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Abstract: Idesia polycarpa from Sichuan is a valuable germplasm with high economic potential, but it
faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a
promising parent due to its high oil content (38.5%) and red fruits. Polyploid induction via adding
0.50% colchicine to Murashige and Skoog (MS) medium yielded 520 IpHT1 mutagenized seedlings.
Subsequently, flow cytometry (FCM) was performed on 401 morphologically variant seedlings which
had been initially screened, resulting in the identification of 15 suspected triploids, 35 suspected
tetraploids, and 3 chimeras. Furthermore, fluorescence in situ hybridization (FISH) analysis found
that the probe (AG3T3)3 had terminal signals at both ends of each chromosome, allowing for the
counting of 42 chromosomes in diploids and 84 in tetraploids. The probe 5S rDNA showed 2, 3, and
4 hybridization signals in the interphase nuclei of diploid, triploid, and tetraploid cells, respectively,
but the probe (GAA)6 failed to produce any signal on I. polycarpa chromosomes. Ultimately, 18 poly-
ploids were selected, including 7 triploids and 11 tetraploids. Triploids and tetraploids showed
significant leaf morphological and physiological differences from diploids. Consequently, this study
successfully established a polyploid breeding system for I. polycarpa, thereby enhancing its genetic
diversity and breeding potential.

Keywords: genetic diversity; breeding parent; polyploid induction; ploidy identification

1. Introduction

Idesia polycarpa Maxim., belonging to the Flacourtiaceae family, is a deciduous tree
native to China’s central and southern regions, Japan, Korea, and the Nansei Islands. It
has been introduced to New York and both northern and southern New Zealand. The
genus Idesia Maxim. contains only one accepted species, I. polycarpa [1], with three vari-
eties [2]. Furthermore, I. polycarpa contains 42 chromosomes [3] and has a genome size
of approximately 1.21 Gb [4]. The flowers of I. polycarpa are unisexual and dioecious or
polygamous. Specifically, the male flowers are slightly larger than the female flowers [2,5].
Typically, I. polycarpa reproduces sexually, but it can also reproduce asexually [6]. As an
important woody oilseed economic tree and ornamental plant, I. polycarpa also features
fruit rich in unsaturated fatty acids, which help lower blood cholesterol [7]. Additionally,
the oil extracted can prevent cardiovascular diseases and be used in lubricants, biodiesel,
and aviation fuels [8]. Moreover, the protein-rich oil meal left after extraction can be used
as feed and fertilizer [9]. The tree’s layered crown and colorful fruits make it an attractive
ornamental, while its fast growth and high-quality timber offer significant exploitation
potential [10,11]. However, as industrial planting of I. polycarpa expands, high-quality
seedling cultivation becomes crucial [12,13]. For instance, Sichuan Province in China has
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only two recognized elite varieties, ‘Zaofeng No. 36’ and ‘Haitong No. 1’ [14]. Conse-
quently, the scarcity of elite varieties and widespread unselected planting underscore the
urgency of breeding. During breeding, the frequent introduction of species from other
regions has led to resource overlaps and confusion in variety names. Interspecific crosses
have been made and different species have been included in mixed species plantings,
hindering selection and breeding efforts. Therefore, clarifying resource status is crucial for
the industry’s development.

Moreover, during the breeding of forest trees, introduction and cultivation may lead
to synonymy and homonymy. Hence, analyzing genetic diversity and understanding
germplasm relationships can improve breeding efficiency. Phenotypic traits are commonly
used to assess genetic diversity [15], as seen in studies on Populus L. [16], Aquilaria sinensis
(Lour.) Spreng [17], and Citrus reticulata Blanco [18]. Similarly, research on I. polycarpa
is abundant. Zhang et al. [19] found genetic differences among I. polycarpa provenances
by observing growth indicators. Wen et al. [8] studied fruit growth and oil accumulation
factors in four varieties. Feng et al. [20] discovered genetic variation in fruit-related traits,
positively correlated with yield. Dun et al. [21] investigated clonal seedlings of I. polycarpa
‘Exuan 1’ via tissue culture. Sun [22] analyzed diurnal photosynthetic variation in tung
forests. Liu et al. [23] reported variations in leaf functional traits and nutrients among
provenances. Yin and Su [24] compared leaf epidermal micromorphology between sexes.
Therefore, I. polycarpa fruit traits can serve as breeding indicators, facilitating the selection
of advantageous materials [25].

However, phenotypic trait studies in plants are influenced by environmental factors
and have long cycles, limiting their use in distinguishing varieties and analyzing genetic
relationships [26]. Therefore, to better understand the I. polycarpa germplasm, the use of
molecular marker techniques is necessary. Currently, these techniques are widely used in
genetic diversity analysis, germplasm identification, and core germplasm bank construction.
Zuo et al. [4] identified sex determination markers for I. polycarpa. Dai et al. [27] estab-
lished an Inter-Simple Sequence Repeat-Polymerase Chain Reaction (ISSR-PCR) system for
I. polycarpa. Wang et al. [28] found genetic variation using ISSR markers among I. polycarpa
var. vestita distribution areas. Dong et al. [29] developed gender-related ISSR markers.
However, ISSR markers lack stability. Consequently, Li et al. [30] and Qiu et al. [31] de-
veloped Simple Sequence Repeat (SSR) markers using transcriptome and Specific-Locus
Amplified Fragment Sequencing (SLAF-seq) technology, respectively. SSR markers offer
better repeatability, higher polymorphism [32], and are advantageous in variety discrimina-
tion. Thus, DNA-level research will facilitate parent selection and resource protection in
I. polycarpa breeding.

Furthermore, polyploidy plays a key role in plant evolution and is valuable for forest
tree breeding [33], enhancing fruit quality [34], stress resistance [35], and wood quality [36].
Natural polyploids are rare, but artificial induction using mutagens like colchicine and
trifluralin has been successful in various plants [37,38], such as Platanus L. [39], Robinia
pseudoacacia L. [40], Populus L. [41], Eucalyptus urophylla S.T. Blake [42], Morus mongolica
(Bureau) C. K. Schneid. [43], and Solanum muricatum Aiton [44]. Recently, research has
focused on culturing materials on mutagen-containing media, minimizing damage and
enhancing induction rates, as exemplified in Selenicereus undatus (Haw.) D.R. Hunt [45],
Platanus acerifolia (Aiton) Willd. [36], and Passiflora edulis L. [46], although this is less
applied in forestry. Whlie I. polycarpa tissue culture techniques have been established [47],
they are not for polyploid breeding. Identifying variant plants after mutagenesis involves
morphological [48], cytomorphological [49], flow cytometry [50] chromosome counting [51],
and rDNA loci analysis [52]. Chromosome counting is accurate but challenging, while
FISH telomere probes can help determine chromosome numbers [53].

Compared to traditional methods for ploidy identification, FCM and FISH offer higher
throughput and accuracy. As polyploid breeding techniques advance, rapid identification
of polyploid materials from mutagenized samples is crucial. Single methods have limita-
tions but combining them enables quick and precise selection. Unfortunately, domestic
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and international research on I. polycarpa polyploid induction and identification is lacking,
hindering genetic improvement. Therefore, this study collected 16 I. polycarpa samples
from Sichuan, using SSR to analyze genetic backgrounds and screen parents. Chromosome
doubling was induced with colchicine and trifluralin. Polyploid identification involves
morphological screening, FCM, and FISH. Identified polyploids are analyzed for morpho-
logical and physiological traits. Ultimately, results provide insights for breeding material
selection and variety identification, promoting I. polycarpa polyploid breeding and elite
variety cultivation. This also has implications for related families and genera.

