits such as jujube [269], blueberries [272], and cherry tomatoes [273]. These
factors are crucial in enhancing CI inhibition and maintaining higher membrane integrity
of fresh produce [51,274,275]. Additionally, maintaining higher membrane unsaturation
has been reported as an essential mechanism of MeJA in suppressing CI [51,276]. Other
reports on the effects of MeJA on postharvest handling of fresh produce are summarized in
Table 4.

While MeJA treatments show great potential in improving postharvest quality and
extending shelf life, further research is necessary to fully understand their varying effects
across different types of produce and the underlying mechanisms involved.
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Table 4. Effect of exogenous jasmonate treatments on fruits and vegetables during postharvest handling.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key results Reference

Peach MeJA
(0.01 mM) Fumigation 20 ± 1 ◦C and

90% RH; 7 days

Reduced ethylene production by
suppressing the enzyme activities
involved in ethylene biosynthesis.
Activated negative feedback of the
JA-signaling pathway to
maintain quality.

[265]

Table grapes
MeJA (0.4 mM)
+ GR24
(0.1 mM)

Dipping 20 ± 1 ◦C;
45 days

Increased ripening rate; accumulation of
anthocyanins and the expression of
anthocyanin-related genes.
Increased TSS content and organic acids.
Enhanced accumulation of
volatile compounds.

[277]

Peaches MeJA
(0.01 mM) Dipping

5 ± 0.5 ◦C and
85% RH;
21 days

Reduced CI incidence.
MeJA maintained a higher ratio of
unsaturated fatty acids to saturated
fatty acids.
Activated α-linolenic acid metabolism.

[276]

Sweet cherries MeJA
(0.15 mM) Dipping

0 ± 1 ◦C and
90% RH;
40 days

Reduced weight loss, ROS production,
and softening rate of mechanically
damaged sweet cherries.
Suppressed the increase in membrane
lipid degradation.
MeJA maintained high levels of
antioxidant contents and antioxidant
enzyme activity.
MeJA increased the PAL metabolism.

[278]

Peach JA (0.03 mM) Dipping 4 ◦C and 90%
RH; 35 days

Reduced CI and internal browning.
Suppressed the accumulation of H2O2.
JA reduced the activity of CAT and POD.

[279]

‘Kinnow’
mandarin

MeJA
(0.001 µM) Dipping

5 ± 2 ◦C and
90% RH;
75 days

Reduced weight loss, spoilage, and
softening rate.
Suppressed the activity of cell wall
degrading enzymes.
Maintained higher ascorbic acid, total
carotenoids, and sensory attributes.

[33]

Green bell
pepper

MeJA
(0.001 µM) Spraying

4 ± 0.1◦C and
85% RH;
25 days

Reduced CI, EL MDA levels, and PLD
activity.
Maintained higher ascorbic acid content
and higher PC, PE, and PS levels.
Maintained higher proline content.

[280]

Pepper MeJA
(0.05 mM) Vacuum 13◦C and 85%

RH; 25 days

Reduced seed browning.
Increased the content of glutamate,
sucrose, and galactinol.

[281]

Pineapple MeJA
(0.01 mM) Dipping

13 ± 1 ◦C and
85% RH;
10 days

Reduced CI and delayed colour change.
MeJA reduced EL and MDA.
Reduced PPO activity and
phenolic content.
Maintained antioxidant activity, ascorbic
acid, and sugar content.

[53]
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Table 4. Cont.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key results Reference

Orange MeJA
(0.25 mM) Dipping

4 ± 3◦C and
85% RH;
90 days

Reduced CI development.
MeJA reduced TSS and TA.
Maintained higher vitamin C and
antioxidant content.

[282]

Cherry tomato MeJA
(0.01 µM) Fumigation 25 ◦C and 85%

RH; 11 days

Improved the content of ascorbic acid.
Enhanced lycopene and total
carotenoid accumulation.
Increased the content of
carotenoid-derived volatile
organic compounds.

[273]

Avocado MeJA (0.1 mM) Dipping 2 ◦C and 85%
RH; 21 days

Reduced CI incidence.
Maintained a higher ratio of unsaturated
fatty acids to saturated fatty acids.
Downregulated LOX gene expression
and enzyme activity.

