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Abstract: Plant triterpenoids represent a diverse group of secondary metabolites and are thought to
be valuable for therapeutic applications. For drug development, lead optimization, better knowledge
of biological pathways, and high-throughput detection of secondary metabolites in plant extracts
are crucial. This paper describes a qualitative method for the rapid and accurate identification of
various triterpenoids in plant extracts using the LC-HR-ESI-MS/MS tool in combination with the data-
dependent acquisition (DD) approach. A total of 44 isolated, purified, and characterized triterpenoids
were analyzed. HR-MS spectra and tandem mass spectra (MS/MS) of each compound were recorded
in the positive ionization mode in two different sets of collisional energies, i.e., (25–62.5 eV), and
fixed collisional energies (10, 20, 30, and 40 eV). As a result, three triterpenoids were identified in all
plant extracts using the retention time, high-resolution mass spectra, and/or MS/MS spectra. The
developed method will be helpful with other plant extracts/botanicals, as well as in the search for
new triterpenoids in the kingdom Plantae.

Keywords: triterpenoids; electrospray ionization–mass spectrometry; generation of spectral library;
ESI-QTOF-MS/MS method

1. Introduction

Plants have the ability to produce a variety of specialized metabolites. Among them,
triterpenoids are a significant group of plant secondary metabolites that play roles not
only in the defense and development of plants but also have potential applications in the
food and pharmaceutical industries [1]. Based on the diverse features in their structures,
triterpenoids are categorized into different subgroups: acyclic, monocyclic, bicyclic, tri-
cyclic, tetracyclic, and pentacyclic [2]. Among them, pentacyclic triterpenoids (PCTTs)
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have gained significant attention due to their effects in promoting health and being a
type of natural active substance [3,4]. At present, numerous pentacyclic triterpenes have
been identified and classified based on the carbon skeleton into four subgroups, namely
oleanane, ursane, lupane, and friedelane types [3,5].

Pentacyclic triterpenoid’s medicinal values have been increasingly recognized in
recent years [4], thus being introduced as a pharmaceutical for the treatment of various
ailments [4,6–19]. Considering the pharmacological properties of triterpenoids, screening
plant extracts and products to identify and characterize them is extremely important.
Nowadays, the most used technology for phytochemical analysis is liquid chromatography–
high-resolution mass spectrometry (LC-HR-MS).

Compounds can be identified using reference standards and/or spectral comparison.
Numerous efforts have been made to create MS/MS libraries for different classes and
subclasses of natural products. For example, the saponins mass spectrometry database
(SMSD) was created using 214 reference compounds from commercial sources and is useful
for the rapid identification of saponins [20]. Similarly, a database for quinoline alkaloids
was established using data from electrospray ionization–tandem mass spectrometry (ESI-
MSn) [21]. Recently, we have curated a spectral library of alkaloids that includes metadata,
such as precursor and fragment ions, along with the compound name and their retention
times [22]. The WEIZMASS spectral library [23], National Institute of Standard and Tech-
nology (NIST) [24], Global Natural Products Social molecular networking (GNPS) [25],
Mass Bank of North America (MoNA) [26], etc., are some examples of commercial and
public sources of MS/MS spectral databases. However, based on chromatographic and
mass spectrum characteristics, there is currently no such LC-ESI-MS/MS database available
that can be used to quickly and accurately identify biologically significant triterpenoids.

In this study, a set of 44 standard plant triterpenoids that were purified and structurally
verified were used to develop an LC-ESI-MS/MS method employing the data-dependent
acquisition (DDA) approach. In DDA, ions are continuously selected and separated from
the full scan spectrum (MS1) to generate MS/MS spectra [27]. DDA is widely used to detect
known metabolites in mixtures like plant extracts and plasma [28]. A spectral database of
triterpenoids, along with information about their precursor ions, mass fragments, retention
times, exact masses, and other metadata, is provided using the established approach.
The method validity and practical applicability were evaluated, using retention times of
reference triterpenoids, the MS/MS mode of analysis at average collision energy (CE), and
targeted MS/MS analysis by searching for triterpenoids in diverse plant extracts. This
study might play a significant role in the high-throughput and cost-effective identification
of triterpenoids in several plant extracts and complex herbal formulations.