2. Results
2.1. Genetic Diversity

Polyploids inherited genetic traits from diploid parents. To obtain superior polyploids,
it is important to select parental materials with good economic traits. Table 1 and Figure 1
present the characteristics of 15 I. polycarpa fruits, including monoecious IpDY1, male
IpDY4, and 14 female plants. Moreover, fruit colors varied widely among these varieties.
Specifically, Jintang County fruits showed significant diversity, including red IpHT1, orange-
red IpJT2, orange-yellow IpJT3, and yellow IpJT4. Most others were red, except dark red
IpDY1. Additionally, oil content ranged from 31.3% to 38.9%, with IpJJ1 (38.90%), IpHT1
(38.50%), and IpJT2 (38.06%) featuring the highest percentages. Furthermore, fruit size also
differed, with IpJJ3, IpHT1, and IpZF36 featuring the largest fruit. Importantly, oil content
directly impacted yield, a key evaluation criterion. As an ornamental tree, fruit color was
crucial; IpHT1’s red fruits enhanced the landscape in summer and autumn. Therefore,
IpHT1 combined high oil content with ornamental value.

Table 1. Fruit traits of I. polycarpa.

Accession Sex Color Oil Content Longitudinal/Transverse/
Lateral Diameter (mm)

IpDY1 monoecism dull-red 32.10% 8.23/8.66/8.33
IpDY2 female Red 33.80% 8.36/9.17/9.01
IpDY3 female Red 31.30% 7.76/8.12/8.03
IpDY4 male - - -

IpJJ1 female Red 38.90% 4.50/4.63/4.67
IpJJ2 female Red 35.17% 8.14/8.63/8.45
IpJJ3 female Red 32.08% 11.36/13.97/12.84

IpHT1 female Red 38.50% 10.24/10.85/10.72
IpJT2 female red-orange 38.06% 7.31/7.62/7.48
IpJT3 female yellow-orange 37.40% 8.13/8.25/8.04
IpJT4 female Yellow 34.60% 7.68/7.79/7.82

IpLS1 female Red 33.41% 6.94/7.29/7.09
IpLS2 female Red 33.65% 6.64/7.48/7.02
IpLS3 female Red 34.63% 7.66/9.12/8.16
IpLS4 female Red 35.78% 8.18/8.35/8.06

IpZF36 female Red 33.90% 9.36/9.42/9.41

Note: The bold text indicates the top three rankings in fruit oil content and fruit size.

To further explore IpHT1′s genetic background, 19 SSR primers were used on 16 I. poly-
carpa samples. After screening, 11 polymorphic primers (marked with asterisks in Table
S1) were identified. The genetic parameters are presented in Table 2. Across these 11 loci,
38 alleles (Na) were detected, averaging 3.455 per primer pair (range: 2–8). Notably,
Ip07 amplified the most alleles (8). The effective number of alleles (Ne) averaged 2.784
(range: 2.000–5.120), suggesting a uniform allele distribution. Furthermore, Shannon’s
Information Index (I) averaged 1.033 (range: 0.693–1.836), indicating significant population
variation and genetic diversity. Observed heterozygosity (Ho) was 1 for all loci, while
expected heterozygosity (He) averaged 0.604 (range: 0.500–0.805), suggesting heterozygote
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excess and low inbreeding. Polymorphic Information Content (PIC) averaged 0.613 (range:
0.419–0.827), with 9 highly polymorphic (PIC > 0.5) and 2 moderately polymorphic primer
pairs. These genetic diversity parameters reflect abundant genetic variation among the
16 samples.
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Figure 1. The UPGMA cluster analysis of 16 I. polycarpa samples revealed three distinct branches (I, 
II, and III) based on SSR genetic distances. Each accession’s fruit is depicted to the left, colored by 
origin within Sichuan Province: green for Leshan, blue for Dayi, yellow for Jiajiang, gray for Jintang, 
and white for Chongzhou. Accessions were named consistently: ‘Ip’ for I. polycarpa, with ‘f’, ‘m’, and 
‘fm’ indicating female, male, or monoecious plants. The red and black frames represent two varie-
ties, while the other lines The numbers on each branch represent the branch lengths. The distance 
scale is 0.05.

To further explore IpHT1′s genetic background, 19 SSR primers were used on 16 I. 
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ble S1) were identified. The genetic parameters are presented in Table 2. Across these 11 
loci, 38 alleles (Na) were detected, averaging 3.455 per primer pair (range: 2–8). Notably, 
Ip07 amplified the most alleles (8). The effective number of alleles (Ne) averaged 2.784 
(range: 2.000–5.120), suggesting a uniform allele distribution. Furthermore, Shannon’s In-
formation Index (I) averaged 1.033 (range: 0.693–1.836), indicating significant population 
variation and genetic diversity. Observed heterozygosity (Ho) was 1 for all loci, while ex-
pected heterozygosity (He) averaged 0.604 (range: 0.500–0.805), suggesting heterozygote 
excess and low inbreeding. Polymorphic Information Content (PIC) averaged 0.613 
(range: 0.419–0.827), with 9 highly polymorphic (PIC > 0.5) and 2 moderately polymorphic 
primer pairs. These genetic diversity parameters reflect abundant genetic variation among 
the 16 samples.

Table 2. Genetic parameter analysis of polymorphic loci from 11 pairs of primers in I. polycarpa.

Primer Na Ne Shannon I Ho He PIC Fluorochrome
Ip01 4 3.630 1.334 1.000 0.724 0.777 FAM
Ip05 2 2.000 0.693 1.000 0.500 0.568 FAM
Ip06 3 2.571 1.011 1.000 0.611 0.618 HEX
Ip07 8 5.120 1.836 1.000 0.805 0.827 HEX
Ip09 2 2.000 0.693 1.000 0.500 0.419 HEX
Ip11 6 3.765 1.511 1.000 0.734 0.786 ROX
Ip13 2 2.000 0.693 1.000 0.500 0.608 ROX
Ip15 2 2.000 0.693 1.000 0.500 0.511 ROX
Ip16 4 2.970 1.197 1.000 0.663 0.674 TAMRA
Ip17 2 2.000 0.693 1.000 0.500 0.419 TAMRA
Ip18 3 2.571 1.011 1.000 0.611 0.532 TAMRA

Figure 1. The UPGMA cluster analysis of 16 I. polycarpa samples revealed three distinct branches (I, II,
and III) based on SSR genetic distances. Each accession’s fruit is depicted to the left, colored by origin
within Sichuan Province: green for Leshan, blue for Dayi, yellow for Jiajiang, gray for Jintang, and
white for Chongzhou. Accessions were named consistently: ‘Ip’ for I. polycarpa, with ‘f’, ‘m’, and ‘fm’
indicating female, male, or monoecious plants. The red and black frames represent two varieties, while
the other lines The numbers on each branch represent the branch lengths. The distance scale is 0.05.

Table 2. Genetic parameter analysis of polymorphic loci from 11 pairs of primers in I. polycarpa.