[51]

Methyl jasmonate—MeJA, total soluble solids—TSS, titratable acid—TA, polyphenol oxidase—PPO, hydro-
gen peroxide—H2O2, malondialdehyde—MDA, phospholipase D—PLD, lipoxygenase—LOX, phenylalanine
ammonia-lyase—PAL, phosphatidylcholine—PC, phosphatidylethanolamine—PE, and phosphatidylserine—PS,
chilling injury—CI.

3.7. Salicylic Acid

Exogenous SA applications are known to reduce the ripening rate of fresh produce
by delaying the peak in ethylene production and suppressing respiration rates. This has
been observed in crops such as pear [283] and mango [284]. Similar effects were noted
in tomatoes treated with 0.75 mM SA during 15 days of ambient storage. These effects
are attributed to SA’s ability to suppress the activity of key enzymes and genes involved
in ethylene biosynthesis, such as ACC synthase and ACC oxidase. Combining SA with
other treatments can further enhance its efficacy. For example, Sinha et al. [285] found
that SA combined with chitosan significantly suppressed the ripening rate of pears more
effectively than SA alone. Similar results were observed in cucumbers treated with a
composite coating of chitosan and SA [23]. This suggests that integrating plant hormones
with edible coatings is a promising approach to enhancing the effectiveness of exogenous
plant hormone treatments.

Salicylic acid treatments also help maintain other quality attributes such as weight
loss [286–288], firmness [289–291], colour change [287,289], and sensory attributes [227,286].

Typically, the dipping method is employed, with concentrations ranging from 0.05 to
5 mM and dipping times varying from 2 min to 1 h, depending on the type of produce. Due
to its high volatility, methyl salicylate (MeSA) is often applied using vacuum fumigation,
as demonstrated in sweet cherry [290], pear [283], and blood orange [292]. Additionally,
SA has been incorporated into edible coatings to enhance its efficacy, as reported by Sinha
et al. [293] and Hosseinifarahi et al. [294].

Salicylic acid, a phenolic plant hormone synthesized via the phenylpropanoid pathway,
can enhance the accumulation of phenolic compounds in fresh produce, thereby improving
scavenging capacity. Zhou et al. [295] reported higher PAL, C4H and 4CL activities in citrus
fruit treated with 2.5 mM SA. Similarly, Zhang et al. [296] noted increased activity of these
enzymes, essential for synthesizing flavonoids and anthocyanins, leading to higher phenolic
content in various fruits. Exogenous SA treatments have also been reported to enhance the
antioxidant capacities of papaya [28], apricot [297], citrus [298], and banana [227].

Enhancing the antioxidant capacity of fresh produce with SA is crucial for reducing
fungal damage and alleviating physiological disorders such as CI and IB. SA treatments
have been shown to reduce CI in tomatoes, correlating with lower EL and MDA levels [299].
Moreover, SA treatments have been reported to suppress the activities of LOX, PPO, and
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POD while maintaining higher phenolic content, leading to reduced internal and external
browning [300]. Other studies on the effects of SA treatments during postharvest handling
are summarized in Table 5.

Table 5. Effect of exogenous salicylic acid treatments on fruits and vegetables during postharvest handling.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Pointed gourd SA (3 mM) Dipping 23 ◦C and 82%
RH; 6 days

Reduced weight loss and delayed
colour change.
SA reduced lipid peroxidation.
Maintained higher ascorbic acid, total
phenols, flavonoids, and DPPH.

[301]

Pear SA (2 mM) +
beeswax (2%) Dipping 0 ◦C and 95%

RH; 67 days

Reduced weight loss and
maintained firmness.
Delayed respiratory peak and increased
MDA content.
Reduced the activities of cell wall
degrading enzymes.

[293]

Goji berry SA (2 mM) Dipping 0 ◦C and 95%
RH; 5 days

Reduced the production of ROS.
SA induced enzyme activities and genes
of SOD, CAT, APX, and POD.
Increased activities and gene expressions
of PAL, C4H, 4CL,
CHS, CHI, and CAD.
Upregulated secondary metabolites such
as chlorogenic acid,
ferulic acid, p-coumaric acid, sinapic acid,
and protocatechuic acid.

[296]

Pear MeSA
(0.05 mM) Vacuum 25 ◦C and 95%

RH; 20 days

Delayed colour change and reduced
weight loss.
Maintained firmness and reduced
respiration rate and ethylene production.

[283]

Longan SA (0.3 mg/L) Dipping 28 ◦C and 90%
RH; 5 days

Reduced disease index.
Reduced activities of
PLD, PLC, lipase, and LOX.

