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Abstract: Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soy-
bean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance
to this pathogen is of paramount importance for the sustainable management of the disease. The
objective of this study was to identify genomic regions associated with resistance to P. sojae isolate
40468 through genome-wide association analyses of 983 soybean germplasms. To elucidate the ge-
netic basis of resistance, three statistical models were employed: the compressed mixed linear model
(CMLM), Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK), and
fixed and random model circulating probability unification (FarmCPU). The three models consistently
identified a genomic region (3.8–5.3 Mbp) on chromosome 3, which has been previously identified as
an Rps cluster. A total of 18 single nucleotide polymorphisms demonstrated high statistical signifi-
cance across all three models, which were distributed in eight linkage disequilibrium (LD) blocks
within the aforementioned interval. Of the eight, LD3-2 exhibited the discernible segregation of
phenotypic reactions by haplotype. Specifically, over 93% of accessions with haplotypes LD3-2-F
or LD3-2-G displayed resistance, whereas over 91% with LD3-2-A, LD3-2-C, or LD3-2-D exhibited
susceptibility. Furthermore, the BLINK and FarmCPU models identified new genomic variations
significantly associated with the resistance on several other chromosomes, indicating that the resis-
tance observed in this panel was due to the presence of different alleles of multiple Rps genes. These
findings underscore the necessity for robust statistical models to accurately detect true marker–trait
associations and provide valuable insights into soybean genetics and breeding.

Keywords: soybean; genome-wide association study (GWAS); resistance to Phytophthora sojae; linkage
disequilibrium (LD) block; haplotype; multi-locus model

1. Introduction

Soybean [Glycine max (L.) Merr.] is the most economically important crop among
legumes, and its annual production and cultivated area worldwide have doubled from 161
to 353 million metric tons and from 74 to 126 million hectares, respectively, from 2000 to
2020 [1]. Almost 40% of the edible vegetable oil consumed worldwide is produced from
soybeans [2]. Soybean crops suffer from various pests and pathogens, which are the main
factors decreasing their yield and quality [3,4]. Of these, Phytophthora root rot (PRR),
caused by Phytophthora sojae (Kaufmann and Gerdemann), is one of the most destructive
diseases of soybeans worldwide. PRR can occur throughout soybean growth and cause
damping-off in seedlings as well as root and stem rot in mature plants, resulting in yield
losses [5].

The pathogen enters soybean plants through their roots, leading to symptoms such as
damping-off, root rot, and wilting. Its destructive nature is exacerbated by the formation
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of thick-walled oospores that can survive in soil for extended periods. Under favorable
conditions, oospores germinate, giving rise to sporangia, which, in turn, produce motile
zoospores. These zoospores swim through soil water to reach and infect the roots of
susceptible plants. Upon encysting the root surface and penetrating the appressoria, the
pathogen establishes an infection in the root tissue. The pathogen causes symptoms as the
mycelium grows. This pathogen spreads through waterborne spores, making it particularly
challenging to control. Cultural practices, including proper drainage and rotation with
non-host crops, are often employed to manage PRR, and fungicides may offer additional
control measures. The most desirable way to control PRR is to grow soybean cultivars
resistant to P. sojae [6].

Genetic host resistance, controlled by single resistance genes, is the primary manage-
ment method for PRR. To mitigate the impact of P. sojae, farmers often rely on soybean
varieties, employing Rps (resistance to Phytophthora sojae) genes. Since the identification
of the first resistance gene to P. sojae in the 1950s [7], more than 30 Rps genes/alleles have
been identified and mapped to ten soybean chromosomes (chrs.). Many Rps genes/alleles
are mapped to chrs. 3, 13, and 18 [8,9]. These studies provide a foundation for developing
soybean varieties with P. sojae resistance, and some Rps genes such as Rps1a, Rps1b, Rps1c,
and Rps1k, have been deployed in commercial soybean varieties in Canada and the U.S. [6].
However, the pathogen has a remarkable ability to overcome resistance mechanisms, and
the intensive use of a few specific Rps genes in commercial cultivars, leads to the shortened
longevity of Rps genes [6]. Consequently, Rps1a, Rps1c, and Rps1k are no longer effective in
the U.S., though they are highly utilized in Brazilian soybean breeding programs [10,11].

The efficacy of an Rps gene is generally reliable for only 8–15 years, and these genes
can be overcome by emerging pathotypes of P. sojae isolates in the field [12]. A recent
10-year interval investigation revealed that the diversity of pathotypes was altered and
varied among states in the U.S. Thus, selecting and deploying appropriate Rps genes
based on the locally dominant pathotypes of P. sojae populations, is critical for the efficient
management of PRR. This emphasizes the need for ongoing research on developing new
resistant varieties. From a long-term perspective, the continuous discovery of valuable
resistant germplasms and the identification of novel resistance genes are critical to cope
with the dynamic evolution of P. sojae populations over time. Genetic diversity based on
diverse soybean germplasm resources plays a pivotal role in exploring the valuable traits
of interest such as yield, agronomic traits, the resistance to abiotic and biotic stresses, and
seed quality-related traits [13–15]. As valuable genetic resources, large soybean collections
have been established and utilized in China, U.S., Japan, and Korea [16–19].

Genome-wide association studies (GWASs) using a panel of diverse germplasms
have proven to be a promising approach for dissecting genomic regions significantly
associated with target traits [20]. Although genetic mapping using biparental populations
is a powerful approach for identifying genomic regions of traits of interest, it has limitations
in terms of allelic diversity and genomic resolution. In contrast, a GWAS utilizes the genetic
diversity of a panel of unrelated individuals to capture historical recombination by creating
shorter linkage disequilibrium (LD) blocks, allowing the identification of significant target
gene loci with higher resolution [21,22]. GWASs have been widely employed to dissect
traits of interest for over a decade in soybean genetic research, including agronomic traits
such as plant height, seed weight, flower, and pubescence color [23–25]; seed composition
traits such as protein, oil, fatty acid, and amino acid contents [14,15,26]; and resistance
to biotic stresses such as soybean aphids (Aphis glycines Matsumura) [27], bacterial blight
(Pseudomonas savastanoi pv. glycinea) [28], bacterial leaf pustules (Xanthornonas citri pv.
glycines) [29], frogeye leaf spot (Cercospora sojina) [30], brown spot [31], and soybean mosaic
virus [13]. The present study aimed to (i) evaluate a large collection of G. max accessions for
resistance to P. sojae, (ii) identify genomic locations and variations associated with resistance
to P. sojae using multiple GWAS models, and (iii) discover candidate genes harbored in the
causative genomic locations for P. sojae resistance.
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2. Materials and Methods
2.1. Plant Materials and Experimental Design for a Large-Scale Phenotypic Assay

Seeds for 983 accessions (Table S1) of G. max germplasms were obtained from the
National Agrobiodiversity Center, Wanju-gun, Jeollabuk-do, Republic of Korea, and eval-
uated for responses to P. sojae isolate 40468. Two Korean varieties, ‘Daepung’ [32] and
‘CheonAl’, [33] were used for susceptibility and resistance checks of P. sojae isolate 40468,
respectively. For large-scale phenotypic assays, the 983 accessions were divided into 40 sub-
sets, including ~25 accessions, the susceptible check ‘Daepung’, and the resistant check
‘CheonAl’. The two checks were included to verify inoculation success in all subsets of
experiments. The experiment was repeated thrice.

