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Abstract: Natural compounds from plants represent suitable options to replace synthetic biocides
when employed against microorganisms in various applications. Essential oils (EOs) have attracted
increased interest due to their biocompatible and rather innocuous nature, and complex biological
activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.).
EOs are complex mixtures of derived metabolites with high volatility obtained from various vegetal
parts and employed to a great extent in different healthcare (natural cures, nutrition, phyto- and
aromatherapy, spices) and cosmetics applications (perfumery, personal and beauty care), as well as in
cleaning products, agriculture and pest control, food conservation and active packaging, or even for
restauration and preservation of cultural artifacts. EOs can act in synergy with other compounds,
organic and synthetic as well, when employed in different complex formulations. This review will
illustrate the employment of EOs in different applications based on some of the most recent reports
in a systematic and comprehensive, though not exhaustive, manner. Some critical assessments will
also be included, as well as some perspectives in this regard.

Keywords: essential oils; biofilm; healthcare applications; pest control; food packaging systems;
cultural heritage protection

1. Introduction

Essential oils (EOs) represent concentrated hydrophobic mixtures of natural organic
compounds comprising mainly terpenes, terpenoids, and phenylpropanoids isolated from
many vegetal parts of plants (e.g., flowers—rose, chamomile, jasmine, lavender; leaves—
peppermint, rosemary, thyme, patchouli; fruits—lemon; roots—vetiver, elecampane; seeds—
fennel, anise, cumin, nutmeg; grasses—lemongrass; rhizomes—ginger; bulbs—garlic;) and
wood species (e.g., wood as whole—cedarwood, sandalwood; barks—cinnamon, sassafras;
leaves—eucalyptus; peels—lemon, lime, orange, tangerine, grapefruit, bergamot; natural
resins—frankincense, myrrh; berries—juniper; tree blossoms—ylang-ylang; flowers—clove,
orange; heartwood—agarwood) [1].

It is well known that plant extracts usually consist of dozens of organic compounds
and only one of them actually has biocide activity [2]. For example, cinnamaldehyde is the
biologic active compound in cinnamon oil, thymol in thyme oil, linalool in coriander oil,
citral in lemongrass extract, etc. The structures of the main biologic active compound in
EOs extracted from different plants are presented in Figure 1.
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Figure 1. Chemical structures of main components in EOs from different plants.

Some species have high versatility and, therefore, we find them used in a wide
range of applications. For example, elecampane (Inula helenium), a native species from
Eastern Europe, is mostly used in the treatment of respiratory and urinary infections, some
digestive syndromes, and also for skin diseases [3]. At the same time, it has been shown
that chemical components from Inula helenium root essential oil, namely sesquiterpene
lactones, alantolactone, and isoalantolactone, possess a very complex biological activity
that includes antiproliferative, anti-inflammatory, and antioxidant properties, as well as the
capacity to activate enzyme-assisted detoxification, as previously reported [3–7].

Due to their complex chemical composition and consequently diverse properties,
different distillation methods can be employed for the extraction of essential oils from
plants, as illustrated in Scheme 1.
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The most applied technique is hydro-distillation, a traditional method for extraction,
in which the appropriate vegetal material is usually boiled in water [9]. Thus, high-boiling-
point organic compounds are effectively separated from their respective mixtures. The
oil is vaporized at the boiling point of water or lower, and the resulting hot vapors are
further cooled down and condensed until the formation of a biphasic liquid. This method
of extraction is preferred considering aspects such as economic (low-cost technique, simple
instrumentation) and environmental benefits (it is free from organic solvents) as well.

One of the main applications of essential oils is their use as natural, environmentally
friendly alternative biocides. A biocide exerts its effects directly on the target microorgan-
isms, as well as indirectly by preventing the formation and/or destroying the biofilm—the
sole mediator of all interactions between support and the surrounding microbiota. The Eos’
biocide activity is a sum of complex phenomena, among which preventing the formation
of the biofilm (or even the biofilm degradation) in an effective manner has a primary role
in regard to fighting against microorganisms. Thus, EOs have been used as biocides to
protect the food surface [10], or for medical and health purposes (aromatherapy and natural
cures, cleaning products, cosmetics, and personal care) [11,12], as well as in agriculture as
herbicides and for pest control [13], and even for the protection and conservation of cultural
heritage [14]. In the first mentioned case, the EOs are included as additives in biodegrad-
able films and coatings for active food packaging [15], which can provide a long shelf life
and preserve the good quality of food products during storage by preventing inherent
degradation phenomena which may occur under different detrimental circumstances (e.g.,
proliferation of microorganisms on biofilm, exposure to chemical contaminants, moisture
or light conditions). Eos’ specific action in such applications is related to their significant
antimicrobial activity (conferred mainly by terpenoids and phenol compounds from their
composition) and is manifested as a complex phenomenon, including molecular mecha-
nisms and intermolecular interactions which have been comprehensively reviewed and
discussed [16]. The beneficial effects of EOs are also related to their pro-oxidant effects at
the cellular level [17].

EOs represent an effective biological strategy applied in order to prevent biofilm
occurrence, and their action is manifested through the regulation of proteins coded directly
by genes implicated in motility, quorum sensing (QS, known as the cell-to-cell signaling
process) [18], and exo-polymer substance (EPS) matrices [10]. Nevertheless, chemical
strategies using different biocides (oxidizing, non-oxidizing) and disinfectants are efficient
ways to remove biofilms [19]. Such chemical diversity is strongly related to the multifarious
interactions, which may add to the mechanical stability of the biofilm, making it possible to
employ complex approaches (chemical and mechanical treatments acting in synergy) in
order to eliminate the biofilm [20].

EOs’ ability to impair the formation of a biofilm has attracted more and more interest
considering that they can effectively contribute to reducing the dose of antibiotics [21].

The worldwide interest in replacing synthetic biocides with highly specialized natural
ones in various applications, from pest control in agriculture to antimicrobial food packag-
ing, and from healthcare to protection of the cultural heritage, has significantly increased.
A solid indication of this interest is the number of articles published in the last decade
(although only 16 review articles), as summarized in Figure 2.

Therefore, this review will illustrate the general effort to limit or even to eliminate
synthetic biocides from different applications based on some of the most recent reports. It
will also provide an appraisal and up-to-date background of the topic and a comprehensive,
though not exhaustive, range of applications where EOs have been successfully replacing
synthetic biocides. Some critical assessments will also be included, mainly concerning
new and complex approaches in the field, as well as some of the EO limitations (e.g., their
photochemical and oxidative stability, selectivity, etc.). At the same time, some perspectives
in this regard will be presented in order to optimize future research strategies.
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2. Biofilm-Mediated Specific Interactions Between Microbiota and EOs Biocides

Although the microbiota is a widely unexplored ecosystem, it is of particular impor-
tance in human health and diseases, and the modulation of this complex is of the utmost
consideration and a biomedical priority. In recent years, the huge problem of antibiotic
resistance has been tackled with numerous antibacterial alternatives that have also re-
sponded to people’s demand for natural therapeutic products that have no side effects,
such as dysbiosis and cyto/hepatotoxicity. Energy metabolism, infection, nutritional status,
immunity, behavior, and response to stress form the normal physiology of the host, which
is controlled by the microbiota [22]. Homeostasis at the level of the intestinal mucosa and
beyond is provided by a well-balanced intestinal microbiota [23].

The mechanisms responsible for the beneficial or harmful influences of the microbiota
on the host are still largely undefined, even though its composition and physiology have
been intensively researched. Investigation of high-throughput human multi-omic data,
such as metagenomic and metabolomic data, together with measures of host physiology
and mechanistic experiments in humans, animals, and cells evidences the intricate signaling
pathways between the host and different microbiota species [24].

Usually, a higher diversity of the microbiota correlates with a state of health, while a
lower bacterial diversity has been observed in people with metabolic disorders, type 1 and
2 diabetes, psoriatic arthritis, celiac disease, atopic eczema, arterial stiffness, and obesity.
The microbiota is in a continuous dynamic and it undergoes alterations many times in a
human life. It varies greatly from one individual to another, is susceptible to exogenous
and endogenous changes, and has an additional impact on the health of the host [25].
The microbiota is influenced by several molecular factors: (1) host-derived factors, which
include specific microribonucleic acids, and nonspecific molecules, such as antimicrobial
peptides, mucus, immunoglobulin A, and hormones [26]; (2) microbial factors, such as
lipopolysaccharides, metabolites, short chain fatty acids, and quorum sensing signaling
molecules [27]; (3) dietary molecules (i.e., fats, sugars, proteins); (4) medications (mainly
antibiotics, but any drugs could impact the gut microbiota, including natural products
utilized in traditional medicine, prophylaxis, or immune stimulation); and (5) various nano-
and microstructure particles, which could reach the gastrointestinal tract accidentally by
ingestion or by means of oral therapy [28]. The diet is the most important modeling agent
for gut microbiota [29].

Different edible (or not edible) substances such as essential oils (EOs) and plant extracts
which could be ingested in various situations induce changes into the composition of the
gut microbiota, and its modulation [30,31] (Li et al. 2018; Unusan 2020). At the same
time, the gut microbiota is impacted by various micro- and nanoparticles currently present
in the environment, dust, air, and water, as well as medication and self-care products
(mouthwashes, tooth cream, sunscreen, etc.) (Xie et al. 2022).

Complementary and alternative medicine engages drugs derived from plants for ther-
apeutic purposes, used by approximately 75% of the world’s population, especially against
metabolic diseases in which the microbiota plays an important role, such as obesity [32].

Essential oils obtained from fruits, aromatic plants, and spices are used to improve
human health due to their multiple biological activities [31]. For example, gastrointestinal
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infection, inflammation, metabolic diseases, and carcinogenesis are the main targets of fruit
EO therapy for healthy intestinal functions in humans [29]. EOs are usually colorless liquids
at room temperature obtained by plant extraction with water or organic solvent and they
are highly volatile plant metabolites [1,31]. EOs are complex mixtures of up to 200 different
organic compounds in low amounts (<1%), such as hydrocarbons and their oxygenated
derivatives. The interaction between fruit EOs and the gastrointestinal microbiota (GM)
involves the modification of the intestinal environment through the microbial metabolism
of the bioactive compounds in the EOs or through the compounds excreted by the host.
These changes influence the composition and density of the microbiota, but interferences
with inevitable impact on the health of the host can also be generated, such as altering the
ability of the microbiota to synthesize certain metabolites important for the host (i.e., SCFA
and vitamins) [33,34].