[302]

Strawberry
SA (1 mM) +
aloe vera gel
(100%)

Dipping 5 ◦C and 90%
RH; 15 days

Reduced weight loss and decay. It further
maintains firmness, ascorbic acid,
anthocyanins and phenolics.

[294]

Banana MeSA (2 mM) Dipping 25 ◦C and 75%
RH; 6 days

Delayed the development of
peel spotting.
Increased the activities of APX, DHAR,
MDHAR, GR, ASA, and GSH.

[303]

“Kinnow”
mandarin SA (4 mM) Dipping 5 ◦C and 90%

RH; 90 days

Maintained higher phenolics.
SA increased the enzyme activities of
POD and SOD.
Reduced the decay percentage by
reducing susceptibility to fungal attack.
MeSA reduced ROS production.

[304]

Papaya SA (1.5 mM) Dipping 12 ◦C and 90%
RH; 28 days

Reduced fruit day and weight loss.
SA maintained fruit firmness, TSS,
and TA.
Maintained higher ascorbic acid,
phenolics, and antioxidants.
Increased the enzymatic activities of CAT,
SOD, and POD.

[28]
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Table 5. Cont.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Orange
SA (2 mM) +
aloe vera gel
(30%)

Dipping
4 ◦C and
80% RH;
80 days

Reduced decay index, total aerobic
mesophilic bacteria, microbial load, and
weight loss.
Maintained higher firmness, TSS, TA,
vitamin C, and total phenolics.
Reduced MDA, EL, and CI.

[27]

Apple SA (0.5 mM) Dipping 12 ◦C and
80% RH; 9 days

Enhanced total phenols, total flavonoids,
and antioxidant
enzymes activities such as POD and CAT.
Maintained firmness and
visual appearance.

[305]

Mango SA (200 ppm) Dipping
22 ◦C and
75% RH;
10 days

Reduced enzyme activities of PPO, POD,
and LOX.
Maintained higher phenolic content.
Reduced respiration rate, ethylene
production, and decay rate.

[284]

Lime SA (0.5, 1 and
2 mM) Vacuum

4 ◦C and
85% RH;
60 days

Maintained firmness and reduced
weight loss.
Delayed the degradation of chlorophyll.
Maintained higher ascorbic acid, DPPG
and total phenolic content.
Maintained higher TA and lower TSS.

[48]

Strawberry SA (1 and
2 mM) Dipping

1 ◦C and
90% RH;
14 days

Enhanced the enzyme activity of CAT
and POD. [306]

Apricot SA (1 and
2 mM) Vacuum

2 ◦C and
90% RH;
25 days

Maintained higher antioxidant activity,
as well as phenolic acids and flavonoids.
Increased the activity of PAL.
Reduced the enzyme activity of CAT
and APX.

[297]

Salicylate—SA, methyl salicylate—MeSA, total soluble solids—TSS, titratable acid—TA, super-
oxide dismutase—SOD, catalase—CAT, ascorbate peroxidase—APX, polyphenol oxidase—PPO,
malondialdehyde—MDA, dehydroascorbate reductase—DHAR, monodehydroascorbate reductase—MDHAR,
glutathione reductase—GR, ascorbate—ASA, reduced glutathione—GSH, phospholipase D—PLD, phospho-
lipase C—PLC, lipoxygenase—LOX, phenylalanine ammonia-lyase—PAL, cinnamate 4-hydroxylase—C4H,
4-coumarate-CoA ligase—4CL, chalcone synthase—CHS, chalcone isomerase—CHI, and cinnamyl alcohol
dehydrogenase—CAD.

3.8. Strigolactones (SLs)

Exogenous SLs have shown promising potential to enhance shelf life and improve the
quality management of fruits and vegetables during postharvest handling [175,307–309].
GR24 is the most active and widely used chemically synthesized SL analogue, largely due
to the instability of naturally occurring SLs in plants [307].

The study by Li et al. [307] demonstrated the efficacy of exogenous GR24 treatment
at 2 µM in significantly maintaining celery’s sensory attributes and flavour compounds
during postharvest handling at 20 ◦C for 12 days. This treatment delayed the colour change
to yellowing by slowing the rate of chlorophyll degradation. Similarly, GR24 treatment was
effective in delaying the ripening rate of oranges, reducing the fruit respiration rate, weight
loss, and decay rate, thereby maintaining the organoleptic quality of the fruits. Notably,
the concentration of 200 µM used for oranges was considerably higher than the 2 µM for
celery [307] and 1 µM for strawberries [309], raising concerns about optimal dosage and
application consistency.