Primer Na Ne Shannon I Ho He PIC Fluorochrome

Ip01 4 3.630 1.334 1.000 0.724 0.777 FAM
Ip05 2 2.000 0.693 1.000 0.500 0.568 FAM
Ip06 3 2.571 1.011 1.000 0.611 0.618 HEX
Ip07 8 5.120 1.836 1.000 0.805 0.827 HEX
Ip09 2 2.000 0.693 1.000 0.500 0.419 HEX
Ip11 6 3.765 1.511 1.000 0.734 0.786 ROX
Ip13 2 2.000 0.693 1.000 0.500 0.608 ROX
Ip15 2 2.000 0.693 1.000 0.500 0.511 ROX
Ip16 4 2.970 1.197 1.000 0.663 0.674 TAMRA
Ip17 2 2.000 0.693 1.000 0.500 0.419 TAMRA
Ip18 3 2.571 1.011 1.000 0.611 0.532 TAMRA
Total 38 30.627
Mean 3.455 2.784 1.033 1.000 0.604 0.613

Additionally, the genetic distances between the 16 I. polycarpa samples ranged from
0.045 to 0.591 (Table 3), indicating significant genetic variation. Close genetic relationships
were observed between IpLS1-IpJJ1 and IpDY3-IpJJ2, despite IpDY3 and IpJJ2 originating
from different cities. Conversely, IpLS2-IpJT2 and IpZF36-IpJT2 showed substantial genetic
differences. IpJT1 had genetic distances of 0.275 to 0.545 from other samples. A UPGMA
dendrogram (Figure 1) grouped the samples into three clusters: Cluster I (IpDY1 and
IpDY3 from Chengdu), Cluster II (IpLS1 and IpJJ1 from Leshan, and five from Chengdu),
and Cluster III (eight materials, mostly from Leshan but including IpDY2, IpDY4, and
IpJT2 from Chengdu). Materials from the same origin tended to cluster, but exceptions
occurred, like IpJT2 (Chengdu) and IpJJ3 (Leshan). Finally, fruit colors varied significantly,
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with yellow and orange in Cluster II and orange-red in Cluster III. The monoecious plant
(IpDY1fm) and male plant (IpDY4m) were in different clusters, showing no clear correlation
between geographical origin, fruit color, and gender.

Table 3. Genetic distances among 16 tested samples of I. polycarpa.

IpDY1 IpDY2 IpDY3 IpDY4 IpJJ1 IpJJ2 IpJJ3 IpHT1 IpJT2 IpJT3 IpJT4 IpLS1 IpLS2 IpLS3 IpLS4 IpZF36

IpDY1 0 - - - - - - - - - - - - - - -
IpDY2 0.455 0 - - - - - - - - - - - - - -
IpDY3 0.455 0.273 0 - - - - - - - - - - - - -
IpDY4 0.409 0.182 0.273 0 - - - - - - - - - - - -
IpJJ1 0.318 0.364 0.318 0.364 0 - - - - - - - - - - -
IpJJ2 0.455 0.318 0.045 0.273 0.318 0 - - - - - - - - - -
IpJJ3 0.500 0.227 0.409 0.318 0.364 0.409 0 - - - - - - - - -
IpHT1 0.455 0.409 0.500 0.364 0.318 0.500 0.364 0 - - - - - - - -
IpJT2 0.409 0.409 0.318 0.318 0.500 0.318 0.500 0.545 0 - - - - - - -
IpJT3 0.500 0.273 0.318 0.227 0.364 0.318 0.364 0.364 0.455 0 - - - - - -
IpJT4 0.500 0.409 0.364 0.364 0.409 0.364 0.409 0.409 0.318 0.273 0 - - - - -
IpLS1 0.273 0.364 0.318 0.318 0.045 0.318 0.318 0.273 0.455 0.364 0.364 0 - - - -
IpLS2 0.500 0.318 0.409 0.364 0.318 0.409 0.455 0.409 0.591 0.318 0.455 0.364 0 - - -
IpLS3 0.318 0.409 0.364 0.455 0.182 0.409 0.409 0.364 0.545 0.455 0.455 0.182 0.409 0 - -
IpLS4 0.455 0.273 0.273 0.364 0.318 0.318 0.273 0.364 0.545 0.318 0.409 0.318 0.364 0.318 0 -
IpZF36 0.273 0.500 0.500 0.455 0.318 0.500 0.545 0.409 0.591 0.455 0.500 0.273 0.455 0.364 0.409 0

Note: The data marked in bold are the genetic distances between I. polycarpa ‘Haitong 1’ (IpHT1) and other accessions.

Based on fruit oil content, fruit three-diameter (Table 1), and SSR genetic distances
(Table 3), we further conducted a PCA clustering analysis, as shown in Figure 2. PCA1 and
PCA2 together account for 91.52% of the total contribution, potentially providing a good
reflection of the impact of different factors on the I. polycarpa samples. The elite varieties
IpHT1 and IpZF36 are both located in Quadrant I at the top right, which may indicate that
species traits located in this quadrant are relatively superior. IpJJ3, which has the largest
fruit three-diameter, is also positioned in Quadrant I. The top three varieties in terms of oil
content, IpJJ1, IpHT1, and IpJT2, are situated in Quadrant IV, Quadrant I, and Quadrant
II, respectively, with relatively large distances between each other. Additionally, the male
plant IpDY4 is located in the bottom left corner of Quadrant III, relatively distant from other
I. polycarpa plants. IpDY1, a monoecious plant, is positioned near the center of Quadrant II,
close to other female plants.
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peaks (80%) were 5000–30,000. Furthermore, four SSR primers (Ip06, Ip07, Ip11, and Ip18) 
effectively identified 16 I. polycarpa samples, as illustrated in Figure S2. Subsequently, Fig-
ure S3 demonstrated identification using these primers based on allele sizes; remarkably, 
13 materials were identified by a single primer. For instance, Ip18 identified IpJJ3 at an 
allele size of 144, while Ip11 specifically identified IpLS4 at an allele size of 200. Similarly, 
Ip06 distinguished IpDY1, IpDY3, and IpHT1 at allele sizes of 187, 186, and 184, respec-
tively. Ip07 was particularly versatile, identifying IpDY1, IpDY2, IpDY3, IpDY4, IpJJ1, 
IpJJ2, IpJT2, IpJT3, IpJT4, and IpZF36 at various allele sizes of 211, 195, 240, 135, 139, 201, 
289, 271, 113, and 149. After the initial 13 materials had been distinguished, the remaining 
3 materials required Ip11 at specific allele sizes for identification. Specifically, these were 
IpLS1 at 185, IpLS2 at 175, and IpLS3 at 188. To summarize primer use for the 16 samples, 
Table 4 was compiled, omitting allele sizes for brevity but providing a clear overview.

Table 4. Four SSR primer pairs identified 16 I. polycarpa samples.

Identification Primer Accession Identified

Firstly

Ip06 IpDY1, IpDY3, IpHT1
Ip07 IpDY1, IpDY2, IpDY3, IpDY4, IpJJ1, IpJJ2, IpJT2, IpJT3, IpJT4, IpZF36
Ip11 IpLS4
Ip18 IpJJ3

Secondly Ip11 IpLS1, IpLS2, IpLS3

Figure 2. PCA cluster analysis of 16 samples of I. polycarpa based on fruit oil content, fruit three
diameters, and SSR genetic distance.
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In conclusion, the selection of breeding materials was the first step in polyploid breed-
ing. Based on the research results of genetic diversity among 16 I. polycarpa varieties (or
lines) from different regions of Sichuan Province, it can be seen that IpHT1 exhibits signifi-
cant genetic background differences from the other 15 varieties (or lines), demonstrating
good specificity.