2.2. Evaluation of the Germplasm Collection for Resistance to P. sojae

P. sojae isolate 40468 was isolated from Chungnam province in 1996 [34]. The isolate
was originally obtained from the Korean Agricultural Culture Collection (KACC), National
Agrobiodiversity Center, Rural Development Administration, Wanju-gun, Jeollabuk-do,
South Korea. A single spore was re-isolated from the obtained sample, re-grown on V8
juice agar media, and stored in sterile water at 15 ◦C in the dark. From this in-house stock,
the isolate was grown and used for each set of experiments.

The reaction of each genotype to P. sojae was tested using a hypocotyl inoculation
technique [35]. Briefly, 10–15 seeds of each accession were planted in a 13 cm plastic pot.
P. sojae was grown on V8 juice agar media at 25 ◦C for 7 days. The V8 media fully covered
with P. sojae mycelia were macerated using 50 mL syringes, and the mycelial slurry was
transferred into a 10 mL syringe. A 1 cm incision was made on the hypocotyl under the
cotyledon of 7-day-old seedlings using a scalpel. Then, 0.2–0.4 mL of mycelial slurry was
injected into the incision. The inoculated seedlings were then placed under saturated
humidity by covering them with plastic for 24 h and then translocated to a plant growth
chamber for an additional 6 days. The environmental conditions inside the growth chamber
were as follows: a 14:10 h day: night cycle, 25 ◦C, and >80% relative humidity. Seven days
after inoculation, the reactions of each accession were determined based on the percentage
of surviving plants from the inoculated total. Accessions were scored as resistant if 20%
or fewer seedlings died and as susceptible if 80% or more seedlings died. Intermediate
reactions were determined if the number of seedling deaths were between 20 and 80%. The
phenotypic assays were repeated thrice.

2.3. Genotyping, Imputation, and Filtering of SNP Data

The accessions were genotyped using 180K Axiom SoyaSNP arrays (Affymetrix, Santa
Clara, CA, U.S.) containing 169,028 recommended-quality SNPs distributed across the
20 soybean chromosomes. With 108,220 SNPs primarily filtered, imputation was performed
to compensate for the missing genotypes using TASSEL 5.0 software (v5.5.86) [36], with
default settings, except for the preferred haplotype size, max error to impute one donor,
min site to test match, and min num of minor alleles to compare, which were set as 219, 872,
0.1, and 10, respectively. Further filtering after imputation eliminated 267 and 3318 SNPs
due to >20% missing and a low minor allele frequency (MAF) of <0.01, respectively. A
total of 104,635 SNPs were finally retained in the dataset and used for subsequent analyses
(Table S2).

2.4. Linkage Disequilibrium (LD) Decay Analysis

LD decay was calculated using the software PopLDdecay v3.42 (https://github.com/
BGI-shenzhen/PopLDdecay), with the following parameter set-up: MaxDist 1000, -MAF
0.01, and -Miss 0.2 [37]. The average r2 values were calculated for pairwise markers in a
1000 kb window, and these were then averaged across the euchromatic and heterochromatic
regions, separately. The physical lengths of the euchromatic and heterochromatic regions in
each chromosome were obtained from a previous study [38] (Table S3). Genome-wide LD
was plotted as the physical distance (kb) versus r2 using PopLDdecay software v3.42 [37].

https://github.com/BGI-shenzhen/PopLDdecay
https://github.com/BGI-shenzhen/PopLDdecay


Plants 2024, 13, 3501 4 of 18

2.5. Genome-Wide Association Analysis and Haplotype Analysis

Genome-wide association analyses were performed with three different models using
GAPIT3 software(https://github.com/jiabowang/GAPIT) [39], including the compressed
mixed linear model (CMLM) [40], Bayesian-information and linkage-disequilibrium iteratively
nested keyway (BLINK) [41], and fixed and random model circulating probability unification
(FarmCPU) [42]. The thresholds of statistical significance (i.e., −log10P > 6.32) were determined
by Bonferroni’s correction as α/no. of SNPs (α = 0.05, no. of SNP = 104,635). Manhattan and
quantile–quantile plots were drawn to visualize each association. Gene annotation based on
the reference Glyma.Wm82.a2.v1 was used to identify candidate genes within significantly
associated loci. Annotated genes located in the LD block encompassing the significant SNPs
identified by the GWAS were considered potential candidate genes for the target trait.

2.6. Determination of LD Blocks for Genomic Regions Associated with P. sojae Resistance

Correlation coefficients (r2) of chromosome-wide SNP alleles were calculated to deter-
mine LD blocks using Haploview4.2 [43] with the following criteria: maximum distance,
500 kb; minimum minor allele frequency, 0.05; and Hardy–Weinberg cutoff, p < 0.05. LD
blocks were determined if all four possible gametes between a pair of SNPs were observed
with at least 5% frequency using the four-gamete method [44]. Adjacent blocks were
combined if each block was separated by <10 kb [15,45].

The haplotypes of each LD block with 18 significant SNP markers were determined,
and the haplotype frequencies of each LD block were calculated using Haploview4.2 [43];
only haplotypes with > 5% frequencies were considered in this analysis. These haplo-
type data were coupled with the distribution of phenotypic reactions among accessions.
The number of accessions for each phenotypic reaction was counted by haplotype and
visualized using R version 4.2.3 [46].