Strigolactones have also been reported to improve stress tolerance by enhancing antiox-
idant capacity and stabilizing cellular structures, thereby reducing postharvest losses [307].
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Huang et al. [309] reported higher levels of antioxidant activities such as DPPH, CAT,
and SOD in strawberry fruits treated with 1 µM SL, along with lower levels of PPO and
H2O2 during storage at 0 ◦C for 10 days. Similarly, Ma et al. [308] observed lower H2O2
levels and higher enzyme activities of CAT, APX, and glutathione reductase in treated
fruits, indicating higher antioxidant activity. These findings underscore the role of SLs in
enhancing the postharvest stress tolerance of fruits.

Regarding application methods, spraying has been commonly used on leafy veg-
etables [307], while dipping is preferred for fruits [308,309]. Dipping ensures uniform
absorption and penetration into fruit tissues, whereas spraying provides a quick method
that minimizes water contact with leafy vegetables, which are highly sensitive to moisture.
Despite these promising benefits, further research is essential to optimize SL concentrations
and application methods for various fruit types, understand their interactions with other
hormones, and evaluate their commercial viability.

3.9. Brassinosteroids (BLs)

Exogenous application of BLs has shown broad effects on fresh produce during
postharvest handling. These effects range from modulating ripening and maintaining
quality to inducing resistance to physiological disorders such as browning and CI. The
immersion/dipping method is primarily used to apply BLs, although spraying has also
been used for sensitive vegetables such as zucchini squash and broccoli florets.

The recent study by Li et al. [310] demonstrated the efficacy of EBR at 0.4 mg/L in
reducing the ripening rate of table grapes, attributed to a lower respiration rate, delayed
colour change, and better weight loss retention of the treated fruit. Similarly, Wang et al. [57]
reported lower respiration rates in kiwifruit treated with 5 µM of EBR. In contrast, tomato
fruit treated with 3 µM of BL showed higher expression of genes related to ethylene
and lycopene biosynthesis, such as phytoene synthase 1 (LePSY1), ripening-related ACC
synthase 2 (LeACS2), ripening-related ACC synthase 4 (LeACS4), 1-aminocyclopropane-
1-carboxylate oxidase 1 (LeACO1), and 1-aminocyclopropane-1-carboxylate oxidase 4
(LeACO4). This resulted in higher ethylene production and lycopene content [311]. These
findings suggest that the effects of exogenous BL treatments on respiration rate and ethylene
production require further investigation.

Brassinosteroid treatments are also highlighted for their importance in suppressing
browning during storage. Gao et al. [34] reported significant inhibition of pulp browning
in eggplant treated with 10 µM EBR during chilling-inducing storage at 1 ◦C for 15 days.
Similar results were observed in mushrooms treated with 3 µM BL during cold storage
at 4 ◦C for 16 days [312]. This effect is attributed to the efficacy of BLs in preserving cell
membrane integrity, as indicated by lower EL, MDA, and ROS, along with suppressed PPO
activity. This directly relates to the role of BLs in mitigating CI during cold storage.

The increased activity of antioxidant enzymes has been reported as key to alleviating
the adverse effects of oxidative stress resulting from CI. For example, EBR-treated fruit
(40 µM) with lower CI showed higher activities of SOD, CAT, and APX. Similar responses
were observed in kiwifruit treated with 5 µM EBR, which exhibited enhanced activities of
SOD, CAT, POD, and APX, along with lower H2O2 content [57]. This role of BLs is also
associated with maintaining the phytochemical content of fresh produce. The application
of 10 µM EBR in blood oranges has been shown to maintain higher phenolic content [313].
Similarly, pomegranate fruit treated with 15 µM EBR displayed higher anthocyanin content
and ascorbic acid levels [38]. More studies on the effect of exogenous BL treatments are
summarized in Table 6.

BLs have shown unique benefits over other phytohormones like auxins and ethylene.
While auxins and ethylene also influence ripening and stress tolerance, BLs specifically
enhance antioxidant enzyme activities and maintain phytochemical content, providing a
multifaceted approach to postharvest management. However, despite the promising results,
there remains a significant gap in studies exploring the mechanisms of this hormone.
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Table 6. Effect of exogenous brassinosteroid treatments on fruits and vegetables during postharvest
handling.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Table grapes EBR
(0.4 mg/L) Dipping

25 ◦C and
95% RH;
60 days

Reduced respiration rate, softening rate,
colour change, and decay rate.
Maintained lower weight loss, ROS,
and EL.
Increased enzyme activities of SOD, POD,
and CAT.
Reduced grey mould severity.