2. Results and Discussion
2.1. Liquid Chromatography–Mass Spectrometry Analysis

To separate plant triterpenoids, a reversed-phase (RP-C18) column with a linear gradi-
ent was used in the liquid chromatographic procedure. All the detected reference standard
compounds were eluted within the analysis time. The compounds were grouped based on
Log p values because this value suggests hydrophobicity and aids in preventing compound
co-elution during LC separation. A study by Nir Shahaf et al. used a pooling strategy
with 20 compounds [23]. Additionally, the majority of metabolite profiling studies used
columns with diameters of 2.1 mm × 100 mm and peak capacities of >200 [29]. Therefore,
we suggested employing more compounds in a pool with several chromatographic param-
eters to boost the high-throughput analysis of the triterpenoids in complex samples. This
number (44 in the current analysis of triterpenoids) was higher than in the earlier investiga-
tions [23,30] but similar to our previously published study [22]. The resulting triterpenoids
are given in Table 1, including compounds name, exact masses, molecular formula, and
Log-p values along with detected parameters; however, the structures are illustrated in
Supplementary Table S1. The implementation of this pooling strategy leads to a significant
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reduction in analysis time and an improvement in cost-effectiveness when compared to
previously conducted studies that depended on the injection of a single sample.

2.2. Optimization of MS/MS Spectral Features

The MS/MS patterns created in the QTOF collisional cell through the fragmentation
of compounds depend on the energy applied in the collision cell and are indicative of
structural properties. To acquire tandem mass spectral data, two different MS/MS data ac-
quisition techniques were used, namely the auto MS/MS mode using an increase in energy
from 25 to 62.5 eV and the targeted MS/MS mode using a precursor list of compounds at
fixed collision energies (10, 20, 30, and 40 eV). Individual analytical runs were undertaken
for the two acquisitions, and the generated data of the spectral database for triterpenoids
are compiled in Table 1. However, [M + H]+ ions dominated in the positive ionization
mode; other ions in the mass spectrum revealed the presence of sodium adducts. The
resulting detected ionic species m/z are also mentioned in Table 1. Electrospray ionization
is a softer ionization process than other mass spectrometry methods, as it produces fewer
fragments [31], and in this line, our library data are presented in Figure 1.
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Figure 1. MS2 spectra of butyl ester of glycyrrhetinic acid at various collision energies: (a) 10 eV,
(b) 20 eV, (c) 30 eV, and (d) 40 eV.
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Table 1. Triterpenoids identified in various plant extracts using the developed triterpenoid library.

S. No. Compound Name Log-p Values Molecular
Formula

RT
(min)

Adduct
Identified

m/z
calc.

m/z
meas.

Error
(ppm)

[M + H]+ 521.2017 521.2045 −5.3
1

5-Hydroxy-7-{{6-O-{[(4R/S)-4-(1-hydroxy-1-methylethyl)cyclohex-1-en-1-
yl]-carbonyl}c-D-glucopyranosyl}oxy}-2-methyl-4H-1-benzopyran-4-one 2.83 C26H32O11 7.39

[M + Na]+ 543.1837 543.1867 −5.5
2 11-Oxooleanolic acid 6.78 C30H46O4 9.76 [M + H]+ 471.3469 471.349 −4.5

[M + H]+ 489.3575 489.356 2.9
3 Asiatic acid 6.46 C30H48O5 9.8

[M + Na]+ 511.3394 511.339 0.8

4 Euscaphic acid 6.21 C30H48O5 9.11
[M + H]+ 489.3575 489.356 2.9

[M + Na]+ 511.3394 511.338 2.6
[M + H]+ 485.3262 485.3249 2.6

5 Silymin A 4.92 C30H44O5 9.9
[M + Na]+ 507.3081 507.3038 8.4

6 β-Neriursate 11.47 C38H54O4 10.35 [M + H]+ 575.4095 575.4124 −5.1
[M + H]+ 619.3993 619.3984 1.5

7 3β-Hydroxy-27-p-E-coumaroyloxy-urs-12-en-28-oic acid 9.47 C39H54O6 10.02
[M + Na]+ 641.3813 641.3800 2.0

8 Ilelatifol D 6.29 C30H46O4 9.11 [M + H]+ 471.3469 471.3455 2.9
9 Glycyrrhetic acid 6.57 C30H46O4 9.86 [M + H]+ 471.3469 471.3465 0.8