3. Results
3.1. Population Structure

The GWAS panel comprised 983 accessions collected from at least 75 countries (Table S1).
Most accessions originated from the Korean Peninsula (n = 460, 46.7%), followed by the
U.S./Canada (n = 110, 11.2%), China (n = 109, 11.1%), and Japan (n = 45, 4.6%) (Table S1).
Except for these countries of origin, some countries with relatively few germplasms were
combined by continent or geographical region, such as Europe, Asia (Southeast), Africa,
America (Central/South), and Australia, in the principal component analysis (PCA) scatter
plot. The PCA showed that PC1, PC2, and PC3 explained 8.0, 3.9, and 3.2% of the observed
variance, respectively, totaling approximately 15.1% explained by the first three PCs (Figure 1).

3.2. Phenotypic Distribution of Reactions Following Inoculation of P. sojae

A collection of 983 soybean accessions were evaluated for resistance to P. sojae isolate
40468 using the hypocotyl inoculation technique. Two Korean varieties, ‘CheonAl’ and
‘Daepung’, were included as resistance and susceptibility checks in all experiment subsets
to monitor the experimental conditions’ stability. CheonAl consistently exhibited resis-
tance, whereas Daepung exhibited susceptibility. For the majority of individual accessions,
phenotypic values were also highly consistent among replicated experiments based on
the frequency distribution of standard deviations of the percentages of dead seedling
(Figure S1). The percentage of dead seedlings ranged from 0 to 100% in the germplasm
collection and showed a bimodal phenotypic distribution, with higher proportions at the
two distal ends (Figure 2A). Of the 983 accessions, 253 (26%), 21 (2%), and 709 (72%) were
resistant, intermediate, and susceptible, respectively (Figure 2B,C).

https://github.com/jiabowang/GAPIT
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(A) Frequency distribution of the percentages of dead seedlings. (B) Segregation ratio of resistant (R),
susceptible (S), and intermediate (I) reactions. (C) Phenotypic reactions of the Daepung (S check),
CheonAl (R check), and selected resistant genotypes.
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3.3. Quality Control of 180K SNP Chip Data and Analysis of Linkage Disequilibrium

Of the initial 108,220 SNPs, 3585 SNPs were excluded by quality control (missing
genotype rate >20% and minor allele frequency < 0.01), and 104,635 SNPs were used
for subsequent analyses. These SNPs were evenly distributed across 20 chromosomes
(Table S2; Figure S2). The average physical distance between the SNPs was 9.1 Kb, and the
density of available SNPs ranged from 80 (chr. 1) to 135 (chr. 13) SNPs/megabase (Mb),
with an average of 110 SNPs/Mb across the entire genome (Table S2). Figure S2 displays
the genome-wide distribution and density of SNP within every 1Mb window.

The squared correlation coefficient (r2) was calculated for marker pairs. As the physical
distance between two SNP locations increased, the r2 values rapidly decreased. On average,
across the entire genome, LD decayed to an r2 of 0.2 at approximately 85 kb and 1280 kb in
the euchromatic and heterochromatic regions, respectively (Figure S3).

3.4. Genome-Wide Association Analysis

High-throughput SNP genotypes and large-scale phenotypic assay results were cou-
pled using advanced statistical methods to assess the genetic architecture of resistance to
P. sojae isolate 40468, which originated in the Republic of Korea. Genome-wide association
analyses were conducted using the phenotypic and genotypic data based on the three
models, CMLM, Blink, and FarmCPU. In the quantile–quantile (QQ) plots of the CMLM,
Blink, and FarmCPU, the observed −log10P distribution perfectly lay on a straight line until
the expected −log10P was approximately three, but sharp deviations from the expected
were observed at the tail of the straight line (i.e., −log10P > 3), indicating that these models
successfully identified significant associations between SNPs and the phenotype, as shown
in the Manhattan plots (Figure 3). The respective CMLM, BLINK, and FarmCPU models
detected several to tens of SNPs significantly associated with the phenotypic results at the
5% genome-wide significance level (−log10 P = 6.32) (Tables 1–3). Using the CMLM, 77 of
the 78 significant SNPs identified were located on chr. 3 with the highest levels of statistical
significance, and only one SNP was identified on chr. 18 (Table 1). Unlike the CMLM, the
BLINK and FarmCPU models identified additional loci on various chromosomes as well
as many of the same SNPs identified on chr. 3 by the CMLM. Using the BLINK model,
22 SNPs were located on the same region of chr. 3, and the remaining 15 SNPs were found
on nine other chromosomes (Table 2). Using the FarmCPU model, 18 of the 27 significant
SNPs were detected on chr. 3, whereas the others detected on seven other chromosomes
showed relatively lower significance (Table 3). Owing to the large number of significant
SNPs identified, we attempted to select more reliable SNPs as those selected by at least
two different models, for further analysis. As the list of significant SNPs identified by the
BLINK and FarmCPU models did not completely overlap, the number of SNPs commonly
identified by at least two models was 18, all of which were located on chr. 3. These SNPs
were thus considered more reliable and significantly associated with resistance to P. sojae
(Table S4, Figure S4).

Table 1. Significant SNPs identified by the CMLM for resistance to Phytophthora sojae isolate 40468.

Chr a SNP ID Marker
Position(bp) b Allele c MAF d −log10(P) e R² (%) f Allelic Effect g

3 AX-90452294 1,983,038 G/T 0.25 6.5 1.3 8.8
3 AX-90471572 3,010,747 T/C 0.05 7.1 1.4 18.0
3 AX-90375448 3,015,875 A/G 0.04 6.9 1.4 19.4
3 AX-90478226 3,053,066 G/A 0.03 8.8 1.8 22.7
3 AX-90365805 3,110,523 T/C 0.04 6.6 1.3 18.8
3 AX-90448600 3,403,744 C/T 0.33 7.4 1.5 9.6
3 AX-90372396 3,403,812 A/G 0.33 7.4 1.5 9.6
3 AX-90380038 3,423,161 C/T 0.45 8.7 1.8 −9.9
3 AX-90345784 3,429,332 G/A 0.10 14.9 3.2 17.5
3 AX-90318187 3,448,160 A/G 0.46 7.1 1.4 −7.6
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Table 1. Cont.