[310]

Zucchini
squash EBL (0.1 µM) Spraying

4 ◦C and
80% RH;
25 days

Suppressed the development of CI.
Delayed yellowing and weight loss.
Maintained lower EL and MDA.
Increased phenolic content and POD
enzyme activity.

[44]

Pomegranate EBR (15 µM) Dipping
4 ◦C and
80% RH;
84 days

Suppressed the development of CI.
Enhanced proline accumulation.
Suppressed enzyme activity of LOX and
PPO along with lower MDA, EL,
and ROS.
Enhanced enzyme activities of POD, CAT,
SOD, and PAL.
Enhanced the content of anthocyanins
and ascorbic acid.

[38]

Broccoli EBR (2 µM) Spraying
10 ◦C and
85% RH;
10 days

Delayed colour change.
Suppressed ROS production and
MDA content.
Maintained higher ascorbic acid content.
Enhanced enzyme activities of SOD,
APX, and PAL.

[314]

Blood orange EBR (10 µM) Dipping
5 ◦C and
90% RH;
42 days

Reduced CI and suppressed EL
and MDA.
Retained organic acids and sugars.
Maintained higher phenolics and
anthocyanins.

[313]

Kiwifruit EBR (5 µM) Dipping
20 ◦C and
70% RH;
20 days

Delayed colour change.
Suppressed respiration rate and
production of ROS.
Maintained better mitochondrial
membrane integrity.
Enhanced enzyme activities of SOD, CAT,
POD, and APX.

[57]

Grapes BL (1.5 ppm) Dipping
−0.5 ◦C and
95% RH;
5 weeks

Suppressed the development of CI and
decay rate.
Maintained lower ROS, EL, and MDA.
Increased the activity of
antioxidant enzymes.

[315]

Kiwifruit EBR (5 µM) Dipping
20 ◦C and
95% RH;
20 days

Maintained lower EL and MDA.
Delayed starch degradation and
accumulation of sugars.
Suppressed enzyme activities related to
sugar accumulation.

[316]
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Table 6. Cont.

Crop Formulation—
Concentration

Application
Method

Storage
Conditions Key Results Reference

Banana EBR (40 µM) Dipping
8 ◦C and
95% RH;
12 days

Suppressed the development of CI.
EBR maintained lower EL and MDA.
Increased enzyme activities of SOD, CAT,
and APX.
Maintained protein function.

[58]

Peach EBR (15 µM) Dipping
1 ◦C and
95% RH;
28 days

Suppressed the softening rate and the
development of CI.
Maintained lower ROS, EL, and MDA.
Maintained lower enzyme activities of
PPO and POD.
Maintained higher phenolic and
proline content.

[35]

White Button
Mushroom BL (3 µM) Dipping

4 ◦C and
95% RH;
16 days

Reduced weight loss, EL, MDA, and ROS.
Suppressed browning and production of
phenolic compounds.
Suppressed PPO activity and enhanced
the activity of antioxidant enzymes.

[312]

Table grapes EBR
(0.8 mg/L) Dipping

0 ◦C and
95% RH;
60 days

Reduced softening rate of fruits.
Reduced weight loss and decay rate.
Upregulated defence-related enzymes
such as SOD, POD, CAT, and PAL.
Maintained lower MDA and ROS.

[39]

24-epibrassinolide—EBR, brassinolide—BL, electrolyte leakage—EL reactive oxygen species—ROS, chilling
injury—CI, superoxide dismutase—SOD, catalase—CAT, lipoxygenase—LOX, ascorbate peroxidase—APX,
polyphenol oxidase—PPO, phenylalanine ammonia-lyase—PAL, hydrogen peroxide—H2O2, and
malondialdehyde—MDA.

3.10. Melatonin (MT)

Exogenous MT treatments have proven effective in reducing the ripening rate and
delaying the senescence of fresh produce during postharvest storage. Melatonin treatments
delay ripening by reducing softening, weight loss, ethylene production, and respiration
rate [317–319]. This leads to higher TSS, TA, and inhibited surface browning [193,320–323].