2.2. Identification of the Varieties and Lines

To investigate IpHT1′s molecular specificity, we first examined the allele and peak
sizes of 11 SSR loci, as shown in Figure S1. Specifically, allele sizes ranged from 113 to
289, with peak sizes from 710 to 51,670. Notably, most alleles (80%) were 140–190, and
most peaks (80%) were 5000–30,000. Furthermore, four SSR primers (Ip06, Ip07, Ip11, and
Ip18) effectively identified 16 I. polycarpa samples, as illustrated in Figure S2. Subsequently,
Figure S3 demonstrated identification using these primers based on allele sizes; remarkably,
13 materials were identified by a single primer. For instance, Ip18 identified IpJJ3 at an allele
size of 144, while Ip11 specifically identified IpLS4 at an allele size of 200. Similarly, Ip06
distinguished IpDY1, IpDY3, and IpHT1 at allele sizes of 187, 186, and 184, respectively.
Ip07 was particularly versatile, identifying IpDY1, IpDY2, IpDY3, IpDY4, IpJJ1, IpJJ2, IpJT2,
IpJT3, IpJT4, and IpZF36 at various allele sizes of 211, 195, 240, 135, 139, 201, 289, 271, 113,
and 149. After the initial 13 materials had been distinguished, the remaining 3 materials
required Ip11 at specific allele sizes for identification. Specifically, these were IpLS1 at 185,
IpLS2 at 175, and IpLS3 at 188. To summarize primer use for the 16 samples, Table 4 was
compiled, omitting allele sizes for brevity but providing a clear overview.

Lastly, Figure 3 comprehensively summarized the SSR identification results (Figures
S1–S3, and Table 4) for 16 I. polycarpa samples, constructing an SSR fingerprint map. Each
accession was uniquely identified by SSR allele sizes, eliminating synonymy confusion and
facilitating research on polyploid induction. This SSR fingerprint map not only aided in the
identification of each accession but also demonstrated the molecular specificity of IpHT1,
highlighting the power and precision of SSR analysis in genetic research.
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Figure 3. Sixteen accessions were identified by four SSR allele sizes. The horizontal axis showed
SSR loci and allele sizes, while the vertical axis showed relative peak heights. After initial differ-
entiation, the remaining three (as indicated by the black dashed frame) were further identified by
Ip11. IpHT1 (indicated by the green five-pointed star) was identified by Ip06 (184), demonstrating its
molecular specificity.
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Table 4. Four SSR primer pairs identified 16 I. polycarpa samples.

Identification Primer Accession Identified

Firstly

Ip06 IpDY1, IpDY3, IpHT1
Ip07 IpDY1, IpDY2, IpDY3, IpDY4, IpJJ1, IpJJ2, IpJT2, IpJT3, IpJT4, IpZF36
Ip11 IpLS4
Ip18 IpJJ3

Secondly Ip11 IpLS1, IpLS2, IpLS3
Note: There were two identification stages: first 13 accessions, then the remaining three.

2.3. Inducing Polyploidy

IpHT1, with molecular specificity, high oil content, and ornamental fruits, was chosen
for mutation breeding. To achieve this, seeds were treated via tissue culture. After being
sterilized, the seeds were placed in a medium containing an inducer. Initially, a comparison
was made between the mixed culture and soaking methods regarding their effect on
germination rates, as illustrated in Figure S4. The results showed that soaking in sterile
water or colchicine (ranging from 0.05% to 0.50%) resulted in lower germination rates
(32.33% to 77.67%) compared to tissue culture (77.00% to 93.00%). Furthermore, adding
colchicine directly to the medium was found to be more effective in improving germination
rates than soaking. Taking into comprehensive consideration the three factors of soaking
time, inducer concentration, and breeding conditions on the seeds’ germination, a seed
induction system for I. polycarpa was established. This system took into account soaking
time, inducer concentration, and breeding conditions, with seeds being inoculated into
MS medium with chemical inducers via medium addition at a temperature of 25 ± 1 ◦C, a
humidity of 70 ± 5%, and a light intensity of 1500–2000 Lx.

As shown in Figure 4a, under “colchicine + tissue culture”, I. polycarpa seeds had
germination rates, mortality rates, contamination levels, survival rates, and induction rates.
Specifically, optimal colchicine concentrations (0.05% to 0.10%) yielded high germination
(92% to 93%) and survival rates (83% to 84%) but did not result in any induction. However,
higher concentrations (0.20% to 0.50%) reduced germination and survival but induced
mutations (7.50% to 12.80%). Furthermore, as illustrated in Figure 4b, under “trifluralin
+ tissue culture”, are presented the germination, mortality, contamination, survival, and
induction rates. Notably, trifluralin at a concentration of 0.01% induced mutations (9.00%)
but also resulted in the highest mortality rate (7%). Despite this, the overall germination
rate remained high (90% to 95%), and the survival rate was within a satisfactory range (78%
to 89%).
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In conclusion, the established seed induction system for I. polycarpa, taking into account
various factors such as soaking time, inducer concentration, and breeding conditions,
provided a platform for effective mutation breeding of IpHT1.

2.4. Identification of Mutants

Sixty days post-inoculation, morphological observations of 520 surviving mutage-
nized I. polycarpa seedlings revealed variations. Due to strict aseptic requirements, only
preliminary screenings were performed. Figure S5 displays mutagenized plants under
identical conditions, highlighting minor differences in some cases (Figure S5b,c) compared
to control (Figure S5a) and significant differences in others (Figure S5d–f), which exhibited
shorter heights, thicker stems, and delayed leaf growth. These differences were attributed
to the inducer inhibition, which led to reduced growth rates and thicker stems. Ultimately,
401 morphologically variant seedlings were selected for further analysis.

Furthermore, to identify mutants among the selected seedlings, FCM was employed.
This was performed separately for colchicine-induced (Group A) and trifluralin-induced
(Group B) variant seedlings, using uninduced diploid seedlings as controls. Figure S6
demonstrated the ploidy-level peak effects observed during the FCM analysis. The DNA
fluorescence content during the G1 phase was measured, and the control samples exhibited
peak values of 18–20 w, averaging 194,068.911 (Table S2). Figure S6 and Table S3 show the
mutagenized seedlings’ fluorescence peak values and ploidy. As expected, diploid, triploid,
and tetraploid plants showed increasing multiples in peak values, with triploids having
peaks at 27–30 w, tetraploids at 36–40 w, and chimeric diploid-tetraploid plants showing
peaks at both 20 w and 40 w. Through FCM, 50 suspected polyploids (15 triploids and
35 tetraploids) and 3 chimeric plants were identified. Variation coefficients were within
10%, ensuring credibility.