Chr a SNP ID Marker
Position(bp) b Allele c MAF d −log10(P) e R² (%) f Allelic Effect g

3 AX-90524133 3,458,537 T/C 0.45 10.3 2.1 −10.8
3 AX-90378648 3,484,755 G/T 0.45 9.8 2.0 −9.7
3 AX-90420887 3,503,677 C/A 0.18 19.2 4.2 16.7
3 AX-90515540 3,504,993 C/T 0.28 17.0 3.7 14.3
3 AX-90449575 3,517,886 A/C 0.47 9.5 1.9 10.3
3 AX-90517913 3,519,952 A/G 0.15 11.7 2.4 −15.0
3 AX-90438931 3,542,850 G/C 0.19 10.9 2.3 −16.1
3 AX-90388258 3,554,469 T/A 0.34 7.9 1.6 10.0
3 AX-90497688 3,554,849 G/A 0.11 13.9 2.9 16.3
3 AX-90377747 3,637,876 C/T 0.14 9.6 2.0 12.2
3 AX-90334631 3,638,108 G/A 0.14 9.6 2.0 12.2
3 AX-90319861 3,652,555 C/T 0.38 7.1 1.4 -8.9
3 AX-90442897 3,652,881 C/T 0.38 7.1 1.4 −8.9
3 AX-90475860 3,653,078 A/C 0.19 18.8 4.1 16.1
3 AX-90378751 3,655,668 G/A 0.30 7.8 1.6 −11.8
3 AX-90440228 3,759,276 C/T 0.16 10.7 2.2 15.7
3 AX-90329739 3,788,845 T/A 0.19 8.6 1.8 10.9
3 AX-90368467 3,820,234 G/A 0.41 8.1 1.6 −9.9
3 AX-90477435 3,820,849 G/A 0.12 6.6 1.3 −14.4
3 AX-90358340 3,826,007 G/A 0.45 18.6 4.1 14.6
3 AX-90512993 3,826,375 T/C 0.45 18.6 4.1 14.5
3 AX-90386675 3,836,189 T/C 0.14 12.0 2.5 18.0
3 AX-90444895 3,855,796 T/C 0.09 8.4 1.7 −18.0
3 AX-90488574 3,859,704 T/C 0.09 8.1 1.6 −17.6
3 AX-90519035 3,897,791 G/T 0.22 24.0 5.3 21.5
3 AX-90375813 3,904,817 G/A 0.22 7.4 1.5 −11.7
3 AX-90374505 3,911,731 C/T 0.11 16.9 3.7 22.6
3 AX-90320182 3,953,294 G/A 0.11 30.7 7.0 29.2
3 AX-90377480 3,962,150 T/C 0.02 13.0 2.7 36.0
3 AX-90397660 3,964,789 C/T 0.22 19.9 4.4 19.6
3 AX-90370699 3,973,776 A/G 0.33 9.9 2.0 11.3
3 AX-90356748 3,982,340 C/T 0.21 11.5 2.4 −13.9
3 AX-90317982 3,988,291 G/C 0.07 10.9 2.3 23.0
3 AX-90389160 3,989,908 T/A 0.32 13.1 2.8 13.6
3 AX-90454971 3,998,688 G/A 0.18 41.8 9.9 25.5
3 AX-90456806 4,111,692 C/A 0.33 8.1 1.6 −9.9
3 AX-90417885 4,272,521 G/A 0.31 6.5 1.3 −7.8
3 AX-90465452 4,283,885 T/A 0.21 17.7 3.8 −15.9
3 AX-90331552 4,291,232 T/C 0.28 9.4 1.9 11.3
3 AX-90307867 4,291,566 A/T 0.28 9.6 2.0 11.5
3 AX-90312261 4,312,581 T/A 0.22 10.1 2.1 −12.3
3 AX-90364015 4,318,337 G/A 0.10 8.4 1.7 15.9
3 AX-90322967 4,325,128 A/G 0.18 14.6 3.1 −15.4
3 AX-90337768 4,325,664 G/A 0.30 7.1 1.4 −8.4
3 AX-90385376 4,328,363 G/A 0.30 7.3 1.5 −8.6
3 AX-90410203 4,338,933 A/G 0.04 14.1 3.0 28.3
3 AX-90496324 4,340,304 A/G 0.16 15.5 3.3 18.1
3 AX-90476180 4,340,465 A/C 0.10 12.8 2.7 19.5
3 AX-90402524 4,355,566 C/T 0.34 7.7 1.5 −10.4
3 AX-90377814 4,356,151 T/G 0.03 8.0 1.6 28.6
3 AX-90504759 4,405,356 A/T 0.43 21.3 4.7 14.5
3 AX-90306896 4,414,031 T/C 0.43 17.6 3.8 −11.9
3 AX-90456732 4,466,635 A/C 0.34 13.1 2.8 11.4
3 AX-90314290 4,639,308 A/T 0.13 9.7 2.0 13.5
3 AX-90393523 4,642,893 T/C 0.45 7.4 1.5 −8.5
3 AX-90509372 4,717,222 C/T 0.39 6.9 1.4 8.4
3 AX-90511516 4,752,915 T/C 0.32 7.4 1.5 8.3
3 AX-90305547 4,860,134 G/A 0.04 17.1 3.7 36.6
3 AX-90392159 5,024,763 T/C 0.47 7.0 1.4 8.1
3 AX-90317989 5,120,075 A/G 0.34 14.6 3.1 14.3
3 AX-90495242 5,205,514 C/A 0.48 8.3 1.7 9.1
3 AX-90365087 5,287,030 G/T 0.23 10.4 2.2 11.3
3 AX-90351533 5,307,926 G/C 0.09 8.3 1.7 17.6
3 AX-90306686 5,353,786 T/C 0.11 10.1 2.1 −13.6
3 AX-90449871 6,697,315 G/T 0.05 7.8 1.6 18.9
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Table 1. Cont.

Chr a SNP ID Marker
Position(bp) b Allele c MAF d −log10(P) e R² (%) f Allelic Effect g

3 AX-90353442 20,609,695 A/G 0.01 7.6 1.5 26.9
3 AX-90480626 21,957,219 G/A 0.06 9.4 1.9 −22.2

18 AX-90414741 8,261,882 T/A 0.38 7.2 1.4 7.7
a Chromosome; b physical positions (bp) are based on the latest soybean reference genome (Glyma.Wm82.a2);
c major/minor allele; d minor allele frequency; e statistical significance (p-value) after modified Bonferroni’s
correction of the identified SNP; f (R2 of the model with the SNP − R2 of the model without the SNP) × 100; g and
the effect of the major allele relative to the minor allele by SNP.
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Figure 3. Manhattan plots (left) and QQ plots (right) for the genome-wide association study of the
983 soybean accessions for P. sojae resistance: (A) The compressed mixed linear (CMLM) model.
(B) The Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) model.
(C) The fixed and random model circulating probability unification (FarmCPU) model.
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Table 2. Significant SNPs identified by the BLINK model for resistance to Phytophthora sojae isolate 40468.