The effectiveness of MT is strongly linked to its ability to suppress ROS production by
enhancing antioxidant enzyme activities [182,324]. For instance, Gao et al. [325] reported
increased activities of APX, SOD, POD, and CAT in peach fruit treated with 100 µM of MT
during 7 days of ambient storage. Similar outcomes were observed in pomegranate fruit
stored at 4 ◦C for 120 days with the same MT concentration [326]. Melatonin treatments
are significantly correlated with the enhancement of non-enzymatic antioxidant systems,
including anthocyanins, flavonoids, and ascorbic acid [326,327]. Other non-enzymatic
systems induced by MT treatments include carotenoids, dehydroascorbic acid, and glu-
tathione, contributing to ROS homeostasis [328]. MT treatments also induce the synthesis
of proline and increase endogenous MT content [31,193,329].

Melatonin treatments have also been shown to play a crucial role in mitigating CI in
susceptible fruit during cold storage. This has been observed in litchi [324], peach [330],
and sapota fruit [331]. Notably, MT treatments reduce the MDA content and EL and
LOX enzyme activity while maintaining a higher ratio of unsaturated to saturated fatty
acids [332,333]. This efficacy is also linked to MT’s ability to alleviate oxidative stress by
enhancing antioxidant defence systems, as previously discussed. Aghdam and Fard [322]
and Liu et al. [334] highlighted MT’s role in maintaining sufficient ATP supply and energy
charge, although there is still a gap in understanding the full impact of MT on these
factors concerning the quality preservation of fresh produce. Other studies on the effect of
exogenous MT treatment on the postharvest quality of fresh produce are summarised in
Table 7.
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Table 7. Effect of exogenous melatonin treatments on fruits and vegetables during postharvest handling.

Crop Concentration/
Formulation

Application
Method

Storage
Conditions Key Results Reference

Mango MT (100 µM) Dipping
4 ◦C and
95% RH;
15 days

Reduced CI and maintained quality.
Reduced weight loss, respiration rate and
ethylene production.
Maintained higher firmness, TSS, and TA.
Maintained higher phenolics,
anthocyanins, and DPPH.
Increased enzyme activities of SOD
and CAT.
Suppressed MDA content and
LOX activity.

[321]

Pomegranate MT (100 µM) Dipping
4 ◦C and
95% RH;
120 days

Reduced CI, EL, and ROS.
Increased the enzyme activities of PAL,
CAT, APX, and SOD.
Increased the total phenolic content and
suppressed PPO enzyme activity.

[326]

Sweet cherry MT (100 µM) Dipping
0 ◦C and
95% RH;
45 days

Reduced the browning index and decay
incidence.
Increased the endogenous MT content.
Increased the content of phenols,
flavonoids, and anthocyanins.
Increased the PAL activity and
suppressed PPO activity.
Reduced ROS production and
MDA content.
Enhanced enzyme activities of SOD, CAT,
and APX.

[329]

Mushroom MT (100 µM) Dipping
3 ◦C and
95% RH;
12 days

Suppressed EL and reduced
respiration rate.
Enhanced the enzyme activities of APX,
CAT, and SOD.
Delayed the loss of ATP and energy
charge.

[335]

Apple MT (1000 µM) Spraying
1 ◦C and
95% RH;
56 days

Reduced weight loss and
ethylene production.
Increased enzyme activities of POD, SOD,
and CAT.

[318]

Green bell
peppers MT (100 µM)

20 ◦C and
95% RH;
12 days

Preserved cell membrane integrity by
suppressing MDA content, PLD,
and LOX.
Increased the proline synthesis.
Alleviated CI by suppressing ROS
production and enzyme activities of POD,
CAT, and SOD.

Litchi MT (400 µM) Dipping
25 ◦C and
85% RH;
15 days

Suppressed the development of CI.
MT reduced EL and MDA content.
Maintained higher ATP and EC, which
resulted in higher cellular energy levels.
MT improved proline content.

[334]

Pears MT (100 µM) Dipping
20 ◦C and
85% RH;
120 days

Suppressed peel browning of fruit.
Reduced LOX activity and MDA content.
Reduced PAL activity and inhibited PPO
activity. Subsequently, this increased the
accumulation of phenolics.
Increased proline synthesis.

[327]
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Table 7. Cont.