10 Bellerigenin B 3.65 C30H48O7 8.84
[M + H]+ 521.3473 521.3466 1.3

[M + Na]+ 543.3292 543.3287 1
[M + H]+ 487.2326 487.2322 0.9

11 Intybusoloid 2.24 C27H34O8 8.83
[M + Na]+ 509.2146 509.2141 1

12 Ursolaldehyde 9.14 C30H48O2 11.43
[M + H]+ 441.3727 441.3711 3.7

[M + Na]+ 463.3547 463.3536 2.3
[M + H]+ 543.3792 543.3769 4.4

13 Hydrazide of glycyrrhetinic acid 5.28 C32H50N2O5 9.63
[M + Na]+ 565.3612 565.3586 4.5

14 Ethyl methyl sulfide ester of betulinic acid 10.27 C33H54O3S1 10.36 [M + H]+ 531.3866 531.3863 0.6
[M + H]+ 615.3891 615.3878 2.2

15 2, 3, 23-Triacetoxy derivative of asiatic acid 8.59 C36H54O8 10.19
[M + Na]+ 637.3711 637.3695 2.5

16 Betulinic acid 8.94 C30H48O3 10.58
[M + H]+ 457.3676 457.3664 2.6

[M + Na]+ 479.3496 479.3473 4.7
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Table 1. Cont.

S. No. Compound Name Log-p Values Molecular
Formula

RT
(min)

Adduct
Identified

m/z
calc.

m/z
meas.

Error
(ppm)

[M + H]+ 443.3884 443.3858 5.7
17 Betulin 9.01 C30H50O2 10.35

[M + Na]+ 465.3703 465.3690 2.8

18 Lantanilic acid 8.37 C35H52O6 10.43
[M + H]+ 569.3837 569.3827 1.7

[M + Na]+ 591.3656 591.3669 −2.1
[M + H]+ 589.3888 589.3866 3.7

19 3-Benzoyloxy-3-0-methyl ester of glycyrrhetinic acid 9.91 C38H52O5 10.89
[M + Na]+ 611.3707 611.3697 1.6

20 Methyl acetate ester of betulinic acid 9.50 C33H52O5 10.87
[M + H]+ 529.3888 529.3902 −2.6

[M + Na]+ 551.3707 551.3721 −2.5
[M + H]+ 451.2479 451.2486 −1.5

21 Azadiradione 4.21 C28H34O5 8.54
[M + Na]+ 473.2298 473.2306 −1.6

22 Gedunin 3.34 C28H34O7 8.82
[M + H]+ 483.2377 483.2388 −2.2

[M + Na]+ 505.2197 505.2206 −1.9
[M + H]+ 557.3837 557.3845 −1.6

23 Ethyl acetate ester of glycyrrhetinic acid 7.63 C34H52O6 10.33
[M + Na]+ 579.3656 579.3665 −1.5

24 Oleanolic acid 9.06 C30H48O3 10.51
[M + H]+ 457.3676 457.3654 4.8

[M + Na]+ 479.3496 479.3504 −1.7
[M + H]+ 525.3938 525.3952 −2.7

25 3-Oxo-30-butyl ester of glycyrrhetinic acid 8.35 C34H52O4 10.94
[M + Na]+ 547.3758 547.3772 −2.5

26 β-amyrin 11.06 C30H50O 10.50
[M + H]+ 427.3934 427.3920 3.3

[M + Na]+ 449.3754 449.3730 5.3
27 Diethyl sulfide ester of betulinic acid 10.80 C34H56O3S1 10.69 [M + H]+ 545.4023 545.403 −1.3

28 Nimbinolide 0.71 C30H36O11 7.51
[M + H]+ 573.233 573.232 1.8

[M + Na]+ 595.215 595.2139 −1.8
[M + H]+ 455.3520 455.3512 1.7

29 Ursonic acid 8.43 C30H46O3 10.81
[M + Na]+ 477.3339 477.3333 1.4

30 3-Acetoxy-3-0-methyl ester of glycyrrhetinic acid 7.89 C33H50O5 10.88
[M + H]+ 527.3731 527.3722 1.7

[M + Na]+ 549.355 549.3542 1.5
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Table 1. Cont.

S. No. Compound Name Log-p Values Molecular
Formula

RT
(min)

Adduct
Identified

m/z
calc.

m/z
meas.