Chr a SNP ID Marker Position
(bp) b Allele c MAF d −log10(P) e R2 (%) f Allelic Effect g

1 AX-90452255 51,347,154 G/T 0.01 11.1 3.0 −19.7

2 AX-90351632 10,409,311 C/A 0.42 6.6 0.1 2.6
3 AX-90324356 3,159,070 G/A 0.12 6.8 0.2 5.2
3 AX-90472606 3,638,005 T/G 0.46 7.2 0.3 4.9
3 AX-90482211 3,741,175 G/A 0.01 15.1 19.5 −27.9
3 AX-90444895 3,855,796 T/C 0.09 8.0 0.0 −15.8
3 AX-90498561 3,893,390 A/G 0.27 6.6 0.1 5.7
3 AX-90519035 3,897,791 G/T 0.22 17.5 1.3 10.8
3 AX-90374505 3,911,731 C/T 0.11 16.8 1.8 10.7
3 AX-90397660 3,964,789 C/T 0.22 16.0 1.0 9.6
3 AX-90389160 3,989,908 T/A 0.32 9.6 0.5 7.3
3 AX-90454971 3,998,688 G/A 0.18 48.7 5.0 18.5
3 AX-90503215 4,200,520 A/G 0.41 10.0 0.7 −6.5
3 AX-90310078 4,277,380 T/C 0.40 7.6 0.9 −7.3
3 AX-90465452 4,283,885 T/A 0.21 16.0 0.9 −11.7
3 AX-90317436 4,295,128 A/G 0.49 29.0 3.1 20.0
3 AX-90337768 4,325,664 G/A 0.30 6.5 0.3 −5.3
3 AX-90410203 4,338,933 A/G 0.04 13.5 4.0 14.7
3 AX-90496324 4,340,304 A/G 0.16 8.8 0.5 6.6
3 AX-90377814 4,356,151 T/G 0.03 37.2 4.3 29.1
3 AX-90305547 4,860,134 G/A 0.04 8.9 3.0 14.0
3 AX-90502539 5,261,082 G/A 0.21 6.5 0.2 −4.5
3 AX-90365087 5,287,030 G/T 0.23 6.7 0.2 4.3
3 AX-90436811 30,366,251 A/T 0.07 6.8 0.8 −5.3

4 AX-90469303 5,395,490 T/C 0.09 14.7 0.4 9.0
4 AX-90453638 11,057,625 G/A 0.19 7.5 0.2 4.1
4 AX-90314529 44,548,176 T/C 0.42 9.0 0.2 −3.3

6 AX-90386189 13,985,551 G/A 0.01 6.5 2.1 −12.5
6 AX-90396263 14,955,621 C/A 0.40 18.4 0.3 −5.6

13 AX-90344339 32,713,320 T/A 0.27 6.5 0.1 −2.8

15 AX-90512796 13,188,114 T/C 0.02 7.1 2.6 −12.1

16 AX-90516316 8,045,311 T/C 0.02 6.7 1.0 10.7
16 AX-90409602 36,074,874 A/G 0.01 6.5 2.5 −10.9

18 AX-90307453 4,083,239 T/A 0.03 9.6 0.7 9.3

19 AX-90441950 37,671,280 C/T 0.05 11.8 0.9 −10.3

20 AX-90446295 2,937,531 T/C 0.01 8.6 0.7 11.1
20 AX-90509320 32,927,057 T/C 0.02 9.7 1.0 −14.5

a Chromosome; b physical positions (bp) are based on the latest soybean reference genome (Glyma.Wm82.a2);
c major/minor allele; d minor allele frequency; e statistical significance (p-value) after modified Bonferroni’s
correction of the identified SNP; f (R2 of the model with the SNP − R2 of the model without the SNP) × 100;
g and the effect of the major allele relative to the minor allele by SNP.

Table 3. Significant SNPs identified by the FarmCPU model for resistance to Phytophthora sojae isolate 40468.

Chr a SNP ID Marker
Position (bp) b Allele c MAF d −log10(P) e R2(%) f Allelic Effect g

3 AX-90493588 3,208,379 A/C 0.03 11.0 3.0 16.2
3 AX-90358340 3,826,007 G/A 0.45 7.1 0.2 4.9
3 AX-90512993 3,826,375 T/C 0.45 7.0 0.0 4.9
3 AX-90386675 3,836,189 T/C 0.14 11.1 0.6 9.1
3 AX-90476839 3,847,486 G/A 0.03 6.5 1.1 12.0
3 AX-90374505 3,911,731 C/T 0.11 6.4 0.7 8.3
3 AX-90389160 3,989,908 T/A 0.32 6.5 0.5 5.3
3 AX-90454971 3,998,688 G/A 0.18 76.6 15.8 25.4
3 AX-90328472 4,284,091 C/T 0.12 31.5 8.6 −15.3
3 AX-90408663 4,291,736 G/A 0.10 6.6 3.7 7.5
3 AX-90364015 4,318,337 G/A 0.10 8.3 1.3 10.4
3 AX-90496324 4,340,304 A/G 0.16 9.1 1.1 7.2
3 AX-90476180 4,340,465 A/C 0.10 10.6 2.6 9.8
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Table 3. Cont.

Chr a SNP ID Marker
Position (bp) b Allele c MAF d −log10(P) e R2(%) f Allelic Effect g

3 AX-90349616 4,348,187 C/T 0.08 13.9 3.0 12.5
3 AX-90377814 4,356,151 T/G 0.03 12.2 2.0 19.5
3 AX-90305547 4,860,134 G/A 0.04 11.7 2.6 20.7
3 AX-90365087 5,287,030 G/T 0.23 26.7 1.1 11.1
3 AX-90361277 7,600,310 G/A 0.11 9.8 0.7 −7.5

4 AX-90305713 17,966,319 T/C 0.16 6.7 4.2 −6.2
4 AX-90341073 45,436,256 G/A 0.46 6.8 0.1 −4.5

6 AX-90522264 15,060,984 G/A 0.21 7.9 0.6 5.6

8 AX-90371996 10,267,323 T/C 0.08 6.8 0.7 8.5

9 AX-90395828 49,981,866 C/T 0.05 7.2 0.9 9.4

11 AX-90425598 31,549,372 C/A 0.03 11.7 3.6 −15.4

12 AX-90471689 684,016 T/C 0.04 7.7 29.9 8.8
12 AX-90510915 5,980,832 C/T 0.02 8.2 1.9 −16.5

19 AX-90379903 39,419,993 G/A 0.06 8.0 0.3 9.7
a Chromosome; b physical positions (bp) are based on the latest soybean reference genome (Glyma.Wm82.a2);
c major/minor allele; d minor allele frequency; e statistical significance (p-value) after modified Bonferroni’s
correction of the identified SNP; f (R2 of the model with the SNP − R2 of the model without the SNP) × 100;
g and the effect of the major allele relative to the minor allele by SNP.