Based on the FCM results, karyotype analysis was then conducted on diploid, sus-
pected triploid, and tetraploid I. polycarpa. Using oligonucleotide sequence (AG3T3)3,
(GAA)6, and 5S rDNA as FISH probes, chromosomes were analyzed in detail. A combined
map (Figure 5) was created, featuring the (AG3T3)3 and 5S rDNA signals, with no (GAA)6
signal. Mitotic chromosomes were identified for diploids (Figure 5a,b) and tetraploids
(Figure 5c), but not triploids, due to a lack of mid-phase cells; instead, interphase (Figure 5d)
and prophase (Figure 5e) images were shown. The (AG3T3)3 appeared at chromosome ends,
enabling counting (42 for diploids, 84 for tetraploids). 5S rDNA was located proximally,
with two signals in diploids and four in tetraploids; triploids showed three signals. The
chromosomes were rearranged by length for further analysis (Figure 5f–h). In the diploid
metaphase, chromosomes ranged from 2.03 to 5.00 µm in length, with 5S rDNA in a specific
pair (33 and 34). In late metaphase, the lengths shortened to 1.22 to 2.57 µm, but the 5S
rDNA was still present. Tetraploid metaphase chromosomes were shorter (1.28 to 3.18 µm),
with 5S rDNA located in pairs 65/66 and 67/68. However, due to unclear centromere
positions, in-depth karyotype analysis was not feasible. Instead, chromosome sizes were
qualitatively described based on measurements of the longest and shortest chromosomes.
This comprehensive analysis provided valuable insights into the genetic and chromosomal
changes induced by the mutagens in I. polycarpa seedlings.
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Figure 5. FISH analysis of I. polycarpa chromosomes: green [FAM-labeled (AG3T3)3] and red (TAMRA-
labeled 5S rDNA) signals on DAPI-stained blue chromosomes. The white arrows in the (a–e) indicate
the 5S rDNA signals. Scale: 5 µm. (a,b): diploids, (c): tetraploids, (d,e): triploids. (a,c): metaphase;
(b): late metaphase; (d): interphase; (e) prophase. (f–h): segmented images showing chromosome
lengths and pair numbers.

2.5. Observation of Morphological Characteristics of Identified Mutants

A total of 18 polyploid I. polycarpa (7 triploids, 11 tetraploids) were identified using
morphology, FCM, and FISH. Morphological comparisons were made among diploid,
triploid, and tetraploid mutants at the same growth stage (Figure S7). Furthermore, after
50 days, diploid leaves were light green with fine veins, triploid leaves were bright green
with prominent veins, and tetraploid leaves were dark green with darker, sparse veins
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(Figure 6a–c). Additionally, diploid leaves showed the greatest variability in length, width,
and shape index (L/W), with averages of 4.25 cm length, 2.79 cm width, and 1.53 L/W
(Figure S8(A1–A3)). In contrast, triploid and tetraploid leaves were shorter (p < 0.05) but
similar in width and shape (p > 0.05), all oval (L/W < 2). Root tips were slender in diploids
and robust in triploids and tetraploids (Figure 6d–f).
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28.54 µm (diploid), 40.84 µm (triploid), and 53.36 µm (tetraploid); widths were 12.45 µm 
(diploid), 12.48 µm (triploid), and 22.35 µm (tetraploid); densities were 27.10, 18.90, and 
17.00 pcs/mm2, respectively. Triploid stomatal length increased by 43.27% vs. diploid (p > 
0.05 in width); tetraploid stomata were significantly larger (p < 0.05), with 86.97% longer 
and 79.52% wider stomata. Guard cell lengths were 71.31 µm (diploid), 77.55 µm (trip-
loid), and 99.27 µm (tetraploid); widths were 54.93 µm (diploid), 49.75 µm (triploid), and 
63.28 µm (tetraploid). Although guard cell size did not differ significantly between diploid 
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0.05). Stomatal density decreased as ploidy and stomatal size increased. Triploid stomata 
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Moreover, leaf tissues of I. polycarpa at different ploidy levels showed stomatal and
guard cell differences (Figure 6g–i and Figure S8(B1–B5)). Specifically, stomatal lengths were
28.54 µm (diploid), 40.84 µm (triploid), and 53.36 µm (tetraploid); widths were 12.45 µm
(diploid), 12.48 µm (triploid), and 22.35 µm (tetraploid); densities were 27.10, 18.90, and
17.00 pcs/mm2, respectively. Triploid stomatal length increased by 43.27% vs. diploid
(p > 0.05 in width); tetraploid stomata were significantly larger (p < 0.05), with 86.97%
longer and 79.52% wider stomata. Guard cell lengths were 71.31 µm (diploid), 77.55 µm
(triploid), and 99.27 µm (tetraploid); widths were 54.93 µm (diploid), 49.75 µm (triploid),
and 63.28 µm (tetraploid). Although guard cell size did not differ significantly between
diploid and triploid (p > 0.05), tetraploid guard cells were 39.21% longer and 15.20% wider
(p < 0.05). Stomatal density decreased as ploidy and stomatal size increased. Triploid
stomata were elongated, while tetraploid stomata and guard cells were larger, lowering
density. Additionally, chlorophyll content in I. polycarpa of different ploidy levels is shown
in Figure S8(C1–C3). Specifically, diploids, triploids, and tetraploids had chlorophyll
a at 0.344, 0.303, and 0.625 mg/g; chlorophyll b at 0.104, 0.097, and 0.186 mg/g; and
total chlorophyll at 0.448, 0.400, and 0.811 mg/g, respectively. While triploids showed
slight decreases in chlorophyll content, these were not significant (p > 0.05). However,
tetraploids had significantly higher chlorophyll content (p < 0.05), with increases of 81.67%
in chlorophyll a, 78.85% in chlorophyll b, and 81.03% in total chlorophyll.

In summary, polyploid I. polycarpa (triploids, tetraploids) had thicker stems/roots,
fewer lateral roots, larger/darker leaves (ovate shape unchanged), larger stomata/guard
cells (reduced density), and significantly higher chlorophyll in tetraploids compared to
diploid plants.

3. Discussion
3.1. Selection of Mutagenesis Materials

To obtain superior polyploids, it is essential to select parents with excellent traits.
IpHT1, with 38.5% fruit oil and red color, stands out. Furthermore, genetic analysis of
16 I. polycarpa samples from Sichuan showed IpHT1′s distinctiveness. Given its high
oil content, ornamental value, and specificity, IpHT1 is ideally suited for mutagenesis
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breeding. Studies have found rich trait variation in I. polycarpa [8,54,55], further supporting
this diversity. In this study, the four materials from Jintang County, namely IpHT1, IpJT2,
IpJT3, and IpJT4, exhibited rich variation in fruit color and high oil content (IpHT1, IpJT2,
and IpJT3). They also have close genetic distances (IpHT1, IpJT3, and IpJT4), except for
IpJT2. This indicates that the I. polycarpa materials from Jintang County have great potential
and should be further screened as potential resources for breeding. Moreover, Li et al. [30]
found rich genetic variation in I. polycarpa var. vestita from four distribution areas in China,
consistent with the findings of this study. As a dioecious species with low inbreeding [56],
I. polycarpa’s allelic heterozygosity contributes to its genetic diversity.

Additionally, genetic distance reflects similarity between individuals [57]. Typically,
materials from nearby origins often have closer genetic distances due to domestication [58],
albeit with existing variation within regions. However, although the UPGMA clustering
results of this study have a certain correlation with geographical distribution, I. polycarpa
materials from different regions are intermixed and not strictly clustered according to
their geographical origin. This observation is consistent with the research results of Jian
et al. [59] but differs from the findings of studies on I. polycarpa germplasm resources
by Li et al. [30]. This intermixing may result from shared ancestry or gene flow during
cultivation [60]. In addition, human activities like selection cause gene introgression [61],
thereby increasing genetic variation. According to Hamrick’s theory, there is a strong
relationship between geographic range and genetic diversity [62]. Consequently, the
genetic variation in I. polycarpa exhibited a certain regionality, with materials from the same
or similar geographical origins having closer genetic distances. This indicated that SSR
molecular markers can effectively distinguish resources from different geographical origins.
Nevertheless, for a small number of materials, the geographical distance is contrary to
the genetic distance. This may be because the genetic relationship of I. polycarpa is not
completely restricted by geographical location; alternatively, it may be related to human
selection activities that have led to gene flow and introgression among the populations of
I. polycarpa collected from various regions in this study [60].