Crop Concentration/
Formulation

Application
Method

Storage
Conditions Key Results Reference

Pomegranate MT (100 µM) Dipping
4 ◦C and
85% RH;
120 days

Maintained higher intracellular NADPH.
Maintained higher enzyme activities of
APX, PAL, and AOX.
Maintained higher phenols,
anthocyanins and DPPH.

[32]

Tomato MT (100 µM) Dipping
5 ◦C and
85% RH;
30 days

Enhanced the chilling tolerance of fruit
and maintained higher intracellular ATP.
Maintained higher ratio of
unsaturated/saturated fatty acids.
Suppressed LOX enzyme activity and
associated genes.

[333]

Tomato MT (100 µM) Dipping
4 ◦C and
85% RH;
28 days

Enhanced chilling tolerance and
suppressed EL and MDA.
Increased the endogenous proline
content by enhancing ODC and ADC
gene expression.
Upregulated P5CS and OAT
gene expression.

[31]

Peach MT (100 µM) Dipping
28 ◦C and
85% RH;
7 days

Slowed the senescence process by
reducing weight loss and respiration rate.
Maintained higher firmness, TSS, and
ascorbic acid levels.
Increased the enzyme activities of APX,
SOD, POD, and CAT.
MT suppressed ROS and LOX
enzyme activity.

[325]

Melatonin—MT, total soluble solids—TSS, titratable acid—TA, superoxide dismutase—SOD, catalase—CAT,
ascorbate peroxidase—APX, polyphenol oxidase—PPO, malondialdehyde—MDA, alternative oxidase—AOX,
phospholipase D—PLD, triphosphate—ATP, energy charge—EC, ornithine decarboxylase—ODC, arginine
decarboxylase—ADC, pyrroline-5-carboxylate synthase—P5CS, and ornithine aminotransferase—OAT.

4. Limitations and Future Directions in the Application of Exogenous Plant Hormones
for Postharvest Quality Preservation

It is clear from the various sections that exogenous plant hormones have emerged as
vital tools in postharvest preservation; however, their use still has some challenges. As
already established, plant hormones are endogenous signalling molecules that plants use
in their complex interactions to regulate various physiological functions [336]. However,
their exogenous application in food products, mainly fresh fruits and minimally processed
products, raises concerns about potential harmful health effects [337]. Issues such as toxicity
and bioaccumulation are the main concerns, as these exogenous plant hormones could
induce adverse effects on human health [337]. A notable case involved the use of high
exogenous concentrations of gibberellic acid and cytokinins, which led to acute toxicity
and teratogenic effects in Daphnia magna [338]. This suggests that while these compounds
are generally safe, high residue levels of plant hormones may lead to human poisoning
and environmental pollution [339]. In light of these concerns, national and international
food monitoring programs have developed strict residue levels to ensure consumer health
while improving agricultural management [337]. Nevertheless, inconsistent regulation
and compliance pose another significant limitation. Achieving consistent compliance
with residue limits is particularly challenging in regions with limited access to advanced
analytical tools [338,340]. Reports indicate that concentrations of GA and ethylene in some
produce often exceed safety limits, suggesting a gap in regulatory enforcement [339,340].
Moreover, emerging hormones like SL are gaining interest in potential medical applications,
including the management of inflammation and cancer [172]. However, safe concentration
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levels for such uses have yet to be established [172]. This highlights the necessity for further
research to ensure the safe use of plant hormones in both agricultural and medical contexts.
Hence, conducting extensive toxicological studies and establishing clear safety guidelines
for the use of new plant hormones is crucial. These concerns highlight the need for
strengthened international collaboration in sharing resources and technological approaches
for residual monitoring. Thus, investing in portable and cost-effective testing devices
will enable more widespread and frequent residue analysis, ensuring better regulatory
compliance and ultimately protecting consumer health. Furthermore, collaborative research
involving academia, industry, and regulatory bodies can accelerate the development of
standardized protocols for safe hormone application. Such efforts will bridge the gap
between innovative hormone applications and their practical, safe use in various fields.