3.5. Haplotype Analysis for the Identified Genomic Region of Chromosome 3

From genome-wide association analyses using the three models, a number of SNPs
located in a wide range of chromosome 3 were identified; thus, the following haplotype
analysis focused on the 3.8−5.3 Mb regions where the aforementioned 18 SNPs are posi-
tioned. Haplotype analysis determined eight LD blocks ranging from 8−156 kb in size
in this interval; namely, LD3-1 to LD3-8 (Table 4, Figure 4). Sixteen SNPs were located
in the eight LD blocks, while two significant SNPs (AX-90454971 at 3,988,688 bp, and
AX-90496324 at 4,340,304 bp) were not included in any of the eight LD blocks. In each
LD block, two to seven haplotypes were identified and named A to G (e.g., LD3-1-A);
the highest haplotype frequency of each LD ranged from 21 to 56% (Table 4). Phenotypic
distributions were investigated by haplotypes per LD block. In the majority of haplotypes
across LD blocks, including the most frequent haplotypes in all eight LD blocks, the pro-
portion of susceptible accessions was typically higher than that of resistant accessions.
This finding is consistent with the observation that susceptible accessions accounted for
three times the number of resistant genotypes in the entire panel (Table 4). Interestingly,
certain haplotypes of LD3-2 (3,897,791−3,964,789 bp) and LD3-3 (3,982,340−3,990,383 bp)
demonstrated markedly higher portions of resistance to P. sojae. It is noteworthy that
93–96% of the accessions with haplotypes LD3-2-F and -G exhibited resistance, as did
haplotype LD3-3-C (Table 4). The frequencies of these haplotypes were 9%, 6%, and 9%,
respectively, and were thus classified as rare haplotypes associated with resistance to
P. sojae. Haplotype LD3-2-F was observed in 81 resistant accessions in LD3-3-C. Based
on the reference genome (Glyma.Wm82.a2), LD3-3 partially overlaps with two predicted
genes, of which one (Glyma.03G034200) is a nucleotide-binding site–leucine-rich repeat
(NBS-LRR)-encoding gene known as a resistance gene in plants.
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Table 4. Haplotypes and phenotypic segregation by haplotype in linkage disequilibrium blocks of 3.8–5.3 Mbp.

Linkage Disequilibrium (LD) Haplotype ID Haplotype a Frequency Numbers of Accession by Reaction
Block Interval Size (Kb) Resistant Susceptible Intermediate

LD3-1 3,826,007–
3,893,390 67

Haplotype A G T T G A A T G A C T T C T G 21% 7 (3%) 202 (96%) 2 (1%)
Haplotype B G T T G A A T G A T T T C T A 17% 31 (19%) 131 (80%) 2 (1%)
Haplotype C A C T G A A T G A C T T C T A 14% 78 (57%) 52 (38%) 8 (6%)
Haplotype D A C T G G G A G A T T T C T A 11% 19 (17%) 91 (82%) 1 (1%)
Haplotype E A C C G A G T G A T T T A T A 10% 42 (45%) 51 (54%) 1 (1%)
Haplotype F G T T G A G T A A T C C C T A 9% 81 (95%) 2 (2%) 2 (2%)

LD3-2 3,897,791–
3,964,789 66

Haplotype A G G C T G T C 32% 26 (8%) 289 (91%) 3 (1%)
Haplotype B G G C C G T C 11% 12 (11%) 96 (88%) 1 (1%)
Haplotype C T G C T G T C 11% 3 (3%) 99 (95%) 2 (2%)
Haplotype D G A C C G T C 7% 4 (6%) 68 (93%) 1 (1%)
Haplotype E G A C T G T T 9% 14 (16%) 69 (78%) 5 (6%)
Haplotype F T G C T A T T 9% 81 (96%) 0 (0%) 3 (4%)
Haplotype G G G T C G T C 6% 52 (93%) 3 (5%) 1 (2%)

LD3-3 3,982,340–
3,990,383 8

Haplotype A C G T G 56% 76 (14%) 470 (85%) 8 (1%)
Haplotype B T G A G 16% 34 (21%) 124 (78%) 1 (1%)
Haplotype C C G A G 9% 82 (95%) 0 (%) 4 (5%)
Haplotype D C G T A 7% 5 (8%) 53 (83%) 6 (9%)
Haplotype E C C A G 7% 47 (73%) 17 (27%) 0 (0%)

LD3-4 4,271,895–
4,284,091 12

Haplotype A C G T A A T T C 53% 113 (22%) 393 (76%) 14 (3%)
Haplotype B C A C A A C A C 9% 3 (3%) 82 (94%) 2 (2%)
Haplotype C C A C A A C A T 8% 14 (17%) 67 (82%) 1 (1%)
Haplotype D C G C A A C T C 8% 31 (38%) 49 (60%) 2 (2%)
Haplotype E C A C A A C T C 8% 53 (70%) 23 (30%) 0 (0%)

LD3-5 4,318,337–
4,339,042 20

Haplotype A G G A G G T A A 60% 113 (19%) 463 (79%) 14 (2%)
Haplotype B G G G A A T A A 13% 18 (14%) 111 (84%) 3 (2%)

LD3-6 4,340,465–
4,403,158 62

Haplotype A A C C C T T G T T G 38% 30 (8%) 333 (89%) 11 (3%)
Haplotype B A C C C T T G T C G 19% 87 (47%) 99 (53%) 1 (1%)
Haplotype C A C C T T T A C C G 14% 16 (12%) 115 (87%) 2 (2%)

LD3-7 4,717,222–
4,873,970 156

Haplotype A C T A C A T A C G G 42% 64 (15%) 345 (83%) 6 (1%)
Haplotype B T C G C A T A C G G 15% 53 (35%) 91 (61%) 6 (4%)
Haplotype C T C G C A T A C G T 7% 29 (41%) 40 (57%) 1 (1%)
Haplotype D C T A C A T G T G G 9% 5 (6%) 78 (92%) 2 (2%)