Complex omics platforms have been used to investigate the effects of EO bioactives
on host microbiota and metabolism, leading to the recent development of metabolomic
analysis. The specific interactions between fruit EOs and the host microbiota are currently
studied in stool microbiota with free bacteria or blood samples, and not on mucosal biopsies
with adherent bacteria that cover the entire microbiota which may make results inaccurate.
Different regions of the gut (i.e., adhered to gastrointestinal mucosal proteins and epithelial
cells) and outside the gut (i.e., central nervous system, systemic immune system, blood
metabolites, etc.) are currently being investigated in various animal models to monitor
microbiota–EO interferences [35].

Several plants and fruit peels such as pine, citrus, thyme, cannabis, hops, etc., contain
terpenes, aromatic compounds with pharmacological and therapeutic properties, namely
anti-inflammatory, antioxidant, antibacterial, and gastroprotective activity [36]. The citrus
family of fruits, such as sweet oranges, grapefruits and lemons, contains d-Limonene,
an active component that improves metabolic parameters and modulates the intestinal
microbiota [37].

Polyphenols are a large class of bioactive phytochemicals present in most fruits and
are consumed as antioxidants [38]. They are secondary metabolites with over 10,000
structural variants, and they include flavonoids (flavonols, flavanones, flavanols, flavones,
isoflavones, and anthocyanidins) and nonflavonoids (phenolic acids, stilbenes, coumarins,
xanthones, lignans, and curcuminoids). Some of them (flavanones, flavonols, isoflavone,
anthocyanins, proanthocyanidins, and resveratrol) are studied for their significant influence
on GI tract function, impacting on insulin signaling, downregulation of oxidative stress,
gut bacteria modulation, improvement of endothelial dysfunction, modulation of intestinal
absorption, and metabolism [39].

Generally, inter-individual variation in the microbiota pattern and metabolism is im-
portant for the health benefits of phytochemicals because the bioactivity of polyphenols can
be influenced by their microbial metabolism [40]. Phytoestrogens (stilbenes, coumestans,
isoflavones, ellagitannins, and lignans) are polyphenols found in numerous plants, such as
soy beans, flaxseed and other seeds, cereals, vegetables, fruits, tea, chocolate, etc. These
compounds have a chemical structure similar to human estrogens, but they can exert both
estrogenic and antiestrogenic effects.

Isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce
equol, urolithins, and enterolignans, having more estrogenic/antiestrogenic and antiox-
idant activity in comparison with their precursors. In addition, these metabolites have
anti-inflammatory, antiproliferative, and apoptosis-inducing effects and exhibit efficiency
against certain diseases, such as cancer, cardiovascular disease, and osteoporosis, as well as
menopausal symptoms [41,42]. Ursolic acid is a natural pentacyclic triterpenoid, present
in fruit peels (apples, prunes, bilberries, cranberries, hawthorn) and in many herbs and
spices (rosemary, thyme, basil, oregano, peppermint, lavender), with anticancer, antidi-
abetic, antiarrhythmic, anti-hyperlipidemic and antihypercholesterolemic, antimicrobial,
hepatoprotective, and hepatoregenerative properties [43,44].
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Essential oils (EOs) have received increased attention because of their multiple bi-
ological attributes like antifungal, antiviral, anti-inflammatory, antimicrobial, antioxi-
dant, wound healing, anti-parasitic, anti-mutagenic, anti-quorum sensing, antibiofilm,
and immune-modulatory activities, and their pharmacological effects against resistant
pathogens and increased efficiency against multidrug-resistant and biofilm embedded
microorganisms [45].

Natural products extracted from plants offer better biocompatibility and fewer side
effects on the human body in comparison with synthetic antibiotics. They have been largely
employed to treat infections caused by resistant microorganisms and, therefore, they may
represent potential substitutes to conventional drugs [46–49].

EOs are complex mixtures of volatile secondary metabolites obtained from various
parts of the plant, such as flowers, fruits, buds, rhizomes, seeds, leaves, stems, twigs, roots,
bark, and wood, and they are extensively applied as adjuvants for healthiness purposes [50].
EOs consist of a large diversity of aromatic oily liquids (approximately 3000 EOs are known
nowadays) with a versatile composition, including aldehydes, alcohols, ethers or oxides,
ketones, esters, amines, amides, phenols, heterocycles, and mainly terpenes obtained by
steam or water distillation [51,52]. EOs are also used as raw materials in various fields, such
as perfumes, cosmetics, aromatherapy, phototherapy, spices, household cleaning products,
beauty and personal care, and nutrition, or natural health treatments. Moreover, EOs may
improve the efficiency of some drugs against different microbes [21].

The progress of novel antimicrobial and anti-pathogenic methodologies can be stimu-
lated by the introduction of essential oils as an eco-friendly alternative to antibiotics, acting
by mediating the attenuation of bacterial virulence without interfering with microbial
development and aiming to regulate bacterial mechanisms in relation to the expression of
virulence factors. The strategy applied against bacterial virulence when treating infections
is based on generating bacterial pathogens that are more reactive to the host immune
system and stopping the infection process caused by bacteria. Prevention is expected with
the prevalence of multidrug-resistant bacterial pathogens with no occurrence of novel
microbes with high resistance. Used in sub-minimum inhibitory concentrations (MICs),
agents acting against virulence can interrupt the bacterial infection without inhibiting
bacterial vitality or even killing the bacteria. The production of antibiotics, virulence factors
of pathogens, exo-enzymes, and resistance are regulated by the QS system. Therefore, QS
(the bacterial communication system) seems to be a promising target for new anti-virulence
agents [53–55].

Due to their complex composition, multiple mechanisms that probably act synergisti-
cally are involved in EOs’ biological effects [10]. Currently, about 300 of the 3000 known
EOs are used commercially, and the most commonly used include lemon, peppermint,
citronella, eucalyptus, mint, and orange oil. Most essential oils modify cytoplasmic mem-
branes, leading to the release of lipo-polysaccharides due to their hydrophobic constituents.
Essential oils affect the fluidity, permeability, and function of the proteins involved in
membrane transport, and the composition of fatty acids in the cytoplasmic membrane as
well. Processes such as the formation and dispersal of biofilms can be genetically regulated
when using specific essential oils. Several traits, such as cell morphology, the structure and
composition of the cell wall, cell division, cellular respiration, ion transport, and the energy
balance of the bacterial cell, are influenced by different essential oils. In relation to the
concerning medical aspects, EOs aim to accomplish two therapeutic targets: (1) prevention
of biofilm formation and production of virulence factor and (2) eradication of already
established biofilms [56].

2.1. Applications of Essential Oils Biocides as Antibiofilm Agents

Literature reports have claimed that 60% up to 85% of all microbial contaminations
are associated with biofilms grown on natural, intact, or damaged tissues (skin, mucosa,
endothelial cells, teeth surface) or artificial devices (catheters—central venous, peritoneal,
or urinary; dentistry materials; heart valves; intrauterine contraceptive devices; contact
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lenses; other implants) [57]. In their natural environment, the biofilm structure is favorable
to bacteria because it offers safety against harmful conditions, enhances the competition
for accessible nutritive substances in a specific zone, boosts the acquirement of novel
phenotypic characteristics by gene transfer, and increases interactions in the metabolism of
different microbial agents [58].

Biofilm formation is a complex process usually developed in four steps: reversible
attachment, followed by irreversible attachment, cell division, and EPS excretion. As the
biofilm matures, new bacterial species may be introduced before critical mass is reached
and cells are released. Bacteria induce biofilm formation and communicate via quorum
sensing [59]. Quorum sensing (QS) permits bacteria to synchronize and control gene
expression through the formation and detection of extracellular chemicals called auto-
inducers [60]. The cumulative regulation of genetic elements as numbers generates several
phenotypic changes which aid the bacteria to develop certain activities to adjust to changes
in the environment [61].

Certain bacteria and many strains have developed resistance to nearly all currently
used antibiotics and chemotherapy agents, termed multi-drug resistance (MDR) [62]. MDR
can be defined as non-susceptibility to at least one agent in three or more antimicrobial
categories [63]. MDR bacteria and biofilms are ubiquitous phenomena and represent one
of the significant hazards to worldwide healthiness with several deleterious medical and
economic consequences [64]. The antibiotic resistance has emerged and developed due
to the excessive use and misuse of antibiotics, unsuitable and incorrect prescribing, and
large-scale utilization in agricultural applications [65].

Biofilms can have both desirable and damaging effects. While the industry has ex-
perienced both the positive and negative aspects of biofilm development, clinically, the
devastating consequences of biofilms have been observed. During food processing, product
contamination can take place as a result of biofilm appearance by spoilage and the occur-
rence of bacterial pathogens on food contact surfaces, which lowers products’ shelf-life
and causes human diseases [66]. A large number of human infections like cystic fibrosis
and otitis media are caused by pathogenic bacteria in medical institutions, particularly on
artificial devices like catheters [57].

Sessile cells within biofilms present increased protection in the environment because
the barrier properties of the sludge matrix hinder the entry of different agents resistant
against microbes. The stationary phase dormant zones in biofilms protect bacterial cells,
but many antibiotics can penetrate the EPS since antibiotics mainly act through the dis-
ruption of microbial processes [67–69]. The increased antibiotic resistance of sessile cells
compared with planktonic cells generates clinical issues. Sessile cells within a biofilm can
be 10–10,000 times more resistant to antibacterial agents than their free-floating counter-
parts [70].

An important clinical aspect is the fact that bacterial biofilms cause chronic infections
due to their increased tolerance to antibiotics and disinfectant chemicals as well as increased
resistance to the host immune system, including phagocytic white blood cells and other
components of the body’s defense system [71,72]. Many biofilms are present in a variety
of microbial infections, including dental infections [73], periodontitis [74], lung infections
resulting from cystic fibrosis and facial filling [75], chronic wounds [76], ear inflamma-
tion [77], implant-associated infections [78], chronic rhino-sinusitis [79], contamination
in intensive care units [80], contact lens infections [81], and human gastrointestinal tract
infections [82].

The absence of novel efficient agents against microbes causes the occurrence of
multidrug-resistant microorganisms to be regarded as a global challenge. Alternative
treatments of infections caused by microorganisms resistant to traditional therapies are
highly necessary. Nowadays, natural antimicrobials have attracted scientific interest due to
their function in several microorganism control issues [83]. Natural products from plants
can be synthesized as a part of their defense system, and these compounds could provide a
valuable source of new drug molecules [84].
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Different essential oils were investigated in vitro for their anti-QS activities in Chro-
mobacterium violaceum at sub-MICs [85]. Peppermint, lavender, cinnamon, and clove oils
exhibited an appreciable inhibition of violacein production. At sub-MICs, clove oil inhibited
violacein production in the treated bacteria with no relevant vitality loss of bacterial cells
up to 0.12%. The reduction in the formation of violacein in bacteria is due to the anti-QS
activity of clove oil and not to its antimicrobial properties. At concentrations higher than
0.16%, the reduction in violacein formation is due to the anti-QS activity of clove oil and
its antibacterial properties as well. The anti-QS activity was not exhibited by the major
constituent of clove oil, namely eugenol.