Other concerns in the application of traditional exogenous plant hormone treatments
include their rapid degradation, limited absorption, and uncontrolled release, leading
to reduced efficacy, thus diminishing their commercial viability [341]. Consequently, re-
searchers have recently focused on various approaches to maximize the effectiveness of
these treatments, significantly contributing to continuous technological advancements in
the field of postharvest management [342]. One promising approach is the incorporation of
exogenous plant hormones with edible coatings. For example, incorporating melatonin
with chitosan significantly enhanced efficacy in reducing weight loss, lowering respiration
rates, improving nutritional quality, and extending the storage life of sweet cherries during
cold storage compared to individual treatments of melatonin and chitosan [342]. The
synergistic effect of the two components enhances antioxidant capacity while regulating
gaseous exchange and water loss, thereby delaying senescence [342]. Another approach
employed to ameliorate the efficient application of these hormones effectively is the use of
nanoparticle-based delivery systems. This, however, is still in the early stages of application
in postharvest management [343–346]. Nevertheless, these delivery systems have been
documented to show promise in enhancing the efficacy, stability, and controlled release of
exogenous plant hormones [341,343,346,347]. Chitosan nanoparticles have been identified
as important nanocarriers and are now being used in plant physiology studies to enhance
the efficacy of exogenous plant hormones [341,343,348]. While these nanoparticles have
been proven effective in regulating the release of plant hormones and enhancing their
penetration into target tissues during preharvest, studies on their application in postharvest
quality management are still lacking, including their cytotoxicity evaluation over a long
period on the consequences of their bioaccumulation. Therefore, studies involving the use
of nanoparticles for the delivery of plant hormones in postharvest treatments are essential,
particularly to address phytostability, efficacy, and toxicity effects. Understanding these fac-
tors will be crucial for ensuring the safety and effectiveness of nanoparticle-based delivery
systems in enhancing postharvest quality and extending the shelf life of fresh produce.

Other concerns have been raised about the use of polysaccharide biopolymers such as
chitosan as compositing materials alongside plant hormones for coating during posthar-
vest handling [342,349–351]. These polysaccharide biopolymers are mainly used due to
their low cost, high availability, non-toxicity, and biocompatibility [197,352,353]. While
these materials possess good film-forming ability, their high water vapor permeability
due to their hydrophilic nature has been documented to affect the overall efficacy of plant
hormone-based composite coatings [354,355]. Therefore, it is important to consider incor-
porating hydrophobic components in the coating formulation [354,356]. Thus, in coating
formulations, optimization, such as determining the precise concentrations of additives
relative to the concentration of plant hormones, should be carefully considered [356–358].
This optimization is crucial to ensure the effectiveness and stability of the coatings, bal-
ancing the hydrophilic and hydrophobic properties to achieve the desired protective and
functional effects [358–361].

Many more limitations exist; however, effectively addressing these crucial concerns
regarding the application of exogenous plant hormones for postharvest preservation will
significantly contribute to the efficient and secure utilization of these materials. Conse-
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quently, adopting a comprehensive approach that incorporates cutting-edge technologies,
establishing stringent regulatory frameworks, and fostering collaboration among key stake-
holders in the food, research, and health sectors can effectively mitigate significant concerns.
This approach ultimately enhances the safety, effectiveness, and sustainability of these
treatments, thereby benefiting producers and consumers alike. The synergy between tech-
nological innovation and rigorous scientific research will pave the way for the safe and
effective use of plant hormones in agriculture and beyond. Continued efforts in these
areas will ensure that the benefits of exogenous plant hormones are maximized while
minimizing potential risks, contributing to a more sustainable and health-conscious food
production system.

5. Conclusions

In summary, exogenous plant hormone treatments play a crucial role in postharvest
preservation by regulating ethylene biosynthesis, maintaining cell wall integrity, enhanc-
ing antioxidant capacity, delaying chlorophyll degradation, and modulating secondary
metabolite pathways. These mechanisms collectively contribute to extending the shelf life
and maintaining the quality of fresh fruits and vegetables, as evidenced by several litera-
ture studies reviewed in this report. However, further research is necessary to optimize
application methods, concentrations, and formulations for different fruit types in order to
maximize the benefits of exogenous plant hormone treatments in postharvest management.
It is important to note that the use of these treatments in food products is not without
concerns, particularly regarding excessive concentrations, which may be toxic. Therefore,
proper regulation is urgently needed. Addressing the limitations in the application of
exogenous plant hormones for postharvest preservation is crucial for ensuring efficient and
secure utilization. This can be achieved by implementing cutting-edge technologies, estab-
lishing strict regulatory frameworks, and fostering collaboration among food, research, and
health stakeholders. Such an approach will enhance the safety, effectiveness, and sustain-
ability of these treatments, benefiting both producers and consumers. Future research must
thus focus on developing environmentally friendly and cost-effective hormone delivery
systems to enhance further the feasibility of these treatments on a commercial scale.
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