LD3-8 5,273,348–
5,287,030 13

Haplotype A T A G 35% 70 (20%) 267 (77%) 9 (3%)
Haplotype B C G G 40% 73 (18%) 315 (79%) 9 (2%)
Haplotype C C G T 23% 108 (49%) 112 (51%) 2 (1%)

a Different colors indicate different nucleotides.
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4. Discussion

The identification of genetic sources for a target trait is a pivotal aspect of plant breeding,
yet it remains a persistent challenge. Genome-wide association analysis is a powerful tool for
detecting genomic regions associated with target traits using a large number of genotypes,
obviating the necessity for the development of bi-parental segregating populations. In the
present study, a total of 983 G. max accessions were screened for resistance to P. sojae, and many
SNP markers on chr. 3 were identified with genome-wide significance for resistance to P. sojae
isolate 40468 using the CMLM, BLINK, and FarmCPU models. The 18 SNPs in the 3.8–5.3 Mbp
region on chr. 3 were consistently, highly significant by the three GWAS models, confirming the
reliability of them (Table S4). In this region, the AX-90454971 (3,998,688 bp) exhibited the highest
levels of significance (−log10P = 41.8−76.6) in the three models. The 3.8−5.3 Mbp interval is
a well-known Rps cluster, with more than 20 Rps alleles previously identified from different
resistance sources, including Rps 1a, 1b, 1c, 7, UN1, YD29, YD25, HN, HC18, unnamed alleles in
cultivars Waseshiroge, Daewon, and Saedanbaek [9,47–59]. In soybean—P. sojae interactions,
two major categories of disease resistance genes were highlighted as strong candidate genes
in several previous studies: genes encoding NBS-LRR protein and serine/threonine kinase
(STK) protein [53,54]. According to the reference genome (Glyma.Wm82.a2.v1), there are
88 annotated genes in the 3.8−5.3 Mbp interval, including 19 copies (>21%, 19/88) of NBS-
LRR- and serine/threonine kinase-coding genes (Figure 4). A total of 15 LRR-coding genes
are as follows: Glyma.03G034200, Glyma.03G034400, Glyma.03G034500, Glyma.03G064800,
Glyma.03G034900, Glyma.03G035300, Glyma.03G037000, Glyma.03G037100, Glyma.03G037300,
Glyma.03G037400, Glyma.03G038800, Glyma.03G039100, Glyma.03G039200, Glyma.03G039300,
and Glyma.03G039500. In addition, Glyma.03G036000, Glyma.03G036500, Glyma.03G036900,
and Glyma.03G037200 are the STK-coding genes. Such a high density of predicted R genes
within this interval implies that this genomic region should be evolutionarily important and is
often associated with broad-spectrum defense mechanisms in plants [60].

The clustering of R genes may be the result of unequal crossover, gene duplication,
and gene conversion, which may have contributed to their functional significance in com-
bating diverse pathogens [61]. Wide intraspecific variation can be found in copy numbers
within clusters [62]. In Arabidopsis, 1439 crossovers within NBS-LRR clusters on chrs. 1 and
5 were reported and observed NBS-LRR genes associated with recombination hotspots,
which were also detected as historical hotspots via an LD analysis of 260 Arabidopsis acces-
sions [63]. The worldwide germplasm collection used in the current study is genetically
diverse, and each accession should accumulate many historical recombination events in
itself [20]. The average LD block size in the 3.8−5.3 Mbp region on chr. 3 was 43kb, which
is smaller than the LD block size (approximately 85kb) averaged over euchromatic regions
(Figure S3). The observed result suggests that this R gene cluster may have undergone
a greater number of historical recombination than is typical. A high recombination rate
within or between R genes has the potential to generate R gene structural and functional
variations, resulting in a wide diversity of resistance sources among species [63]. In this R
gene cluster, particular genes conferring resistance to the P. sojae isolate 40468 may vary
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among accessions; consequently, many markers anchored in a relatively wide genomic
region (3.8–5.3 Mbp) on chr. 3 should be significantly associated. Hence, the introgression
of multiple resistance genes from this important genomic region is a desirable long-term
strategy in developing P. sojae-resistant varieties, as it could help decrease disease pressures
by dominant P. sojae isolates in soybean fields.

In the present study, the CMLM identified 77 significant SNPs on chr. 3 and 1 SNP on
chr. 18. Unlike the CMLM, the BLINK and FarmCPU models demonstrated meaningful
performances by identifying 37 and 11 SNPs on eleven and eight different chromosomes,
respectively. It is noteworthy that the FarmCPU and BLINK identified 24 additional SNPs
on different chromosomes in addition to the 3.8–5.3 Mbp on chr. 3, including several
new genomic regions as well as those similar to the already known regions. The BLINK
model also identified additional significant SNPs on other chrs. 13, 15, 16, and 20, where
resistance to P. sojae was previously reported. On chr. 13, one significant SNP (10.4 Mbp)
identified as overlapping with the Rps3 region [50]. Quantitative disease-resistant loci
(QDRL) for partial resistance to P. sojae have been documented in adjacent locations [64–66].
A SNP positioned at 51,347,154 bp on chr. 1 was found to be new and highly significant
(−log10P = 11.1), which minor allele ‘T’ contributes to resistance. The FarmCPU model
identified a significant locus on chr. 6, where a QDRL for P. sojae was identified [64].
AX-90510915 (at 5980,832 bp on chr. 12) is also novel and highly significant (−log10P = 8.2),
of which the minor allele ‘T’ conferred resistance to P. sojae. These findings indicate that
the BLINK and FarmCPU models can enhance the capabilities of the single-locus model
by identifying genomic regions with minor effects. From these results, the combination of
these rare alleles can facilitate the attainment of enhanced resistance.

The CMLM is employed for single-locus analysis, which enhances the computa-
tional capabilities and statistical power in comparison to the previously described MLM
method [40]. MLM methods can hardly detect other low-effect significant markers for
complex traits, as they focus on large-effect markers [42,67]. In contrast, the BLINK and
FarmCPU models identified significant SNPs on different chromosomes that were not
detected by the CMLM. They are capable of identifying additional markers with smaller
effects that may be overlooked by the single-locus method. Furthermore, the CMLM identi-
fied many significant SNPs on chr. 3 that were in close proximity. In contrast, the BLINK
and FarmCPU models reduced the number of identified SNPs to 22 or fewer. This enables
the more precise detection of markers that can be employed in marker-assisted selection
and genomic selection.