Clove oil [86], peppermint oil, and menthol [87] in sub-MICs were tested in two
in vitro studies to decrease biofilm formation in Pseudomonas aeruginosa. The reduction in
various virulence factors (elastase, proteases, pyocyanin, chitinase) in sub-MICs proved that
the inhibition of biofilm formation is a QS-regulated process. The production of virulence
factors, exopolysaccharide production, and swarming motility were highly inhibited by all
compounds under study [86,87]. The native AHL (N-acyl homoserine lactone autoinducer)
production was significantly reduced by up to 56% in Pseudomonas aeruginosa cells by clove
oil (at 1.6%) [86].

The biofilms of two species of Vibrio, i.e., V. parahaemolyticus ATCC 17802 and V. alginolyticus
ATCC 33787, were eradicated by 56% and 55%, respectively, using Petroselinum crispum
EO at a concentration of 40 mg/mL. Ocimum basilicum EO was proved to inhibit biofilms
of V. parahaemolyticus to 55%, and V. vulnificus and V. cholerae non O1 to 87.45%, at a
concentration of 50 mg/mL [88]. Another study [89] investigated the effect of Mentha
spicata EO on two Vibrio spp., and it was found that the percentage of inhibited biofilm
production was 11.6% for V. alginolyticus and 40% for V. vulnificus using a concentration of
92 µg/mL.

Bay oil, clove oil, pimento berry oil, and eugenol were tested for their antibiofilm
activity [90]. All three EOs and eugenol inhibited biofilm formation in concentrations of
0.005% to 99.7% compared to the control. The vitality of the bacteria was reduced by 20%
at a concentration higher than 0.01%.

Different EOs were screened for their antibiofilm activity against uropathogenic Es-
cherichia coli in an in vitro study [91]. Carvacrol and thymol per se, as well as essential
oils containing both of them in different proportions, namely oregano oil and thyme oil,
strongly inhibited the biofilm formation of Escherichia coli in sub-MICs (at 0.01%). The
reductions in biofilm mass were 88.9%, 86.1%, 94.5%, 94.5% for oregano oil, thyme oil,
carvacrol, and thymol, respectively, over the control.

The evaluation of differential gene expression of biofilm-borne bacterial cells in Staphy-
lococcus aureus ATCC 29213 at a tea tree oil concentration of 1 mg/mL and an incubation
time of 60 min was investigated [92]. An in vitro study [93] investigated the biofilm inhi-
bition activity of cinnamaldehyde (CA) and two different cinnamon oils of Cinnamomum
zeylanicum (EOCz) and Cinnamomum cassia (EOCc). In sub-MICs, EOCc inhibited the
biofilm formation of Escherichia coli (sub-MIC: 0.12 mg/mL) and Pseudomonas aeruginosa
(sub-MIC: 0.06 mg/mL) to 100%, without disturbing bacterial cell growth. The biofilm
inhibitory effect of cinnamaldehyde was mainly attributed to its cytotoxic activity, and not
to its anti-QS effect, as confirmed by cell viability studies.

The EO from Melaleuca bracteata (MBEO) leaves was investigated for its anti-QS,
antibiofilm, and anti-virulence factor activity in Chromobacterium violaceum [94]. MBEO
(MIC: 10‰); used at sub-MICs of 0.625, 1.25, 2.5, and 5.0‰, it inhibited the production
of biofilm mass, violacein, and different virulence factors, respectively. The viability of
bacterial cells was not affected. The swarming motility of Chromobacterium violaceum cells
was meaningfully disturbed at 5. Concentrations of 5.0, 2.5, and 0.625 of MBEO led to a
significant decrease in the concentration of the auto-inducer QS signal in Chromobacterium
violaceum cells, comparative to the control.

Five EOs and four major active compounds were tested concerning their antibiofilm
activities in antibiotic-resistant Staphylococcus aureus strains [95]. Eugenol and thyme oil
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revealed a concentration-dependent biofilm inhibition. At concentrations of 0.2% and
12.8% eugenol, the reduction in biofilm formation was found to be 19.4% and 91.6%,
respectively. Thyme oil exhibited a reduced antibiofilm activity, comparative to eugenol.
The number of bacterial colonies was significantly reduced by thyme oil and eugenol
in the highest concentration tested (12.8%). At the same time, the biofilm matrix was
destroyed. Microscopy analysis revealed that the effect of both antibiofilm agents is due to
their biocidal activity.

Cassia oil and the polypeptide antibiotic colistin were tested for their ability to kill
Pseudomonas aeruginosa in planktonic cells and in biofilms [96]. Most of the Pseudomonas
aeruginosa in liquid culture and biofilm was eradicated by cassia oil in concentrations of
0.2–0.4%, while a concentration higher than 100 µg/mL of colistin killed the bacteria inside
the biofilm.

The eradication of Staphylococcus aureus and Pseudomonas aeruginosa in biofilms was
demonstrated by oregano oil after 1 h of incubation at concentrations of 0.4 and 1.0 mg/mL,
respectively [97]. Oregano oil effectively reduced the bacterial burden by 25–49-fold in
comparison to the control, after bacterial inoculation formed early-stage biofilms.

The activity of tea tree EO, Lavandula angustifolia (lavender essential oil) (LEO), Melissa
officinalis (Melissa essential oil or lemon balm-MEO), and linalool, linalyl acetate, α-terpineol,
terpinen-4-ol on biofilms formed by S. aureus and E. coli reference strains demonstrated
that MEO, α-terpineol, and terpinen-4-ol showed a higher antibiofilm effect than LEO and
its major components, i.e., linalool and linalyl acetate [98]. The tests proved that the E. coli
biofilm was more susceptible than the S. aureus biofilms to the action of EOs, especially to
TTO, which destroyed it after 1 h exposure to a 0.78% concentration, contrary to the opinion
stating that Gram-negative microorganisms are more resistant to EOs. In comparison with
LEO and TTO, the MEO effect is more dependent on the action time. The in vivo tests on
biomedical surfaces of urinary catheters and tracheal tubes showed that TTO and terpinen-
4-ol used at 2xMIC caused visible biofilm eradication, while increased concentrations were
required to eradicate the microbial biofilm on surgical mesh [98]. Another study on the
antimicrobial action of TTO against S. aureus clinical strains in different growth phases,
including stationary phase and biofilms, found that the minimum biofilm eradication
concentration was usually 2x CMI, lower than 1% v/v. The inhibition of biofilm took place
in 15 min at a TTO concentration >1% v/v [99].

The antifungal efficiency of the EO of Mentha piperita against C. albicans and C. dublin-
iensis biofilm was tested in a study which revealed that biofilm formation was inhibited at a
maximum concentration of 2 µL/mL in a dose-dependent manner. This effect is due to the
increased concentration of this EO in menthol, which can be incorporated into the fungal
cell membrane; the phenolic monoterpene, bearing a hydroxyl group on the phenolic ring,
also exhibits an antimicrobial effect due to the cytoplasmic membrane disruption [100].

Eighty-three EOs were screened for their antibiofilm activity [101], and some EOs,
namely bay (Pimenta racemosa), cade (Juniperus oxycedrus), cedarwood (Calocedrus decur-
rens), frankincense (Boswellia carterii), lovage root (Levisticum officinale), oregano (Origanum
vulgare), sandalwood (Santalum album), thyme red (Thymus vulgaris), and Vetiver Haiti
(Cymbopogon martini) inhibited the S. aureus biofilm at a 0.01% (v/v) concentration. Others,
like black pepper (Piper nigrum), cananga (Cananga odorata), and myrrh (Commiphora myrrha)
oils exhibited a strong antibiofilm activity at a sub-MIC. One active compound was cis-
nerolidol (0.01% (v/v)), which proved to be more efficient than trans-nerolidol contained in
the three EOs, which inhibited more than 80% versus 45% of the S. aureus biofilm growth.

The antibiofilm activity of essential oil from Satureja hortensis was tested on Candida,
Staphylococcus, and periodontal bacteria biofilms. The antimicrobial effect of carvacrol
inhibited Candida and Staphylococcus biofilms at 0.03% and 0.06% concentrations. The
growth inhibitory effect against periodontal bacteria and the antibiofilm effect in sub-MIC
concentration were registered [102]. S. epidermidis is one of the main nosocomial agents
of indwelling medical devices’ biofilm associated infections (BAIs). Farnesol produced a
significant destruction of S. epidermidis biofilm structure and an important reduction in
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biofilm thickness [103]. The EOs from Ferula asafetida and Dorema aucheri (belonging to
Apiaceae family) were tested for their activity against P. aeruginosa biofilm formation using
25 µg/mL concentrations. Ferula EO decreased pigmento-genesis, protease, and biofilm
development, while Dorema EO affected only pyoverdine and elastase production [104].
The EOs of Cinnamomum burmannii and Massoia aromatic are another source of antibiofilm
agents, proving to inhibit both P. aeruginosa and S. aureus biofilms. The efficiency of these
EOs is based on the presence of cinnamic aldehyde and massoia lactone, respectively, in
their structure [105]. Biofilms formed by S. aureus and P. aeruginosa respiratory isolates
and reference strains were inhibited in both initial phases as well as maturation by the EOs
of Eucalyptus smithii and Juniperus communis [106].

Several EOs from the Lamiaceae and Apiaceae families (Ammi visnaga, Ammoides
verticillata, Artemisia arborescens, Dittrichia graveolens, Lavandula dentate, Lavandula multifida,
Mentha piperita, Origanum vulgare, Rosmarinus eriocalyx, Thymbra capitata), rich in oxygenated
monoterpenes (mostly alcohols, such as thymol, carvacrol, and linalool), were investigated
for their antibiofilm effect. The EOs from T. capitata and O. glandulosum (0.75–1.5%) inhibited
E. faecalis biofilms, similar to those extracted from A. verticillata and L. multifida (1.50–3.00%).
The administration of EOs proved to be more efficient than the administration of the main
component itself [107]. The EO from Baccharis psiadioides (Asteraceae family) is known for its
antipyretic and anti-inflammatory properties, and as a snake bite antidote. At the same
time, it has been proved to exhibit antimicrobial and antibiofilm action on 13 resistant
E. faecalis strains [108].

Eugenol, a major compound in clove (S. aromaticum) EO, acts by disrupting cellular
membrane permeability, and citral, containing geranial (trans-citral, citral A) and neral
(cis-citral, citral B), found in the citrus plants leaves and fruits, affects both the cytoplas-
mic/outer membrane as well as the stress response mediated by the sigma factor RpoSin
E. coli [109]. The preformed biofilms of different Candida spp., excepting C. glabrata, were
inhibited by the Thymbra capitata EO at 2xMIC, probably due to the high content in phenols
(carvacrol) [110]. Ten terpenes, the main components of EOs (carvacrol, citral, eucalyptol,
eugenol, farnesol, geraniol, linalool, menthol, γ-terpinene, and thymol), were tested on
different Candida strains (C. albicans, C. parapsilosis, C. glabrata). The best results were
obtained using carvacrol against C. albicans, C. glabrata, and C. parapsilosis biofilms, but
good results were recorded for geraniol and thymol [111].