Error
(ppm)

[M + H]+ 471.3469 471.3451 3.8
31 3,25-Epoxy-3α-hydroxy-olean-12-en-28-oic acid 7.29 C30H46O4 10.62

[M + Na]+ 493.3288 493.3286 0.5

32 Butyl ester of glycyrrhetinic acid 8.59 C34H54O4 10.89
[M + H]+ 527.4095 527.4097 −0.4

[M + Na]+ 549.3914 549.3917 −0.5
[M + H]+ 543.368 543.3683 −0.6

33 Methyl acetate ester of glycyrrhetinic acid 7.10 C33H50O6 10.2
[M + Na]+ 565.35 565.3502 −0.5

34 Glycyrrhetinic acid methyl ester 7.00 C31H48O4 10.32
[M + H]+ 485.3625 485.3615 2.1

[M + Na]+ 507.3445 507.3446 −0.3
35 Diethyl sulfide ester of ursolic acid 10.87 C34H56O3S1 10.58 [M + H]+ 545.4023 545.4021 0.3

36 Oleanoic acid 8.48 C30H46O3 10.79
[M + H]+ 457.3676 457.3635 8.9

[M + Na]+ 477.3339 477.334 −0.2
37 Methyl acetate ester of oleanolic acid 9.62 C33H52O5 10.93 [M + Na]+ 551.3707 551.3708 −0.2
38 3-Oxolup-1:12-diene, 28-al 8.05 C30H44O2 10.56 [M + Na]+ 459.3234 459.3279 −10

[M + H]+ 455.352 455.3539 0.6
39 3β-Hydroxyurs-11-en-13b(28)-olide 7.48 C30H46O3 10.53

[M + Na]+ 477.3339 477.3315 5.0

40 2|A-Hydroxyursolic acid 7.82 C30H48O4 10.1
[M + H]+ 473.3625 473.3615 2.1

[M + Na]+ 495.3445 495.3486 −8.2
[M + H]+ 427.3934 427.3926 1.8

41 Friedelin 10.87 C30H50O 10.60
[M + Na]+ 449.3754 449.3740 3.1

42 Ursolic acid 9.01 C30H48O3 10.7
[M + H]+ 457.3676 457.3659 3.7

[M + Na]+ 479.3496 479.3459 7.7
43 Atriplicin 7.06 C30H46O4 9.8 [M + H]+ 471.3469 471.3451 3.8
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Using Bruker Compass LibraryEditor (4.4), both [M + H]+ and [M + Na]+ mass
spectral data, as well as their additional metadata for all the analyzed standards, were
assembled into a spectral database. A reference standard triterpenoid entry in the developed
spectral library is shown in Figure 2D. This spectral library will be especially helpful
for comparing compounds with good peak intensities of their sodium adducts during
the identification process.

2.3. MS/MS Spectral Features of Standard Triterpenoids

Among 44 triterpenoids under study, 18 were oleanane, 14 were ursanes, 6 were
lupanes, and 1 was a friedelane; there were also 4 tetranortriterpenoid compounds of
limonoid type and 1 belonging to an unknown group. These compounds exhibit distinct
fragmentation behavior, which helps to provide more information for fragment match-
ing in the library. Triterpenoid compounds of the oleanane type, such as glycyrrhetic
acid, which has a hydroxyl substituent at carbon number 3 (C-3), prominently lose a
water molecule [M + H − H2O]+. All oleanane-type compounds with a carboxyl sub-
stituent present in their structure displayed an [M + H − HCOOH]+ ion and/or peak of
[M+ H − H2O − HCOOH]+. Another oleanane-type triterpenoid, lantanilic acid sodium
adduct, produced peaks at m/z 491.3195 and 545.3714 as a result of C5H8O2 and HCOOH
losses, which are comparable to its [M + H]+ fragments previously described. However,
this sodium adduct does not show any peak for [M + H − H2O]+ [32].
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Library. (B) Reference standard β-Neriursate MS spectra in the constructed library. (C) MS2 spectra
of standard β-neriursate in the constructed library. (D) Depiction of β-neriursate library record in
Bruker Library Editor 4.

Pentacyclic triterpenoids majorly exhibit a common fragmentation, i.e., the retro-Diels–
Alder (RDA) fragmentation pathway [33]. The peak at m/z 249.1856 is directly produced
from [M + H]+ ion RDA fragmentation in the case of simple skeletons with a hydroxy group
at carbon number-3 (C-3) and carboxyl substituent at C-22, whereas the fragments at m/z
191.1803 and 203.1807 appeared from RDA fragmentation, i.e., [M + H − 2H2O − CO]+

and [M + H − H2O]+, respectively. Due to RDA fragmentation, compounds with a dimethy-
lacroyloxy substituent present in the skeleton produced just a few or no fragments at all.