All the MLM methods are single-locus models that test one marker at a time. Conse-
quently, they are prone to an increased number of false negatives. To address this issue,
several multi-locus models have been developed and utilized in GWASs, including FASTm-
rEMMAa and FASTmrMLM [68], ISIS EM-BLASSO [69], pLARmEB [70], pKWmEB [71],
LASSO [72], and others [73]. FarmCPU and BLINK are multi-locus models that are capable
identifying both major- and minor-effect markers, thereby increasing the proportion of
genetic variance [67]. The FarmCPU model employes an iterative process that utilizes both
fixed and random models with the most significant markers as covariates. This approach
helps to prevent overfitting, reduces the number of reported significant markers, and effec-
tively controls for false positives and negatives. The BLINK model is superior in statistical
power with the discovery of fewer false positives than other models because it eliminates
the assumption that causal genes are uniformly distributed across the genome [41]. In a
GWAS for stem termination habits in soybean [74], the CMLM identified multiple signifi-
cant SNP markers at close physical distances on the same chromosome, while FarmCPU
identified additional significant SNPs on other chromosomes [74]. Similar findings were
observed in a GWAS for seedling emergence in wheat [67], where MLM identified nu-
merous neighboring SNPs, predominantly on chr. 5. However, the FarmCPU and BLINK
methods identified multiple SNPs on different chrs. 1, 2, 5, 6, and 7, with relatively mod-
est effects and R2 values. This highlights the capacity of multi-locus models to detect
small-effect markers.
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Interestingly, the present study identified a diverse range of Rps loci that conferred
resistance to the same P. sojae isolate 40468, rather than the previously documented genomic
region (55.9−56.4 Mbp) on chr. 18. Phenotypic reactions are the result of the interaction
between Rps genes and cognate Avr genes, which can occur in multiple ways. The current
dataset does not allow us to directly address the question of why the Rps cluster located
on chr. 18 was not identified in the present study. A potential explanation is that the
two R loci exhibited functional redundancy or overlapping recognition of the same Avr
genes, and the Rps genes underlying chr. 3 exhibited a response to cognate Avr genes in
the isolate 40468 in the majority of the accessions, resulting in a statistically significant
outcome in GWAS. Conversely, this may obscure the statistical significance of Rps on
chr. 18 in a subset of the accessions. It is possible for multiple R genes to be involved in
resistance to the same Avr gene. For example, in the case of Brassica napus, the AvrLm4-7
gene of Leptosphaeria maculans is recognized by two R genes, Rlm4 and Rlm7, both of which
contribute to resistance against the pathogen [75]. However, the extensive use of cultivars
containing Rlm7 led to the emergence of new strains of the pathogen that were able to evade
the resistance provided by the Rlm7, thereby demonstrating the evolutionary pressure that
pathogens exert on single R gene-mediated resistance [76–78]. In rare instances, point
mutations in the pathogen’s Avr genes can result in virulence against multiple R genes
due to dual specificity, even in the absence of widespread R gene deployment [77]. It is
therefore evident that the incorporation of redundant R genes into breeding programs is of
significant value, as they serve as a safeguard against resistance breakdown caused by the
pathogen’s adaptation [79].

It is thus recommended that the various Rps genes be identified on an ongoing basis
and introduced into the relevant cultivars to achieve more durable or resilient resistance
to P. sojae. The alteration in pathotypes of U.S. P. sojae populations demonstrated that
the proportion of pathotypes capable of overcoming specific Rps genes increased over a
few decades. Consequently, some Rps genes are no longer capable of providing effective
protection [6,75]. In view of the adaptation of P. sojae to Rps genes and the limited longevity
of Rps genes [12], the redundant genetic sources are of importance. The use of alternative or
diverse Rps genes can effectively reduce selection pressures for particular Avr genes. With
this consideration, the pyramiding of multiple R genes can provide the robustness and
durability of resistance by creating more complex barriers against the pathogen, thereby
overcoming it. [33]. The findings of this study indicate that at least two distinct R gene
loci may provide effective protection against P. sojae isolate 40468, potentially through
functional redundancy or complementary resistance mechanisms.

In conclusion, the phenotypic data of 983 G. max accessions were derived from
hypocotyl inoculation assays using P. sojae isolate 40468. Genotypic data from a diverse
panel of soybean accessions, representing a broad spectrum of genetic diversity, were
integrated with phenotypic results to identify resistance loci via a GWAS. A considerable
number of SNPs are located within the known Rps region on chr. 3, as they are significantly
associated with the resistance. Haplotype analyses demonstrated that a few haplotypes
(LD3-2-F and LD3-3-C) exhibited enhanced concordance between the haplotype and phe-
notypic reactions. Moreover, a few new nucleotide variations associated with the increased
resistance on chr. 1 and 12 will contribute to the current understanding of Rps, which
requires further investigation. The identified genomic variations and predicted candidate
genes have the potential to enhance our understanding of the molecular mechanisms gov-
erning soybean-P. sojae interactions, thereby facilitating the development of more effective
and sustainable disease management strategies during soybean cultivation. Overall, this
study provides a foundation for future research aimed at enhancing soybean resilience to P.
sojae and other related pathogens.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/plants13243501/s1, Figure S1. Frequency distribution of standard deviations
of the percentages of dead seedlings among replications of individuals; Figure S2. Chromosome-
wide distributions and the densities of SNP in every 1Mb window. The horizontal axis represents
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chromosome length (in mega base pair), and different bar colors indicate varying levels of SNP density;
Figure S3. Linkage disequilibrium (LD) decay rates in euchromatic and heterochromatic regions. Linkage
disequilibrium (r2) was estimated by using all pairs of single nucleotide polymorphisms within 1000 kb
of physical distance in the euchromatic and heterochromatic regions of 983 soybean accessions; Figure S4.
A Venn diagram for overlapping and independent gene numbers among the three GWAS models; Table
S1. A collection of 983 soybean (Glycine max L.) genotypes used in the present study; Table S2. Numbers
and the density of SNP per chromosome; Table S3. Pericentromeric regions of 20 chromosomes of
soybean according to Schmutz et al. [38]; Table S4. SNPs significantly associated with resistance to
Phytophthora sojae isolate 40468 consistently identified by the CMLM, BLINK, and FarmCPU models.
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