The antibiofilm effect of Citrus limon and Zingiber officinale EOs were investigated, and
it has been shown that they can be used against biofilms of Klebsiella ornithinolytica, K. oxytoca
and K. terrigena [112]. Dual-species biofilms produced by L. monocytogenes SZMC 21307
and E. coli SZMC 0582 were eradicated by their treatment with Cinnamomum zeylanicum EO
at concentrations of 1 mg/mL [113]. Using Origanum majorana EO and Thymus vulgaris EO,
the inhibitory effect was detected at 0.5 mg/mL and 1 mg/mL concentration, respectively.
These values were much lower than those recorded in the eradication of monoculture
biofilms. All studied EOs decreased biofilm formation but at concentrations higher than
those required for monospecific biofilms eradication.

A comprehensive study on the synergistic effect of EO and antibiotics proved that the
association of EOs with antibiotics was beneficial [114]. EOs of Cinnamomum zeylanicum,
Mentha piperita, Origanum vulgare, and Thymus vulgaris were associated with norfloxacin,
oxacillin, and gentamicin, and their combined activity was investigated on bacterial biofilms
produced by S. aureus, S. epidermidis IG4, and E. faecalis. The results showed that all EOs
had a synergistic effect. The advantages of combined therapy are obvious: the decrease in
antibiotic doses and implicitly reducing the resistance to antimicrobial drugs.

Essential oils from 21 plants were investigated for their activity against 20 fluconazole-
resistant strains of Candida albicans fungus. The oils of Cymbopogon martini exhibited strong
inhibitory activity with MIC50 in the 90–100 µg/mL range due to their main constituents,
citral and cinnamaldehyde, respectively. The test oils exhibited remarkably synergy with
fluconazole or amphotericin B and were more effective for the inhibition of azole- and
amphotericin B-resistant strains than fluconazole and amphotericin B [115].
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Antiquorum sensing and antibiofilm activity for seed extract from Trigonella foenum-
graecum L. (Fenugreek) were reported, and sub-MICs were tested in Pseudomonas aeruginosa
strains [116]. T. foenum-graecum seed extract inhibited the AHL regulated virulence factors
to a large extent, including protease, LasB elastase, pyocyanin production, chitinase, EPS,
and swarming motility. T. foenum-graecum seed extract decreased the biofilm forming
ability of the pathogens in tested strains in high levels. Caffeine, the major compound of
T. foenum-graceum extract, reduced the biofilm formation and occurrence of QS regulated
virulence factors at a 200 µg/mL concentration level [116].

2.2. Essential Oils Biocides in Dentistry

Dental plaque biofilm plays an essential role in oral pathology, the etiology of dental
caries, but also in the contamination of dental materials surfaces, such as those used in
implant and prosthetic rehabilitation (implants, impression materials, alloys for prosthetic
use, etc.).

Chemical substances as medications with both antibacterial and antibiofilm activi-
ties are not biologically friendly to the dental and peri-radicular tissues. In the recent
years, research on the use of natural products for root canal disinfection and removing the
smear layer and the microbial biofilms formed in the mouth has gained importance [117].
E. faecalis is commonly recovered from teeth with persistent endodontic infections, creating
biofilms attached to the canal walls or located in isthmuses and ramifications from where
are difficult to eliminate by current substances, such as sodium hypochlorite and chlorhexi-
dine [118]. Chloroform solutions of eucalyptus and orange EOs associated with cetrimide
at concentrations varying from 0.05% to 0.3% reduced the biofilm by 70–85%. The two EOs
enhanced the efficiency of cetrimide, which effectively eradicated the biofilms in lower
doses, the synergic effect probably being due to lipophilic compounds (e.g., terpenoids or
phenolics). The Melaleuca alternifolia EO presents an antibacterial effect and is very effective
against oral S. mutans biofilm, decreasing the gingival bleeding index. Mouthwashes with
this EO decreased the total oral bacteria counts. The EO was used at 5% concentration with-
out side effects [119]. Carvacrol and oregano oil are known for their effect on Staphylococcus
strains. They showed in vitro effects on staphylococcal biofilms, and the biofilm inhibitory
concentrations had 2–4xCMI values. Thymol is used in mouthwash, with anti-plaque
effects due to the biofilm matrix destabilizing effect [120].

The use of EOs (menthol, thymol, and eucalyptol) for oral health proved to be beneficial
by preventing the biofilm formation in patients with prostheses [121]. In several cases,
these EOs were more efficient than cetyl-pyridinium chloride [122]. EOs can be used
daily, in the long-term, for reducing the supragingival plaque and gingivitis [123]. EOs
prevented plaque-like biofilm development for 7 h after mouthwash, presenting a possible
alternative to chlorhexidine for the pre-surgical rinse or after periodontitis treatments [124].
Mouthwash containing EOs rich in eucalyptol, methyl salicylate, menthol and thymol,
combined with ethanol at high dilution, exhibited an increased antibiofilm activity. The
nonalcoholic mixture of EOs tested on Aggregatibacter actinomycetemcomitans strains had
better anti-planktonic behavior [125].

A promising approach for the treatment and prevention of caries consisted of combi-
nations of these EOs with xylitol in mouth rinse against S. mutans-derived biofilms [126].
EOs from Mentha piperita and Rosmarinus officinalis proved to be effective against S. mutans,
one of the main agents of dental caries. Mentha piperita EO (having a menthol concentration
below 3.6%) was more effective than rosemary oil (containing piperitone as the main com-
ponent) and chlorhexidine (at 4000 and 8000 ppm). The use of toothpaste blended with EOs
indicated that lower concentrations of the EOs were more effective than chlorhexidine [127].
The association of chlorhexidine with EO is indicated for better antibiofilm activity in oral
treatment [128]. Other alternatives to chlorhexidine were represented by eugenol and citral
at subinhibitory concentrations, when they influenced biofilm formation and the virulence
of methicillin-susceptible S. aureus, MRSA, and L. monocytogenes strains, with a low-risk for
selecting resistance [129].
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The effects of EOs obtained from twenty medicinal and aromatic species on biofilms
produced in vitro by different microbial strains were compared with the results recorded
with nystatin and chlorhexidine digluconate. The Aloysia gratissima and Coriandrum spp.
EOs strongly inhibited C. albicans, Fusobacterium nucleatum, P. gingivalis, S. mitis, and
S. sanguis. The C. articulates EO inhibited F. nucleatum and P. gingivalis biofilms. A. gratissima
inhibited the S. mitis biofilm more intensively than chlorhexidine [130]. The antibiofilm
efficacy of Cymbopogon martini and Thymus zygis EOs was tested on the multispecific
biofilms of S. mitis, S. sanguinis, and E. faecalis in the root canals of extracted teeth. The
addition of an oil-based irrigant to 1.5% sodium hypochlorite proved to be more efficient
against biofilm development [131]. A good antibiofilm and anti-caries effect, comparable
to that of chlorhexidine (0.12%), was observed for a mouth rinse containing Matricaria
chamomilla L. EO. The antibiofilm effect has been evaluated as a decrease in Colony-forming
units (CFUs) for total S. mutans, S. sobrinus and Lactobacillus sp., and the anti-caries effect
has been studied as the effect on enamel demineralization compared to phosphate-buffered
saline solution. Mouthwash containing Matricaria chamomilla EO produced a mineral
loss reduction of 39.4%, which was very close to that of chlorhexidine (47.4%) [132]. The
Citrus limonum and C. aurantium EOs exhibited an antibiofilm effect comparable to 0.2%
chlorhexidine but lower than 1% sodium hypochlorite on multi-specific biofilms formed by
C. albicans, E. faecalis, and E. coli [133].

The EOs from A. gratissima, Baccharis dracunculifolia, C. sativum, and Lippiasidoides
demonstrated a potent inhibitory activity on S. mutans biofilm, probably due to the pres-
ence of compounds such as thymol, carvacrol, and trans-nerolidol [134]. Mouthwashes
containing Citrus hystrix leaf EO alone or in combination with chlorhexidine inhibited
the periodontopathogenic bacteria and S. sanguinis and S. mutans biofilms [135]. The
B. dracunculifolia EO reduced the growth rate of S. mutans biofilm at the same level as
triclosan (one week of use) [136]. EO from Curcuma longa inhibited the growth, acid
production, and S. mutans adherence to saliva-coated hydroxyapatite beads and biofilm
development [137]. The Melaleuca alternifolia (tree), Eucalyptus radiate (eucalyptus), La-
vandula officinalis (lavandula), and Rosmarinus officinalis (rosmarinus) EOs significantly
inhibited adhesion of S. mutans (>50%). Tea tree oil and manuka oil significantly inhibited
the adhesion of P. gingivalis [138]. EOs from Coriandrum sativum exhibited an inhibitory
activity against C. albicans oral isolates from patients with periodontal disease, similar
to nystatin, suggesting its promising potential for the prophylaxis and treatment of oral
candidiasis [139]. Due to its major components (decanal and trans-2-decenal), C. sativum EO
could bind membrane ergosterol, similarly to nystatin and amphotericin B. The C. sativum
EO also inhibited the proteolytic activity of C. albicans and affected the normal morphology
of yeast cells (at 156.0 to 312.50 mg/mL concentration), probably by affecting membrane
permeability due to the presence of mono- and sesquiterpene hydrocarbons [140].

Eugenol (90.2%), eugenol acetate (6.5%), and β-caryophyllene (1.3%), the major com-
ponents of Syzygiumaromaticum EO showed a significant inhibition of S. aureus biofilm
production at a concentration of 0.106 mg/mL [141]. At the same concentration of Cinnamo-
mum zeylanicum EO, the biofilm formation of S. aureus was significantly reduced, probably
due to its components: cinnamaldehyde (86.5%), benzaldehyde (4.2%), cineole (1.7%),
cinnamic acid (1.5%), and eugenol (0.1%). Besides the examples presented above, Table 1
summarizes the most used essential oils and their components with QS and activity against
biofilms formation, reduction in virulence factor, and eradication of biofilms tested against
numerous other types of bacteria.
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Table 1. EOs with antibiofilm activity.

EOs Plant Species Bacteria Antibiofilm Activity Ref.