Ursane triterpenoids such as ilelatifol D, with two hydroxyl groups at C-2 and C-3,
produce fragment [M + H − H2O − CO]+ at m/z 425 through the simultaneous loss of
water and the CO molecule at a CE of 20 eV. Similarly, all ursane triterpenoids possessing
a carboxylic group in their structure produced fragments [M + H − HCOOH]+ and/or
[M + H − H2O − HCOOH]+ due to the loss of formic acid, similar to oleanane-type com-
pounds. Peaks resulting from direct RDA fragmentation and loss from precursor ions are
both common for ursane-type triterpenoids. In some ursane-type compounds, the base
peak was the product ion at m/z 205, which is the result of the RDA fragmentation of these
compounds. These compounds’ MS/MS spectra also contain peaks at m/z 203. Triter-
penoids of the lupane type displayed significant substituent losses in addition to peaks at
m/z 191 and 203. These triterpenoids, due to lack of unsaturation in their skeleton, showed
the given fragments due to pathways other than RDA. All these types of pentacyclic triter-
penoids showed similar mass spectral features as reported previously [32]. Additionally, it
was found that the fragmentation behavior of limonoids, a class of nortriterpenoids, was
similar to what had been reported in the literature [34].



Plants 2024, 13, 3278 9 of 13

2.4. Screening of Plant Extracts Against Library

With the aid of established search parameters, the proposed approach is used to
rapidly identify triterpenoids in different plant extracts. By using the compound MS(n)
tool, the features were generated from five different plants. The chromatograms, RT, and
MS/MS spectra of each precursor detected in plant extracts against the created library,
as seen in Figure 2A–C, depict the results of the triterpenoid MS/MS library search for
compound matching the purposes. Consequently, the identification of the compound
β-neriursate, found in an extract of Peganum harmala, was reported. A total of three
compounds were found in five different plant extracts. All three compounds were validated
based on their fragment match, retention time, and exact masses in a mass tolerance window
(0.005 Da), with standard compounds (analyzed under identical conditions) already curated
in the spectral library, fulfilling the highest identification level (Level 01) in metabolomics
described by AC-Schrimpe-Rutledge et al., and Jody C. May et al. [35]. The maximum
retention time drift for the detected compounds was 0.41 min. Table 2 lists the specific
compounds identified in each plant extract through a search of the developed library.

Table 2. List of triterpenoids identified in various plant extracts using the developed triterpenoid library.

Source Compound Name RT
[min] Drift RT [min] Fragments Ions

Peganum harmala L. β-Neriursate 10.53 0.2 220.9341

Camellia sinensis Kuntze Butyl ester of glycyrrhetinic acid 11.18 0.3
425.3459, 288.9212,
220.9335, 189.1656,
175.1472, 149.0973

Aegle marmelos L. β-Neriursate[Na] 9.94 0.41
509.2737, 288.9202,
259.1144, 215.0896,
171.0639, 155.0685

Adhatoda Vasica L. Silymin[Na] 9.95 0.08 421.2227, 390.2389,
243.1232, 155.0704

Papaver somniferum L. Silymin A[Na] 9.97 0.06 155.0693

3. Materials and Methods
3.1. Chemicals and Reagents

The chemicals and solvents used in this study were either of analytical reagent grade
or HPLC grade. Ultrapure deionized water (resistivity 18.1 MΩ cm at 25 ◦C) was acquired
from the Barnstead MicroPure Purification System (Thermo Scientific, Waltham, MA, USA).
The Molecular Bank of Dr. Panjwani Center for Molecular Medicine and Drug Research,
International Center for Chemical and Biological Sciences, University of Karachi, Pakistan,
provided the triterpenoid standards (purity ≥ 98) of plant sources.

3.2. Standard Solution Preparation

Stock solutions of standard triterpenoids were primarily made in methanol, while
a few solutions were made in acetone or chloroform and stored below 0 ◦C. These pre-
determined plant-based metabolites were combined into a pool consisting of 44 standards
of varying lipophilicity. The pool was made by combining an equal volume (10 µL) of each
standard’s stock solution, preparing a dilution of 10 times for the pool. Before injecting the
standard pool into the LC-MS instrument, it was filtered through a Millipore filter (0.22 µm).
ACD Lab software (version 2081.1) was used to calculate the Log p values of all standards.