Furthermore, constructing DNA fingerprint maps using SSR markers reveals I. poly-
carpa’s molecular specificity. Currently, research on DNA fingerprint maps of I. polycarpa is
still in its infancy. Early-stage research on I. polycarpa fingerprints used 4 primer pairs for 16
samples [63]. These maps transform genetic data into an intuitive digital form, facilitating
quick genetic relationship analysis [64]. Importantly, selecting optimal primers to maximize
variety distinction with minimal markers is crucial [65]. For instance, Zhang et al. [66] used
11 primers for 18 Prunus samples but distinguished only 15, highlighting cost and efficiency
issues with numerous markers [67]. Highly polymorphic primers minimize marker use.
He et al. [68] found bm487 effective, while Sun et al. [69] distinguished 178 Solanum samples
with 2 primers. Similarly, Wang et al. [70] used 5 primers for 100 Triticum samples. In this
study, an efficient primer combination distinguished all 16 I. polycarpa samples with 4 pairs,
enhancing identification efficiency and cost-effectiveness.

3.2. Induction System Construction

This study delved into determining the optimal induction system for I. polycarpa seeds
by examining three key variables: soaking time, inducer concentration, and breeding condi-
tions. Initially, under carefully controlled conditions (temperature maintained at 25 ± 1 ◦C,
humidity at 70 ± 5%, and light intensity between 1500 and 2000 Lx), seeds were inoculated
into MS medium with various inducers. Notably, polyploids were successfully produced
using colchicine concentrations of 0.20% and 0.50%, as well as trifluralin concentrations of
0.01% and 0.02%. Among these, the highest induction rate of 12.80% was observed with
0.50% colchicine. However, it is worth noting that there is a scarcity of research reports on
similar conditions for polyploid induction in I. polycarpa.

Furthermore, studies on various plants have shown differing optimal conditions for
colchicine treatment to induce polyploids. For instance, Li et al. [71] found that soaking
Pistacia chinensis Bunge seeds in 0.2% colchicine for 36 h followed by 0.3% for 12 h achieved a
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38.10% induction rate. Chen et al. [45] discovered that culturing Selenicereus undatus (Haw.)
D. R. Hunt. in 50 mg/L colchicine for 5 days was best for polyploid induction. Similarly,
Lin et al. [72] reported an 18.6% induction effect when treating Broussonetia papyrifera (L.)
L’Hér. ex Vent leaves in 450 mg/L colchicine for 3 days. These examples underscore
the plant-specific nature of optimal colchicine treatment conditions. Additionally, when
combining colchicine and trifluralin with tissue culture, higher concentrations reduced
germination and survival rates, while increasing mortality and induction rates. Notably,
infection rates remained consistent across concentrations, suggesting they were unrelated
to mutagen concentration. This could potentially be attributed to inadequate sterilization
or improper handling during experiments.

Importantly, this study also revealed that, as soaking time increased, the impact of
colchicine on seed germination intensified. While appropriate concentrations enhanced
germination, long-term, high-concentration treatments were toxic, inhibiting growth or
causing death. In line with this, Huang et al. [73] found oryzalin more effective than
colchicine in inducing fertile Lilium L. gametes, with a peak rate of 15.39% at 0.005%.
Similarly, Verma et al. [74] showed that low colchicine doses (0.025% and 0.1%) improved
Nigella sativa L. growth and yield, but higher doses had detrimental effects. In conclusion,
the toxicity of chemical mutagens to seeds in this study increased with the duration
and concentration of treatment, leading to delayed seed emergence, reduced emergence
uniformity, browning or death of plants [57]. These findings are consistent with previous
research, highlighting the importance of carefully selecting and optimizing treatment
conditions to achieve successful polyploid induction while minimizing adverse effects on
seed germination and plant growth.

3.3. Mutant Identification

In this study, 401 morphologically variant seedlings were initially screened, yet only
18 polyploids were confirmed by FCM and FISH. Firstly, morphological screening is
not accurate and can only serve as a reference [60]. Although polyploids and diploids
may have distinct morphological differences [75], not all morphologically variant plants
are polyploids due to the influence of genetic and environmental factors, including light,
temperature, water, altitude, and nutrients [76]. For instance, Fernando et al. [77] found that
tetraploid eucalyptus grew slower and shorter than diploids, possibly due to early growth
distortion from chemical mutagen treatment or low emergence uniformity. Furthermore,
the average germination potential and germination rate of untreated IpHT1 seeds were
low (11.00% and 48.17%, respectively), indicating significant inconsistency in seed growth,
which further complicates morphological screening. Thus, identifying polyploids based
on early morphological characteristics can lead to significant errors, as screened variants
result from combined environmental and structural factors.

Secondly, the FISH results revealed that, out of 50 seedlings suspected to be polyploids
based on FCM, only 18 (7 triploids and 11 tetraploids) were confirmed. FCM results did
not fully align with chromosome identification, though typically highly accurate [67,78].
Discrepancies in this study could be attributed to experimental timing, where suspected
polyploids might have reverted to diploidy, or technical issues such as leaf tissue chopping
for cell suspensions being affected by leaf veins or inadequate cutting, leading to impurity
peaks and reduced accuracy. Notably, there were no extant prior FCM studies on I. polycarpa,
and this study identified optimal dissociation solutions tailored to the plant’s cell structure,
which is crucial for accurate results [79].

Furthermore, chromosomes, as genetic carriers, are stable in plant reproduction and
evolution, with species-specific counts remaining consistent [80,81]. Ploidy differences
directly influence chromosome counts; specifically, I. polycarpa had diploid 2n = 42 and
tetraploid 4n = 84 counts. Our study showed that chromosome numbers aligned with
ploidy [3], and 5S rDNA loci correlated positively with ploidy [82]. Although triploid
metaphase counts were not determined, chromosomal polyploidization was inferred [83].
FISH, supported by morphology and FCM, offers reliability, with end probes ensuring accu-
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rate counts. However, practical limitations, such as the need for metaphase chromosomes
from tender root tips and insufficient mutant plant material, particularly in tissue-cultured
seedlings with limited tender roots, resulted in fewer FISH identification results compared
to the actual number of mutants.

Lastly, the study observed I. polycarpa mutations at two growth stages: seedlings after
60 days on medium (cotyledons) and plants stably grown for 50 days post-transfer (true
leaves). Cotyledons, crucial for seedling growth but sensitive to mutagenesis, showed
delayed growth. True leaves, involved in photosynthesis, were chosen for observation
and chlorophyll detection due to reduced variation post-proliferation. Polyploid I. poly-
carpa had thicker stems/roots, larger/darker leaves, larger stomata/guard cells, lower
stomatal density, and significantly increased chlorophyll content. These traits enhanced
photosynthetic capacity, promoted organic synthesis, and affected growth, aligning with
findings from other polyploid studies [84,85]. Comparisons between diploids and poly-
ploids revealed polyploid traits like dwarfism, increased leaf area, chlorophyll, and stress
resistance [36,46,86]. Notably, polyploids of Linum L. and Stevia rebaudiana Bertoni exhibited
increased medicinal and market value [87,88], highlighting the potential significance of
polyploidy in various plant species.