Clove oil,
tea tree oil, cinnamon oil

Syzygium aromaticum, Melaleuca
alternifolia, Cinnamomum zeylanicum SA, PA IBF [142]

Thymol, carvacrol, eugenol - ST BE [143]

Oregano oil,
T. zygis oil, rosemary oil

Origanum majorana, Thymus zygis,
Rosmarinus officinalis EC IBF [144]

Cinnamon oil, eugenol Cinnamomum zeylanicum SA, PA IBF, BE [145]

Achillea biebersteinii oil Achillea biebersteinii SA, EC, PA, SE IBF [146]

Mentha pulegium oil Mentha pulegium AB IBF [147]

Cymbopogon citratus oil Cymbopogon citratus SM, CA IBF [28]

Calamintha nepeta,
Foeniculum vulgare, Ridolfia
segetum oils

Calamintha nepeta, Foeniculum vulgare,
Ridolfia segetum PA IBF [11]

Lemongrass oil Cymbopogon flexuosus SA, CA BE, IVBGE [148]

Origanum majorana,
Rosmarinus officinalis,
Thymus zygis oils

Origanum majorana, Rosmarinus
officinalis,
Thymus zygis

SA IBF, BE [149]

Plectranthus barbatus oil Plectranthus barbatus PA, CV IBF, VI, IVBGE [150]

Cupressus sempervirens oil Cupressus sempervirens KP IBF, BE [151]

Thyme, oregano, and
cinnamon oils -

Acinetobacter,
Sphingomonas,
Stenotrophomonas

IBF [46]

Clove oil - Aspergillus niger IBF [152]

Eucalyptus oil Eucalyptus globolus SA IBF, BE [153]

Lippia sidoides oil Lippia sidoides SA BE [154]

Citrus oil Citrus reticulata PA IBF [155]

Pogostemon heyneanus,
Cinnamomum tamala oils

Pogostemon heyneanus, Cinnamomum
tamala SA IVBGE [156]

Thymbra spicata oil Thymbra spicata PA IBF, BE [157]

Spearmint oil - Hafnia alvei IVBGE [158]

Thymus vulgaris oil Thymus vulgaris PF IVBGE [159]

Pimpinella anisum,
Cinnamomum zeylanicum,
Syzygium aromaticum,
Cuminum cyminum oils

Pimpinella anisum,
Cinnamomum zeylanicum,
Syzygium aromaticum,
Cuminum cyminum

SA, SE, EF, EC, PA, CA,
KP,
Streptococcus pyogenes,
Aeromonas hydrophila,
Proteus mirabilis

IBF, BE [160]

Carvacrol, eugenol - Pectobacterium IVBGE [161]

Abbreviations: Staphylococcus aureus (SA), Escherichia coli (EC), Pseudomonas aeruginosa (PA), Chromobacterium
violaceum (CV), Staphylococcus epidermis (SE), Acinetobacter baumannii (AB), Streptococcus mutans (SM), Candida
albicans (CA), Candida dubliniensis (CD), Pseudomonas putida (PP), Listeria monocytogenes (LM), Enterococcus faecalis
(EF), Salmonella typhimurium (ST), Klebsiella pneumonia (KP), Pseudomonas fluorescens (PF); BE = biofilm eradication,
IBF = inhibition of biofilm formation, IVBGE = inhibition of virulence factor- and biofilm-related gene expression,
RVF = reduction in virulence factors, VI = violacein inhibition.

3. Essential Oils as Green Biocides in Agriculture and for Pest Control

Essential oils as well as their corresponding constituents and derivatives are effectively
used as antimicrobial reagents in various applications (cosmetics, pharmaceuticals, health-
care, agriculture, food processing, and conservation etc.), exerting biocide activity against
a wide variety of pathogenic vectors [162–165]. These are effective agents against fungi,
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viruses, bacteria, and insects [166–168] given their mainly significant antioxidant properties
and action through variable active mechanisms. In relation to their above-mentioned spe-
cific activity, essential oils have attracted increasing interest as innovative, environmentally
friendly solutions as alternative feasible ways to better protect and preserve wood-based
products used in structural applications. Such an approach is beneficial as it involves com-
pounds derived from renewable resources, with some of essential oils exhibiting multi-task
action in relation to both environmental and health safe concerns. The use of essential oils
as natural pesticides represents a valid alternative, even considering their high volatility
which implies a variation in biologically active compounds with the concentration level
in the treated wood [169]. Table 2 exemplifies some corresponding activities as efficient
biocides for different essential oils, as presented in the literature data.

Table 2. Biocide activity of some EOs in wood protection and preservation.

Vegetal Source of Essential Oils Biocide Activity Reference

Cinnamon, cassia active against termites; fungicide
(similar to wood tar oil) [162]

Origanum vulgare (oregano); Acorus calamus (sweet flag);
Syzygium aromaticum (cloves- flower buds); Satureja hortensis
(summer savory); Betula tree species (birch)

fungicide: active against fungal organisms such as
Coniophora puteana, Trametes versicolor
mildews: Aspergillus niger, Penicillium brevicompactum
(tests on wood specimens from beech tree species)

[165]

Anethum graveolens (dill weed); Salvia rosmarinus (rosemary);
Cymbopogon species (lemongrass); Geranium species
(geranium), Melaleuca alternifolia (tea tree)

efficient up to 100% as termites’ repellent (testing
activity against Reticulitermes flavipes—Kollar) [163]

Coniferous species belonging to the family Cupressaceae
(namely, juniper, and cypress); tea tree (Melaleuca alternifolia);
Eucalyptus species from the myrtle family Myrtaceae;
softwood species Cupressus nootkatensis (yellow cedar)

fungicide, insecticide [170–173]

Cinnamomum cassia (cinnamon); Geranium species, Lavandula
species (lavender), Origanum vulgare (oregano); Thymus
vulgaris (thyme)

fungicide [174]

Trees and shrubs from Meliaceae family (mahogany family),
e.g., Melia azedarach (white cedar) activity against viruses and insects [175]

Cloves—aromatic flower buds of the tree Syzygium
aromaticum; thyme—Thymus vulgaris; mint—Mentha species;
lemongrass—Cymbopogon species; cinnamon—Cinnamomum
cassia; rosemary—Salvia rosmarinus; oregano—Origanum
vulgare

activity against viruses and insects [176]

Vetiver—a perennial bunchgrass (Chrysopogon zizanioides)
patchouli—a bushy perennial herb (Pogostemoncablin)
orange (Citrus sinensis)—from which oil is extracted as a
by-product of orange juice production by centrifugation

active against termites (Coptotermes formosanus) [177–179]

Trachyspermum ammi (ajowan or thymol seeds); Anethum
graveolens (dill weed); Geranium species (geranium);
Cymbopogon species (lemongrass); Salvia rosmarinus
(rosemary); Melaleuca alternifolia (tea tree); Thymus vulgaris
(thyme)

active against mildews: Aspergillus niger, Penicillium
chrysogenum, Trichoderma viride
active against decay fungi: Gloeophyllum traheum,
Postia placenta, Trametes versicolor

[180,181]

Asteraceae shrub (Artemisia monosperma); coniferous tree
Mediterranean cypress (Cupressus supervirens); lemon tree
(Citrus limon); coniferous tree from cypress family (Thuja
occidentalis); Peruvian pepper tree (Schinus molle); rose
geranium shrub (Pelargonia graveolens)

efficient fungicide activity against fungi-degrading
wood [182]
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Table 2. Cont.

Vegetal Source of Essential Oils Biocide Activity Reference

Formosan juniper (Juniperus formosana)—extracts from
leaves are highly efficient antifungal agents; fruits are also
an effective source of compounds with fungal activity

against decay fungi [183]

Cinnamomum osmophloeum Kaneh 100% antifungal efficiency (Coriolus versicolor and
Laetiporus sulphureus) [184]

Flax seeds—Cinnamomum cassia (cinnamon bark); Citrus
sinensis (citrus peels);
tung tree Vernicia fordii (tung seeds);
Aleurites moluccana (nut of kukui tree);
non-edible olive oil (called lampante olive oil; here extracted
from Istrian white olives variety)

bactericide, fungicide, and insecticide (termites,
nematodes) [185–189]

Essential oils extracted from woody-type plant species, such as coniferous species
belonging to the family Cupressaceae (namely, juniper, and cypress), tea tree (Melaleuca
alternifolia), Eucalyptus species from the myrtle family Myrtaceae, or softwood species
Cupressus nootkatensis (yellow cedar) presented efficient fungicide and insecticide activity
in experimental trials [170–173]. Active compounds from essential oils derived from thyme,
Geranium species, Lavandula species (lavender), cinnamon, and oregano present effective
biocide action against wood decay caused by different degrading molds [182]. Compounds
such as thymol, carvone or carvacrol as aldehyde- and ketone- type forms, or those with
phenolic structure, as well as terpenes and their ester forms present in volatile oils, are
very efficient in protecting wood surfaces towards basidiomycete-type microorganisms
that cause rotting [190,191]. Other compounds presenting essential oils, including geraniol,
thymol, carvone, citronellol, and borneol, to a large extent inhibit the germination and
development processes for mold spores.

Antiviral and insect repellent activities were noticed for essential oils extracted from
Meliaceae or mahogany family [175]. The same effective action as biocide agents was ob-
served for volatile oils derived from well-known healing plants (e.g., cloves—aromatic
flower buds of the tree Syzygium aromaticum, thyme—Thymus vulgaris, mint—Mentha
species, lemongrass—Cymbopogon species, cinnamon—Cinnamomum cassia, rosemary—
Salvia rosmarinus, oregano—Origanum vulgare) [176]. Essential oils from cassia and cinna-
mon species, as well as their correspondent extracts, exhibited specific anti-termite and
antifungal activity. The same effect was noticed when using wood tar oil when applied
in order to conserve wood characteristics, namely, to protect ships against rotting pro-
cesses, as water repellent in roofing applications, and as antibacterial agents in healthcare
applications [162].

Essential oils extracted from vetiver, a perennial bunchgrass (Chrysopogon zizan-
ioides) [177], patchouli—a bushy perennial herb (Paogostemoncablin) [178], as well as orange
oil—produced by cells within the rind of an orange fruit (Citrus sinensis fruit) and extracted
as a by-product of orange juice production by centrifugation [179] and cinnamaldehyde
compound from cinnamon oil [192] were tested and confirmed to be active agents against
termites (Coptotermes formosanus), with various results. Essential oils can also be used as
fumigants, and the effectiveness of such substances extracted from different vegetal species
(e.g., dill weed Anethum graveolens, rosemary Salvia rosmarinus, lemongrass Cymbopogon
species, geranium Geranium species, tea tree Melaleuca alternifolia) is being tested and as-
sessed in experimental trials as repellents against subterranean termites (Reticulitermes
flavipes—Kollar), wherein insect mortality ranged between 95 and 100% in both formula-
tions [163].