3.3. Sample Solution Preparation

Different plant extract (Peganum harmala L., Camellia sinensis (L.) Kuntze, Aegle marmelos
L., Adhatoda vasica (L.) Nees, and Papaver somniferum L.) solutions were made using 500 g
of dried, uniformly powdered whole plants that were extracted overnight on a shaker at



Plants 2024, 13, 3278 10 of 13

70 rpm in 1 L of methanol/water (1:1) followed by filtration. A vacuum drying procedure
was used at 45 ◦C to concentrate the extracts. The stock solution of concentration 1 mg/mL
in acetonitrile was made and diluted 10X. After centrifuging the diluted solutions at
12,000 rpm for 20 min, the supernatants were filtered through a Millipore filter (0.22 µm)
and transferred to individual autosampler vials for analysis.

3.4. LC-MS and MS/MS Analysis

Ultra-high-performance liquid chromatographic and mass spectrometry, i.e., the
Bruker maXis II ESI-HR-QTOF (Bruker Daltonics, Bremen, Germany) instrument was
used to analyze both triterpenoid standards and samples as described previously [22].
Injection volumes used for standards and extracts were 5 and 2 µL, respectively. Eluent A,
water, and B, methanol, both containing 0.1% formic acid, served as the mobile phases. A
gradient elution program consisting of a flow rate of 0.5 mL/min was used. The chromato-
graphic process was started using a reverse-phase C18 column, Macherey-Nagel Nucleodur
Gravity (2.0 × 100 mm, 1.8 µm), and guard column (2.0 × 4 mm, 1.8 µm), with initializing
conditions of 5% B, elevated to 95% B in 9 min, held for 1 min, and then reset to the initial
setup for equilibration until 13 min. Triterpenoid standards and samples’ ESI-MS data
were acquired at room temperature in the positive ionization mode. The nebulizer and
collision gases were both highly pure nitrogen gases. The following values are listed as the
parameters for ESI mass spectral data acquisition: capillary voltage at 4500 V, nebulizer gas
at 2.8 bar, endplate offset at 500 V, drying gas temperature at 300 ◦C, drying gas flow rate
at 10.0 L/min, MS scan speed set at 5 Hz, and MS/MS analysis at 12 Hz for spectra rate.
The scan range for the time-of-flight (TOF) value was set to 50–1200 amu. Triterpenoid
standards underwent two types of MS2 analysis: auto MS/MS mode and targeted MS/MS
mode using a scheduled precursor list (SPL). The optimal number of active exclusions was
set at 3, and an intensity threshold of 1000 counts was set to start the acquisition of the
precursor for the formation of fragment ions. In contrast, a fixed set of collision energies
was employed in the targeted method (10, 20, 30, and 40 eV).

3.5. Data Processing Procedure

Before each run, a calibrant (sodium formate, 10 mM) was injected at a rate of 3 µL/min
for mass scale calibration. The Compass TargetAnalysis software version 1.3 (Bruker Dal-
tonik) was used to perform targeted screening of the acquired data. This targeted analyzed
data file is subsequently processed to obtain detailed MS2 information for each standard
triterpenoid using Compass DataAnalysis 4.4 software (Bruker Daltonik). Following that,
all standard triterpenoid MS and MS/MS spectra were combined using Library Editor 4.4
(Bruker) to create a mass spectral database. For plant samples, raw data were calibrated
by a calibrant followed by compound–MS(n) generation before being searched against the
resulting library.

4. Conclusions

This study provided a rapid and qualitative identification of triterpenoids in different
plant extracts based on HR-ESI-MS, RT, and MS/MS data. The data-dependent acquisition
(DDA) method based on a tandem mass spectral library of 44 chiefly unique triterpenoids
standards with significant biological values was curated, containing data on the standards’
monoisotopic mass, retention time, compound name, chemical formula, MS, and MS/MS
spectra. A cost-effective and time-saving pooling method was used for the analysis of
up to 44 triterpenoids in a pool to efficiently utilize LC-MS runtime. To make compound
identification even easier, standardized LC retention times were also added to the library.
Five medicinal plant extracts were searched against the standard data to determine the
(LC-MS/MS) method applicability. Based on reference standards retention time, HR-MS,
and/or MS/MS spectra, three different triterpenoids were identified. This study may be
helpful for the rapid identification of already known triterpenoids and for discovering new
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biologically active triterpenoids in complex plant extracts by using the generated data as
a reference.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/plants13233278/s1. Table S1: All Standard triterpenoid structures,
classes, and MS/MS spectra in the constructed library.
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