4. Materials and Methods
4.1. Experimental Materials

The study utilized 16 varieties (lines) of I. polycarpa, as detailed in Table 5. These
varieties comprised two specific cultivars: IpHT1, also known as ‘Haitong No. 1’, and
IpZF36, or ‘Zaofeng No. 36’. The remaining 14 samples represent elite lines within
the species. Notably, among these lines, IpDY1, IpDY2, IpDY3, and IpDY4 belonged to
the variety I. polycarpa var. vestita. The rest of the materials were all classified under
I. polycarpa var. polycarpa, which is abbreviated as I. polycarpa for simplicity. All 16 samples
were geographically sourced from five districts and counties in Sichuan Province, China:
Dayi, Jiajiang, Jintang, Leshan, and Chongzhou. These materials were cultivated at the
Yangma Base in Chongzhou, Chengdu City, Sichuan Province. Additionally, some of the
cultivation and research activities may have also been conducted at the Chengdu Academy
of Agriculture and Forestry Sciences.

Table 5. Sampling information of I. polycarpa.

Accession Variety Name License Number Location Longitude and Latitude

IpDY1 - - Dayi, Sichuan 103.52071 E, 30.58759 N
IpDY2 - - Dayi, Sichuan 103.52071 E, 30.58759 N
IpDY3 - - Dayi, Sichuan 103.52071 E, 30.58759 N
IpDY4 - - Dayi, Sichuan 103.52071 E, 30.58759 N

IpJJ1 - - Jiajiang, Sichuan 103.57156 E, 29.73753 N
IpJJ2 - - Jiajiang, Sichuan 103.57156 E, 29.73753 N
IpJJ3 - - Jiajiang, Sichuan 103.57156 E, 29.73753 N

IpHT1 Haitong 1 Chuan R-SC-IP-013-2019 Jintang, Sichuan 104.41205 E, 30.86203 N
IpJT2 - - Jintang, Sichuan 104.41205 E, 30.86203 N
IpJT3 - - Jintang, Sichuan 104.41205 E, 30.86203 N
IpJT4 - - Jintang, Sichuan 104.41205 E, 30.86203 N

IpLS1 - - Leshan, Sichuan 103.07879 E, 29.24447 N
IpLS2 - - Leshan, Sichuan 103.07879 E, 29.24447 N
IpLS3 - - Leshan, Sichuan 103.07879 E, 29.24447 N
IpLS4 - - Leshan, Sichuan 103.07879 E, 29.24447 N

IpZF36 Zaofeng 36 Chuan R-SC-IP-002-2019 Chongzhou, Sichuan 104.10194 E, 30.65984 N

Note: IpDY1, IpDY2, IpDY3, and IpDY4 are varieties of I. polycarpa var. vestita, while the remaining materials are
all I. polycarpa var. polycarpa, abbreviated as I. polycarpa.
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4.2. Experimental Methods
4.2.1. SSR

As depicted in Figure S9, leaves from 16 I. polycarpa samples were preserved in silica
gel for SSR analysis. Genomic DNA was extracted using a modified CTAB (hexadecyl
trimethyl ammonium bromide) method [89]. SSR primers referenced from Li et al. [30]
were synthesized by Sangon Biotech. Co., Ltd. (Shanghai, China). PCR also followed Li
et al.’s protocols [30]. GeneMapper4.0 software analyzed capillary electrophoresis results,
and Microsoft Excel 2021 compiled genotype data, with homozygous loci as X (where X is
the numerical value of the peak at that locus) and heterozygous as X/Y (where X and Y are
the numerical values of the two distinct peaks at that locus).

(i) Analysis of genetic diversity parameters: Genetic diversity parameters, including
the number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (Ho),
expected heterozygosity (He), polymorphism information content (PIC), and Shannon’s
information index (I), were calculated for each SSR primer pair using GenALEx6.502
and PowerMarker3.25 software [90]. (ii) Genetic distance analysis: The genetic distance
(Gene diversity, GD) between samples was computed using PowerMarker3.25 software.
Subsequently, a dendrogram was constructed based on the unweighted pair-group method
with arithmetic means (UPGMA) in MEGA 11 software package [91]. Additionally, to
further assess the genetic diversity of the 16 samples of I. polycarpa, Principal Component
Analysis (PCA) was conducted using the R software package (R version 4.2.2) [92]. This
PCA took into account factors such as fruit oil content, fruit three-diameters, and the
previously computed SSR genetic distance. (iii) Construction of fingerprint profiles and
cultivar discrimination: Following Botstein’s theory [63], a primer combination approach
was adopted to differentiate the I. polycarpa materials under investigation and to construct
plant DNA fingerprint profiles. The primer with the highest polymorphism ranking was
initially used for discrimination. If not, and all cultivars (lines) could not be distinguished,
an additional primer was sequentially included until all materials were uniquely identified.

4.2.2. Polyploid Induction

IpHT1 seeds were threshed and stored at room temperature. They were wrapped in
sandpaper, soaked in detergent water to remove the waxy coat, rinsed, soaked in 1.5%
potassium dihydrogen phosphate for 24 h, disinfected with 0.5% potassium permanganate
for 2 h, rinsed, and soaked in 200 mg/L gibberellic acid at 30 ◦C for 8 h, then rinsed again.

Immersion method: The pretreated IpHT1 seeds were immersed in colchicine solutions
with concentrations of 0.05%, 0.1%, 0.2%, and 0.5%, and sterile water (as a control) for
polyploidization. The immersion durations were set at 12, 24, 36, and 48 h. After immersion,
the seeds were rinsed with sterile water 4–5 times and placed on filter paper beds in Petri
dishes. Each treatment included 100 seeds with three repetitions. The seeds were then
placed in a light incubator (humidity 80%, 12 h of light and 12 h of darkness, light intensity
15,000 Lx). Microsoft Excel 2021 was used to record the number of germinated seeds
(defined as the emergence of the radicle through the seed coat), and seed germination
indices were calculated [93]: Seed germination potential (%) = (Number of germinated
seeds on the 7th day/Total number of tested seeds) × 100%, Germination rate (%) = (Total
number of germinated seeds on the 10th day/Total number of tested seeds) × 100%, and
Germination index (GI): GI = Σ(GT/DT) (where GT is the number of germinated seeds on
day T, and DT is the corresponding day).

The tissue culture method involved placing pretreated seeds in sterile tea bags and dis-
infecting them in a laminar flow hood with 75% ethanol, followed by rinsing and soaking in
either 2% sodium hypochlorite for 30 min or 0.1% mercuric chloride for 10 min. Colchicine
and trifluralin were added to the culture medium to induce chromosome doubling in
I. polycarpa. Both chemicals were purchased from Chengdu Haobo You Technology Co.,
Ltd. Filtered stock solutions of these chemicals were injected into unsolidified medium
and thoroughly mixed. Each flask contained medium with varying concentrations of
colchicine (0.05–0.5%) [94] and trifluralin (0.005−0.02%) [95]. Prepared media were kept
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in the dark for 3 days post-autoclaving before inoculation. Seeds were then inoculated
onto MS medium supplemented with growth regulators and the selected chemicals (MS
+ 0.2 NAA + 0.2 6-BA + 0.1 TDZ + 0.3 AC). After 60 days, seedlings were transferred to
rooting (1/2 MS + 0.2 NAA + 0.1 6-BA + 0.5 AC) and proliferation (1/2 MS + 0.8 IBA +
0.5 AC) media following ploidy verification. Cultures were maintained in the dark un-
der specific conditions for 5 days before being exposed to light (1500–2000 Lx). Growth
parameters, including germination (number of germinated seeds/total inoculated seeds
× 100%), mortality (number of dead plants at 60 days/total inoculated seeds × 100%),
contamination (number of contaminated plants at 60 days/total inoculated seeds × 100%),
and survival (number of surviving plants at 60 days/total inoculated seeds × 100%) rates,
were recorded and calculated using Microsoft Excel 2021.