Essential oils can be effectively applied for wood impregnation in order to inhibit
mildew activity, as indicated in experiments performed on pine wood specimens that
were impregnated with steam-distilled extracts derived from plants including geranium
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Geranium species, lemongrass Cymbopogon species, rosemary, ajowan, tea tree Melaleuca
alternifolia, dill weed, and thyme Thymus vulgaris. All these had positive results against
Penicillium chrysogenum, Trichoderma viride, and Aspergillus niger microorganisms [180],
using both treatment solution (when a protection up to 20 weeks was evidenced using
extracts from dill weed, geranium and thyme) and fumigation (when vapors from dill weed
were efficient at the same extent as solution). The same plant extracts were applied in tests
for the inhibition of decay fungi such as Trametes versicolor, Postia placenta, and Gloeophyllum
traheum [181], when the most effective was that derived from thyme.

An important antifungal activity was evidenced for essential oils from clove, sweet
flag, and oregano in experiments testing the protection of beech wood samples against
molds and decay microorganisms (Aspergillus niger, Penicillium brevicompactum, respectively,
Coniophora puteana, and Trametes versicolor), while no efficiency was noticed for oils extracted
from savory and birch [165].

Another experimental study [182] proved the effectiveness of essential oils extracted
from specific plants from Egypt in testing antibiofilm activity against wood rotting mi-
croorganisms, namely Hexagoniaapiaria and Ganoderma lucidum. Plant extracts containing
geranium oil, eugenol, and cinnamaldehyde compounds presented significant fungicide
activity when tested against biofilm formation caused by fungal microorganisms such as Tri-
choderma harzianum, Coniophora puteana, Ophiostoma floccosum, Ophiostoma piceae, Oligoporus
placenta, Androdia xanthan, Shaeropsis sapinea, and Leptographium procerum [193].

Essential oils extracted from Juniperus formosana (leaf, fruits) were tested as antifungal
agents against different wood degrading molds [183], with the most effective being the
extract obtained from leaves which contain compounds with significant fungicide action,
such as α-cadinol and elemol. The same enhanced effect against fungal biofilm formation
was observed when using essential oil extracted from Cinnamomum osmophloeum Kaneh,
which contains cinnamaldehyde as the most effective fungicide compound [184]. Signif-
icant action as antifungal active agent was proved for essential oil compounds such as
eugenol and isoeugenol, as well as α-methyl cinnamaldehyde and (E)-2-methylcinnamic
acid [194]. Considering the chemical structure of compounds that constitute the EOs,
it has been proven that reagents which contain functional groups such aldehyde or car-
boxylic acid, a conjugated double bond, and an alkyl chain pendant to the aromatic ring
are involved up to a large extent in the modulation action of EOs as effective fungicide
agents. A relevant example is given by the phenylpropene-type compounds, which exhibit
enhanced fungicide action (Laetiporus betulina and Laetiporus sulphureus) mainly due to their
structural characteristics, namely methyl functional groups linked to the benzene rings in
the ortho position.

Overall, essential oils extracted from almost any part of selected vegetal species, trees,
or plants have proved to exhibit a variable effective activity against bacteria, fungi, and
insects (termites, nematodes). Such effectiveness has been confirmed for EOs derived from
flax seeds or linseed Linum usitatissimum [185], cinnamon bark Cinnamomum cassia [186],
citrus peels from orange fruits Citrus sinensis [187], tung seeds from tung-oil tree Vernicia
fordii, and kukui nut (Aleurites moluccana or candle nut species) [195], as well as for some
by-products, such as lampante oil [189], which results from Istrian white olives during their
processing for the production of virgin oil.

Essential oils offer also significant potential for agricultural purposes (e.g., protection
of stored products, livestock, bees, and crops), since most of them are non-harmful in
toxicity to the surrounding environment, including animals [196,197]. Some examples
of plants with biocide activity in agriculture applications are schematically presented in
Scheme 2.



Plants 2024, 13, 3442 17 of 36

Plants 2024, 13, x FOR PEER REVIEW 17 of 37 
 

 

Overall, essential oils extracted from almost any part of selected vegetal species, trees, 
or plants have proved to exhibit a variable effective activity against bacteria, fungi, and 
insects (termites, nematodes). Such effectiveness has been confirmed for EOs derived from 
flax seeds or linseed Linum usitatissimum [185], cinnamon bark Cinnamomum cassia [186], 
citrus peels from orange fruits Citrus sinensis [187], tung seeds from tung-oil tree Vernicia 
fordii, and kukui nut (Aleurites moluccana or candle nut species) [195], as well as for some 
by-products, such as lampante oil [189], which results from Istrian white olives during 
their processing for the production of virgin oil. 

Essential oils offer also significant potential for agricultural purposes (e.g., protection 
of stored products, livestock, bees, and crops), since most of them are non-harmful in tox-
icity to the surrounding environment, including animals [196,197]. Some examples of 
plants with biocide activity in agriculture applications are schematically presented in 
Scheme 2. 

 
Scheme 2. Some examples of plants with biocide activity in agriculture applications through essen-
tial oils from their chemical constituents (adapted from [196]). 

Despite the considerable advantages of EOs, these also have some disadvantages, 
such as relatively slow action; reduced effectiveness with time duration; high quantities 
are required and applied for an increased efficacy (e.g., for weed control that may cause 
harmful damage to the environment and microbial communities in the soil, they can exert 
a negative effect on crops, and even partly their destruction). Increased volatility is an-
other significant problem raised when using EOs, and an effective method to control this 
issue as well as the release properties is EO microencapsulation. This method can provide 
an effective production of natural biocides which successfully mimic the chemical com-
partmentalization in plants by protecting essential oils from degradation [198]. The mi-
croencapsulation strategy also has beneficial effects in relation to the chemical stability 
(e.g., oxidative stability, thermostability), shelf-life, and biological activity of EOs [198-
204].  

4. Essential Oils for Antimicrobial Food Packaging Systems 
In recent decades, research interest has been remarkably focused on the use of natural 

products of natural origin (animal—chitosan, propolis; vegetal—essential oils; micro-
bial—lysozyme, nisin, etc.) that have biocide properties in most various applications: cos-
metics and pharmaceutics, food preservation and packaging, biomedical engineering, etc. 

Scheme 2. Some examples of plants with biocide activity in agriculture applications through essential
oils from their chemical constituents (adapted from [196]).

Despite the considerable advantages of EOs, these also have some disadvantages,
such as relatively slow action; reduced effectiveness with time duration; high quantities
are required and applied for an increased efficacy (e.g., for weed control that may cause
harmful damage to the environment and microbial communities in the soil, they can
exert a negative effect on crops, and even partly their destruction). Increased volatility is
another significant problem raised when using EOs, and an effective method to control
this issue as well as the release properties is EO microencapsulation. This method can
provide an effective production of natural biocides which successfully mimic the chemical
compartmentalization in plants by protecting essential oils from degradation [198]. The
microencapsulation strategy also has beneficial effects in relation to the chemical stability
(e.g., oxidative stability, thermostability), shelf-life, and biological activity of EOs [198–204].

4. Essential Oils for Antimicrobial Food Packaging Systems

In recent decades, research interest has been remarkably focused on the use of natural
products of natural origin (animal—chitosan, propolis; vegetal—essential oils; microbial—
lysozyme, nisin, etc.) that have biocide properties in most various applications: cos-
metics and pharmaceutics, food preservation and packaging, biomedical engineering,
etc. [205–207]. Among them, essential oils (EOs) showed high effectiveness against a wide
range of bacteria and were significantly safer than their synthetic counterparts, which
made them especially suitable for food preservation and packaging, despite their intrinsic
disadvantages (complex composition that depends on many parameters—species and
cultivar, cultivation area, time of harvesting, storage and transportation; they are highly
volatile, liposoluble, and insoluble in water; instable upon exposure to UV-vis radiation
when undergoing photochemical and oxidative degradation). Therefore, the pre-processing
of EOs is required in order to limit their volatility and instability, but to maintain or in-
crease their biologic activity, ability to interact with food, and dispersibility. Thus, the
(micro/nano) encapsulation of EOs [208] or their incorporation in various blends and
composite formulations, such as basil oil–chitosan–PVA [209], starch–chitosan–oregano
oil [210], or chitosan–gelatin–orange peel oil [211], has been successfully employed.

The antibacterial activity of EOs is of special interest when it comes to their application
in food processing and preservation. The most relevant feature in line with this is EOs’
lipophilic, character associated with their hydrophobicity. This allows them to adhere to
the phospho-lipidic membrane of bacterial cells and alter its properties as to make it more
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permeable and, subsequently, cause leakages of ions and other cytoplasmatic elements and
metabolites [52]. After a certain loss of volume, bacterial cell death occurs.

Interestingly, EOs can act on a single target or multiple targets. For example, trans-
cinnamaldehyde has showed an inhibitory effect on the growth of Escherichia coli and
Salmonella typhimirium by accessing the periplasm and penetrating into cells [51]. It was
demonstrated that EOs’ antibacterial activity strongly depends on their composition. The
highest activity was shown by EOs containing mainly aldehydes and phenols (cinnamalde-
hyde, citral, carvacrol, eugenol, thymol—it seems that the position of the –OH group
on the benzene ring does not affect the biocide activity of phenol-containing EOs), EOs
containing terpene alcohols displayed medium activity, while those containing ketones or
esters proved to be much less active [212].

Another characteristic of concern is that EOs’ activity against Gram-positive bacteria
is higher than for Gram-negative bacteria. This is related to the EOs’ chemical composition
and the reduced sensitivity of Gram-negative bacteria biofilm, which explains the high
effectiveness of EOs in inhibiting the growth of bacteria such as Salmonella spp., E. coli, and
Listeria monocytogenes [52]. At the same time, combining two or more EOs may be beneficial
if they act synergistically; otherwise, they can neutralize each other’s effect [213]. They also
interact with food preservatives and may intercede in conservation procedures. Some of the
following factors have been considered as potential synergists when EOs were employed in
food processing and packaging: low pH and oxygen levels (vacuum), medium temperature
and high hydrostatic pressure, low water activity, chelators, etc. For example, low oxygen
levels (vacuum packaging) have a limiting effect on bacteria metabolism and prevent
the chemo-oxidative degradation of EOs (oregano and thyme EOs showed significantly
increased activity against S. typhimurium and S. aureus, while clove and coriander showed
completely biocidal activity on A. hydrophila) [213].

Some applications of the most well-known EOs are systematically presented in Table 3.

Table 3. Essential oils in food packaging applications.

EO/Main Active
Compound/Plant Formulation Application Observations Ref.

Cinnamon
(cinnamaldehyde) sodium alginate film ham Cinnamon migrates through

membrane faster than winter-mint. [214]

Cinnamonum cassia
(Chinese cinnamon) solution fruits and vegetables

preservation

Active against Stenotrophonomonas
maltophilia and Bacillus subtilis, and
three Penicillium spp., S. maltophilia,
and B. subtilis on bread, carrots,
potatoes, sweet potatoes, and apples
(testing in situ).