4.2.3. FCM

In accordance with Huang et al. [96], approximately 0.2 g of tender leaves from I. poly-
carpa seedlings (both non-doubled and mutagenized tissue-cultured) were processed in an
ultraclean workbench. After vein removal, leaves were placed in a Petri dish, dripped with
1 mL of dissociating solution, and chopped to prepare nuclear suspensions for FCM. The
non-doubled seedlings served as the control, using Tris-MgCl2, PI, and WPB solutions for
detection, each repeated three times. The optimal dissociating solution was determined by
its ability to yield a stable G1 peak value in 10 repetitions of the control group, establishing
a baseline for mutagenized seedlings. Mutagenized seedlings were then analyzed using
this solution, ensuring synchronized detection times and consistent steps between control
and test samples.

After a 20 min stand, 60 µL RNAse and 120 µL PI staining solution were added to
the cell suspension. The Accuri C6 flow cytometer measured nuclear DNA content. Peaks
were saved when cell counts exceeded 5000 and CV was <10%. Excel 2021 calculated
G1 peak and CV values. Comparing test and control G1 peaks inferred mutagenized
strain ploidy. The FCM graph plots DNA amount (fluorescence intensity) vs. nucleus
count. Consistent nucleus numbers per sample ensured accuracy. CV indicates FCM
precision; lower CVs reflect better nuclear integrity. CV < 10% yields ideal data; CV < 5%,
best results [97]. Test sample ploidy was calculated by dividing its G1 peak intensity by
the control’s, then multiplying by the control ploidy. FCM screened suspected doubled
I. polycarpa for further analysis.

4.2.4. FISH

Newly grown root tips, 1–2 cm in length, were collected from diploids of I. poly-
carpa, wiped clean of soil, and placed in centrifuge tubes. Similarly, root tips of 1–2 cm
in length from non-doubled tissue-cultured seedlings and mutagenized tissue-cultured
seedlings were separately placed in centrifuge tubes within a super clean workbench. The
chromosomes were fixed through a 4 h treatment with Nitrous oxide (N2O) and a 5 min
treatment with glacial acetic acid, followed by storage in 75% ethanol at −20 ◦C. Chromo-
some slide preparation for the root tips was performed according to the method described
by Luo et al. [52], facilitating subsequent hybridization with probes. The probes used in
the experiment, including (AG3T3)3, 5S rDNA, and (GAA)6, were synthesized by Sangon
Biotech Co., Ltd. (Shanghai, China). The fluorescent signals of the probes were hybridized
onto the chromosomes on the slides, following the specific experimental steps outlined by
He et al. [53].

Chromosomes on the hybridized slides were tracked utilizing the Olympus BX-63
microscope, manufactured by Olympus Corporation in Tokyo, Japan, and FISH images
were captured with the DP-70 CCD camera designated for use with the microscope. The
FISH images were processed using Adobe Photoshop 2021 (Adobe Systems Inc., San Jose,
CA, USA) for chromosome extraction. The original images were cropped, legends were
added, and the lengths of the metaphase chromosomes were measured using Image J
software (version 1.8.0.345). Chromosome counting was performed based on the distribu-
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tion of the (AG3T3)3 probe at the ends of chromosomes. The number and distribution of
sites of oligonucleotide probes 5S rDNA and (GAA)6 on the chromosomes of mutagenized
and control plants were statistically compared. Based on the FISH results, the number of
polyploids was counted.

4.2.5. Measurement of Morphological and Physiological Indices

Five plants from diploid, triploid, and tetraploid I. polycarpa tissue-cultured seedlings
were randomly selected. Leaf length and width (middle lobe) were measured to 0.01 cm
accuracy using a ruler. The leaf shape index [98] (L/W = leaf length/leaf width) was
calculated. Leaves were classified as lanceolate (L/W > 3), long elliptical (2.5 < L/W < 3),
elliptical (2 < L/W < 2.5), or ovate (L/W < 2). SPSS 24.0 was used for one-way ANOVA and
Origin 2021 for boxplots. Additionally, 5 plants from diploid, triploid, and tetraploid sets
were randomly selected. For each, the lower epidermis was torn off from 4 similar-sized
leaves. Each was placed on a slide with water, covered with a coverslip, and observed
under a 20× microscope. Guard cell and stomata dimensions and counts were recorded,
and stomatal density was calculated [99]. SPSS 24.0 was used for ANOVA and Origin 2021
for boxplots.

Chlorophyll was extracted from I. polycarpa tissue-cultured seedlings using the ethanol
method [100]. Five plants from diploid, triploid, and tetraploid sets were randomly selected.
Leaf strips (0.1 cm width) from the top leaf of each plant were soaked in 95% ethanol to
obtain chlorophyll extract, then stored in the dark. The extract’s absorbance was measured
using a spectrophotometer, with four replicates per sample. Chlorophyll a, b, and total
contents were calculated using Arnon’s formula [101], adjusted for leaf area. Data were
analyzed using Excel 2021, and ANOVA was performed using SPSS 24.0. Boxplots were
generated using Origin 2021.

5. Conclusions

Based on genetic diversity analysis of 16 I. polycarpa varieties (lines) from Sichuan,
IpHT1 was chosen for polyploid induction via tissue culture and chemical inducers. Mor-
phology, FCM, and FISH identified mutant ploidy. Our findings enhance I. polycarpa
selection and breeding efficiency. However, geography, primers, and sample size limited
comprehensiveness. New polyploid materials were screened, but numbers were limited.
Future work should expand breeding scale, cultivate in the long-term, and observe materi-
als to assess ploidy and genetic stability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13233394/s1, Figure S1: Scatter diagram of 11 SSR loci
exhibiting polymorphic distribution during detecting the 16 samples of I. polycarpa; Figure S2: Allele
amplification size and corresponding fluorescence intensity of I. polycarpa; Figure S3: Using four SSR
primer pairs, 16 I. polycarpa samples were identified by their allele sizes (bold); Figure S4: Germination
rates of I. polycarpa seeds under different concentrations of colchicine treatment through tissue culture
and soaking methods; Figure S5: Morphology of I. polycarpa tissue culture seedlings after 60 days
of inoculation; Figure S6: Flow cytometry analysis of I. polycarpa seedlings; Figure S7: Seedlings of
different ploidy of I. polycarpa that have grown steadily on proliferation medium for 50 days; Figure S8:
Leaf morphology, stomatal characteristics, and chlorophyll content of I. polycarpa with different ploidy
levels; Figure S9: Sixteen samples of I. polycarpa leaves preserved in silica gel; Table S1: Nineteen pairs
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