[215]

Cinnaon, clove
(cinnamaldehyde,
eugenol)

tapioca starch-PHA film bread
High amount of clove EO is required.
Cinnamon film is bactericide; fit for
baking.

[216]

Clove (eugenol) gelatin-chitosan film fish Bactericide effects. [217]

Oregano (carvacrol) edible films in whey
protein isolate formulation

wrapping for Queso
Blanco cheese

The edible films strongly limited the
oxidation of lipids and hampered the
growth of yeasts and mildews.

[218]

Lemon (citral), lemon
verbena chitosan coating fish (rainbow trout)

packaging
Active against Psychrotrophic bacteria
and Enterobacteriaceae. [219]

Bergamot, oregano hydroxypropyl
methylcellulose films

edible coatings for
fresh ‘Formosa’ plum

Effective for storage in low
concentrations (2–5% EOs). [220]
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Table 3. Cont.

EO/Main Active
Compound/Plant Formulation Application Observations Ref.

Cinnamon, mustard zein-based coatings preservation of cherry
tomatoes

Populations of S. typhimurium
decreased; decrease in the tensile
strength of coatings; no ascorbic acid
formed during storage.

[221]

Oregano
polypropylene (PP) and
polyethylene terephthalate
(PET) film

antimicrobial (E. coli)
packaging films for
cheese

Packaging film with oregano EO in
different concentrations (0, 4, 6 and
8%) were active against two
Escherichia coli O157:H7 strains.

[222]

Lemon chitosan coating strawberry—control
fruit fungal decay

Chitosan–lemon oil coatings had a
negative impact on fruit’s aroma
profile.

[223]

Basil (eugenol) PVA/chitosan
active films food packaging

Homogenous transparent films with
strong interaction between
components, UV-vis and water
resistant, and radical scavenging
against DPPH.

[209]

Black cumin

PET film assembled with
antimicrobial chitosan and
alginate coatings
incorporating EO

antimicrobial
packaging film for
chicken meat

Active against Staphylococcus aureus
and Escherichia coli. [224]

Mint chitosan film food packaging

Biodegradable film incorporated EO
and showed improved properties (e.g.,
tensile strength, opacity, water vapor
barrier). Active against Staphylococcus
aureus, Salmonella typhimurium,
Klebsiella pneumoniae, Bacillus subtilis,
and Pseudomonas aeruginosa.

[225]

Clove chitosan nanoparticles

fungicide; controlled
release to extend the
shelf life of the fruits
and vegetables in fresh
state.

Highly active against Aspergillus niger. [152]

Orange chitosan/fish gelatin
composite films

active preservative
packaging

EO presence yielded in films with low
mechanical properties (tensile
strength, elastic modulus), reduced
water solubility, moisture content, and
water vapor permeability, but with
increased elongation at break and
hydrophobicity. Moreover, EO
enhanced the inhibitory activity of
coatings, being efficient when testing
free radicals (DPPH and ABTS) and
different pathogens (Staphylococcus
aureus and Escherichia coli).

[211]

Pomegranate, Thymus
kotschyanus (pulegone)

chitosan–starch composite
film

packaging that may
extend the shelf life of
beef

Antibacterial properties against
several spoilage bacteria and Listeria
monocytogenes.

[226]

Grass (Cymbopogon
flexuosus) EO microemulsion

prevent the adherence
of bacterial species to
stainless steel and PP
surfaces

Active and efficient when testing
microorganisms such as L.
monocytogenes, S. aureus, and S.
typhimurium.

[227]
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Table 3. Cont.

EO/Main Active
Compound/Plant Formulation Application Observations Ref.

Clove (Syzygium
aromaticum; eugenol),
cinnamon
(Cinnamomum
zeylanicum,
cinnamaldehyde)

solution

biocide to S. aureus
strains separated
during milking process
applied to cows
presenting mastitis

Significantly limited the formation of
the biofilm on various surfaces
(polystyrene, stainless steel).

[141]

Litsea (Litsea cubeba,
citral)

polyvinyl acetate (PVA)
film

antimicrobial
packaging material

Citral coatings have showed
effectiveness as bactericide agents
when testing Escherichia coli and
Staphylococcus aureus and may be
employed in hurdle technology
applications.

[228]

Clove
composite films based on
PLA/graphene oxide
nanosheets and EO

food safety and
preservation packaging

Graphene oxide increased the
thermo-mechanical and barrier
properties of the composite films,
while EO improved their flexibility
and bactericide effects (Staphylococcus
aureus, Escherichia coli).

[229]

Black pepper, ginger
PVA/gum Arabic/chitosan
composite films
incorporating EO

wound bandages and
preservation packaging
for food

The films were considerably flexible
and thermostable, resistant to break.
The incorporation of EOs made films
active and efficient when testing
Bacillus cereus, Staphylococcus aureus,
Escherichia coli, and Salmonella
typhimurium.

[230]

Modern Approaches

Novel concepts for the use of EOs in food preservation and active packaging com-
prise the design of edible coatings that are able to preserve the original characteristics
of food. These films consist of complex carbohydrates, proteins, and lipids, which pro-
vide satisfactory mechanical properties and good barrier characteristics against water and
oxygen. It has been shown that the phenolic components of EOs have the highest bac-
tericide activity, as in the case of carvacrol and thymol, which were able to destroy the
outer layer of Gram-negative bacteria, or oregano and rosemary EOs, which have showed
a strong antioxidative effect on lipids as demonstrated on various types of cheddar cheese
(Gram-negative bacteria—Escherichia coli, Salmonella choleraesuis, Pseudomonas aeruginosa,
Yersinia enterocolitica—and Gram-positive bacteria—Bacillus cereus, Staphylococcus aureus,
Listeria monocytogenes, Enterococcus faecalis) [52]. Other coating formulations include sodium
caseinate, which significantly increased the barrier effect against water and acted as a
matrix when cinnamon and ginger EOs were added to the formulation, thus granting their
homogeneous dispersion in bulk [231].

Protection against bacteria is a constant concern along the entire chain of food process-
ing. Therefore, understanding biofilm behavior toward various biocides may offer valuable
insights into the effective control of biofilm development on food surfaces. Hence, the
hurdle technology seems to be a successful alternative as it wisely combines two or more
control methods, such as physical–chemical or chemical–biological, aiming at multiple
bacteria targets [232].

Thus, it was reported that EOs have increased the efficiency of other disinfectants and
sterilization procedures when used in various combinations: peracetic acid and EOs of
Lippia sidoides, Thymus vulgaris, and Pimenta pseudochariophyllus [154]; EOs of Lippia sidoides
combined with Thymus vulgaris or peracetic acid [233]; cold nitrogen plasma and clove
oil [234] or thyme oil [235].
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It is not possible to advance in active food packaging without considering the employ-
ment of nanotechnology in the elimination of pathogens along the food processing chain
and maintenance of food characteristics during storage [236]. Recent studies have focused
on various nano-carriers that are able to incorporate EOs and ensure their homogeneous
distribution, at the same time providing good barrier properties, diffusivity, and preserva-
tion of food organoleptic features. EOs have been successfully used in such applications.
Nanoemulsions were considered for fruit and vegetable coatings: oregano EO was tested on
lettuce against L. monocytogenes, E. coli, and S. Typhimurium [237], and carvacrol and eugenol
nanoemulsions were tested on spinach against E. coli and S. enterica [238]. Other films
containing EO nanoemulsions have been proven to be effective against E. coli: an edible
film based on sodium alginate and thyme EO [239], and a carnauba wax film including
lemongrass EO [240]. Even EO-based nanoemulsions have been considered for combined
techniques in hurdle technology [241].

Nanoliposomes were considered when nanoliposome-encapsulated thymol and car-
vacrol proved to be effective against S. aureus [242,243], and carvacrol encapsulated in
nanoliposomes or in polymeric nanocapsules of Eudragit® showed biocide activity against
S. aureus, Listeria monocytogenes, E. coli, and Salmonella spp. [244].

Polymeric nanoparticles and nanocapsules have been employed as well, but the
nanoparticles are preferred when the active compound needs to be released at slow rates
as they are adsorbed at the surface of the nanoparticles, not incorporated inside the particle
as in the case of nanocapsules [245]. The following various formulations have been suc-
cessfully tested on the most common bacteria: zein nanoparticles containing thymol [246],
carvacrol-loaded chitosan [247], and chitosan-tripolyphosphate nanoparticles [248].

Nanofibers made of natural (proteins, lipids, carbohydrates) or synthetic polymers
and containing EOs can be considered for edible coatings and in active packaging. Thus,
cinnamon EO has been encapsulated in β-cyclodextrin proteoliposomes, which were
subsequently incorporated into nanofibers of poly (ethylene oxide) PEO [249]. This new
biocide packaging material proved to be highly effective against B. cereus on beef.

5. Essential Oils Applications in the Conservation of Cultural Heritage

Biodeterioration describes a complex of phenomena that occur at the interface between
the micro-/macrobiota and the corresponding substrate, a system of interrelated reactions
and interactions based on the metabolic necessities of the living microorganisms. It can
affect different materials (organic—wood, leather, natural textiles, paper and papyrus,
natural pigments and dyes; inorganic—stone, marble, metals, glass) found in a wide variety
of cultural assets, such as buildings and monuments, books, old documents and historical
records, paintings on different substrates, murals and cave imprints, clothing, weaponry,
stained glass, etc. [14]. The preservation of the historical and cultural heritage of mankind
is of the utmost importance, as it provides opportunities for the next generations to further
research, study, and understand the achievements of their ancestors and honor their legacy.
Moreover, any kind of artifact should be considered for restoration and conservation,
and sustainable, environmentally friendly approaches to prevent, limit, or even combat
biodeterioration must be taken into consideration for long-term applications [250,251].

Various methods have been employed to fight against the biodeterioration of cultural
heritage, benefiting from the advances in analytical investigations. Thus, mechanical
methods have shown limited effectiveness against microbial growth. However, laser
techniques have yielded satisfactory results when used for surface cleaning [252]. Other
physical treatments have been applied to preserve heritage sites and artifacts, such as
the following:

- thermal methods have disinfectant effects [253];
- UV irradiation limited the growth of fungi, algae, and bacteria [254];
- gamma radiation granted site sterilization [255];
- atmospheric plasma torches were effective in cleaning historical stones [256].
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Nevertheless, chemical and biochemical methods are the most widely used [257], and
the effectiveness of biocides of various classes (quaternary ammonium salts, isothiazoles,
phenols, aldehydes, etc.) has been tested [258]. Even the employment of inorganic nanopar-
ticles has been considered, and studies have confirmed their effectiveness in preventing the
biodeterioration of cultural heritage [259–262].

Despite the advances in the aforementioned methods, a new sustainable, environmen-
tally friendly approach has attracted a lot of interest in recent decades, namely the use of
natural biocides. Among them, essential oils (EOs) have proven to be effective biocides for
the recovery and conservation of heritage objects, monuments, and artifacts, even though
their activity has mainly been tested in the laboratory and for short time intervals.

One major concern derives from their complex composition, as they contain numerous
organic molecules aside the main active component (see Figure 1). Therefore, the possible
long-term interactions of other compounds in extracts with the heritage substrates must be
assessed and addressed.

Another issue of interest is the photochemical stability of EOs and their activity after
long-term service under photo-oxidative stress [263]. Temperature, UV-vis radiation, and
the presence of oxygen are the main factors affecting their stability, since EOs are prone to
degradative processes which result in the loss of biologic activity. It has been demonstrated
that some EOs, namely eugenol and thymol, have maintained their biocide activity after
exposure to UV-vis radiation under controlled conditions, while cinnamaldehyde showed
a significant decrease in its inhibitory activity after UV irradiation [2].

Many EOs are active biocides against fungi, bacteria, and insects, and some of them are
highly selective. For example, EOs from Thymus and Mentha showed an antifungal activity
higher than a commercial fungicide selected as reference [264]; carvacrol specifically inhib-
ited Staphylococcus aureus and Staphylococcus epidermidis [265]; most Lamiaceae-derived EOs
are highly effective fungicides [266]; EOs from Thymus vulgaris and Pelargonium graveolens
have limited the growth of Aspergillus niger, Penicillium chrysogenum, and Trichoderma viride,
so that they can be used to prevent the mold colonization of wooden artifacts [181].

By applying the principle of synergy, mixtures of EOs have been designed, with
consideration of their chemical composition, and tested. Mixtures of EOs from thyme
and oregano are the most effective biocides, given their similarity in composition (they
both contain terpenes) [267]. EOs from Citrus aurantium L. var. amara and Cinnamomum
zeylanicum (Zege emulsion) were effective against mold colonies in paintings [268]. A
complex biofilm made of cyanobacteria, chlorophyte, and green algae (Chlorella) that
colonizes stones surface has been treated with EOs from various plants (basil, cloves,
eucalyptus, thyme, pine tree, and tea tree), and the results were compared with those of a
commercially available biocide, namely Preventol®RI50 (ammonium quaternary salts). The
EO mixtures showed a higher biocide activity than the individual EOs due to their synergic
action [269]. A strong antifungal effect has been confirmed for mixed EOs from oregano,
lemongrass, and peppermint (mixing ratio = 1:1:1) when tested on historical papers [270].
However, the interactions of EOs in mixtures have to be further investigated because, at
this moment, it is difficult to anticipate their overall biocide activity in order to design a
specific formulation for an intended application and expect it to act at satisfactorily.

Some typical applications of EOs in the conservation of cultural heritage are summa-
rized in Table 4.
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Table 4. Some applications of EOs in restoration and preservation of cultural heritage.

Application EOs/Plant Observations Reference

Cement grit, ceramic, marble

EO mainly composed
of phenolic monoterpene
carvacrol, extracted from
Thymus capitata (Malta)

Effective against green algae and
cyanobacteria. [271]

Natural cultural
heritage sites: caves

EOs of two Origanum vulgare
plants (wild and R)

Active against fungi (phylum Ascomycota):
Sordariomycetes (11 isolates), Eurotiomycetes
(7 isolates), and
Dothideomycetes (1 isolate).

[272]

Limestone and granite blocks
from Royal Tombs in Tanis, Egypt

Various EOs (fennel, lemon,
marjoram, rosemary, and
spearmint)

Active against yeast colonies (Candida
albicans, C. lipolytica, Lodderomyces elongsporus,
and Saccharomyces cerevisiae).

[273]

Mosaic tesserae (“Casa di Leda”,
Greco–Roman site, Solunto, Italy)

EOs from Thymus vulgaris and
Origanum vulgare

Effective against bacteria (Bacillus), fungi
(Alternaria, Aspergillus), cyanobacteria
(Chroococcus), and green algae (Chlorella).

[274]

Outdoors stone from heritage
sites in South Korea (Royal Tombs
of the Joseon Dynasty)
and Laos (Vat Phou temple)

Eugenol isolated from volatile
clove extracts Great antifungal activity. [275]

Wooden artworks EOs from Origanum vulgare or
Thymus vulgaris

Fungal colonization (Aspergillus flavus) or
insect infestation (Anobium punctatum). [251]

religious artifacts made of wood
and stone

EOs from cinnamon bark and
leaves of the genus Cinnamon

Phototrophs (Chlorella sp., Chroococcus sp.);
microfungus (Torula sp.); brown rot fungus
(Coniophora puteana).

[276]

Marble statue restauration (statue
of Silvanus, National
Archeological Museum of
Florence)

EOs (carvacrol, eugenol,
cinnamaldehyde and thymol)
of Coridothymus capitatus L.,
Syzigium aromaticum (L.) Merr.
and L.M. Perry, Cinnamomum
zeylanicum Blume, and
Origanum vulgare subsp.
Hirtum Link Ietsw

Tested on cyanobacteria, fungi, and lichens. [277]

Tholu Bommalu
typical Indian leather puppets
(International Puppets Museum
“Antonio Pasqualino”, Palermo,
Italy)

EOs with complex
composition extracted from
Thymus vulgaris and Crithmum
maritimum

Excellent inhibitory activity against isolated
bacteria (Bacillus, Georgenia, Streptomyces,
Ornithinibacillus).

[278]

Cleaning and restauration of
artworks

Free EOs, namely Lavandula
luisieri and Calamintha nepeta,
encapsulated by
co-precipitation with
β-cyclodextrin

High activity against Aspergillus niger,
Cladosporium spp., Penicillium spp.,
Rhodotorula sp. and Arthrobacter sp. strains,
and Aspergillus spp., Epicoccum nigrum,
Fusarium spp.

[279]

Preservation of waterlogged
archeological wood

EOs from cinnamon
bark, wild thyme, and
common thyme

Effective against cellulolytic fungal strains:
Chaetomium sp., Fusarium sp.,
Aspergillus japonicus, and Stachybotrys
chartarum.

[280]
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Table 4. Cont.

Application EOs/Plant Observations Reference

Documents on different supports

EOs of the plants
Pimpinella anisum L. (anise),
Syzygium aromaticum L.
(clove), Cuminum cyminum L.
(cumin), Allium sativum L.
(garlic), Laurus nobilis L.
(laurel), Citrus sinensis (L.)
Osbeck (orange sweet), and
Origanum vulgare L. (oregano)

Clove, garlic, and oregano oils showed the
highest antibacterial activity against
Enterobacter agglomerans and Streptomyces sp.
Clove and oregano oils were effective against
Bacillus sp.
EOs of sweet orange
and laurel had a negative activity against
fungi, while anise and clove were highly
effective against fungi.
Isolated bacterial strains: Bacillus polymyxa,
Bacillus cereus, Bacillus thuringiensis, Bacillus
sp., Enterobacter agglomerans, and Streptomyces
sp. The fungal strains: Aspergillus niger,
Aspergillus clavatus, Penicillium sp., and
Fusarium sp.

[281]

Documentary heritage
(photographic papers, glass slides,
books, and a map made on paper)

Two essential oils of
Origanum vulgare L. and
Thymus vulgaris L.

Antifungal activity against Scopulariopsis sp.
and Fusarium sp. isolated from documentary
heritage.

[282]

Historical art craft materials
(fibers, woods, dyes, stone)

EO of the wild
Thymus capitatus (L.) Hofmgg.
and Lk. (northern Sicily)

High antimicrobial activity of the oil detected
against Bacillus subtilis, Fusarium oxysporum,
and Aspergillus niger.

[283]

Artworks
EOs from tea tree, Calamintha
nepeta, and Allium sativum L.
extracts

Effective against Bacillus subtilis, Micrococcus
luteus, Penicillium chrysogenum, and
Aspergillus spp.

[250]

Mural paintings (15th–16th
century fresco wall paintings
from granite churches located in
northern Portugal)

EOs from Rosmarinus
officinalis, Foeniculum vulgare,
Citrus lemmon, Ocimum
basilicum, and Salvia officinalis

Isolated fungal strains: Alternaria alternata,
Alternaria tenuissima, TZ10.2.2 (possibly
Pestaloptia sp.) and TZ8.2.2 (possibly
Penicillium sp.).
Basil EO was the only one able to inhibit the
growth of all fungal isolates.

[284]

6. Concluding Remarks and Perspectives

The range of various applications where EOs are employed as alternative, green,
wide-spectrum biocides (medicine and pharmacy, wood protection, pest control, active
food packaging, preservation of cultural heritage) has substantiated the importance of
these natural compounds, both theoretically and practically. EOs have the ability to be used
in various forms, formulations, and procedures, in indoor and outdoor conditions, and
on different (natural and synthetic, organic and inorganic, raw or treated, contemporary
or old/ancient) substrates. This behavior has enabled their employment not only against
microbiota by the means of biofilms, with the relevance of the biofilm-mediated specific
interactions between the microbiota and EOs as biocides has been emphasized in this review,
but also against fungi and insects. Some limitations have also been critically reviewed,
namely their specificity (EOs activity against Gram-positive bacteria is higher than that of
Gram-negative bacteria), photochemical stability, pH, and temperature sensitivity.

Nevertheless, modern approaches have already emerged. The use of combined tech-
niques (chemical, physical, biological) and/or active compounds, employment of mixtures
of synthetic and natural biocides working in synergy, multitasking solutions (inhibition
and removal of mixed species biofilm), and the incorporation of EOs in nanostructured
support materials are only a few of the novel directions in research.

A better understanding of the phenomena involved in the essential processes of
biofilm formation (e.g., occurrence, growth, and maturation) will make it easier to identify
new solutions and design appropriate materials. On the other hand, the constant concern
over the side effects of the EOs (toxicity, leakage, odor release, overdosage) may lead to
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materials with improved characteristics and a lower content in EOs, without limiting their
biocide activity. In this context, standardized methods to evaluate disinfection efficiency
are highly required.

Nanotechnology employment in EO applications is highly relevant since it allows for
the efficient transport of EOs to the sites of action, and their controlled release. Still, the
information on this subject is scarce and in-depth studies are necessary. For example, the
residual effect generated by nano-encapsulated EOs after the extinction of bacteria, and the
effects of the remaining nanocarriers from cosmetic products or implantable devices, need
to be further investigated.

However, EOs and their applications represent a very active field of research, with
promising prospects. The ongoing research in this field will provide information that will
enable scientists and engineers to expand the list of EOs and their range of applications.
A close collaboration between research groups and industrial facilities will accelerate
technology transfer, thereby reducing the time from the laboratory design stage to end-
user application.
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