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Abstract: The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle.
While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional
space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate
size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due
to the diverse polysaccharide composition and different development stages. Here, we review recent
research advances, both methodological and experimental, that shed new light on the architecture of
cell walls, with a focus on the mechanical heterogeneity of plant cell walls. Facilitated by advanced
techniques and tools, especially atomic force microscopy (AFM), research efforts over the last decade
have contributed to impressive progress in our understanding of how mechanical properties are
associated with cell growth. In particular, the pivotal importance of pectin, the most complex wall
polysaccharide, in wall mechanics is rapidly emerging. Pectin is regarded as an important deter-
minant for establishing anisotropic growth patterns of elongating cells. Altogether, the diversity of
plant cell walls can lead to heterogeneity in the mechanical properties, which will help to reveal how
mechanical factors regulate plant cell growth and organ morphogenesis.

Keywords: cell wall; mechanical properties; heterogeneity; atomic force microscopy

1. Introduction

Plants arise from a fixed location and grow to occupy a three-dimensional space [1].
This requires the plant structures to be flexible to allow appropriate growth as well as
rigid enough to support the increasing body mass and be resilient to harsh environments.
As a result, plants have developed unique cell walls as one of their ingenious strategies
to thrive on Earth [2]. Plant cell walls consist of a complex polysaccharide-rich network
and display marked diversity in different species, developmental stages, and even cell
types [3]. For example, the primary cell walls and the secondary cell walls both comprise
cellulose and hemicellulose. However, there is a large amount of pectin in the primary cell
walls, while the secondary cell walls have a large proportion of lignin. In addition, the
primary cell walls of dicotyledonous plants usually contain mostly pectin, while those of
monocotyledonous plants are comprised mostly of hemicellulose [4]

Plant growth starts from meristematic cells, which undergo cell division, expansion,
differentiation, and patterning to develop specialized organs and attain the organism’s
size [1,5]. Cell expansion is a pivotal determinant for the final shape and size of the plant
organs. Most cells may enlarge >1000-fold in volume to morph into a variety of shapes
for plant organs [6]. Plants consist of about 35 cell types with distinctive positions, shapes,
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final sizes, and wall characteristics [7]. For example, as shown in Figure 1, the pavement
cells in the leaf epidermis of a dicotyledonous plant (Arabidopsis) are multi-lobed like jigsaw
puzzle pieces [8], while the pavement cells of monocotyledons (maize) are parallel and
arranged in rows with weak undulations [9]. Even the identical cell type of the same plant
is distinguished from others. The epidermal cells of the hypocotyl are tightly arranged
squares while those of the petal are conical [10,11]. Meanwhile, some structures exhibit
certain similarities, such as a polygonal-net-like structure of the surface of the pollen grain
as well as the cross-section in the young stems of the poplar (Figure 1) [12,13]. Extensive
research on cell expansion has shown that expansive growth is a mechanical process, which
balances the internal turgor pressure and the external stresses from the cell walls [14,15].
Thus, the growth of cells enveloped by cell walls requires integrating the cell wall network
via the regulation of cell wall synthesis, degradation, and modifications and interaction
with the membrane proteins [16,17]. The breaking of the equilibrium caused by cellular
growth leads to heterogeneity in the mechanical properties of cell walls, which can be
detected by nanoindentation techniques such as atomic force microscopy (AFM) [18,19].

Figure 1. The structures of the diverse cell types of plants. The drawings represent four kinds of
plants: seedlings of Arabidopsis, maize, and poplar and the adult Arabidopsis. The typical cell types
in the corresponding area are shown in the dashed boxes. The images of the epidermal cells of the
cotyledon, hypocotyl, and petal of Arabidopsis as well as the pollen grain were captured by SEM from
different plants. The pavement cells of the maize leaf were stained with FB28 to visualize cellulose.
The stem cross-section of the young poplar was stained with toluidine blue O staining. The bar of the
pollen grain represents 5 µm, and the other bars represent 50 µm.

Here, we initially give a brief overview of the main cell wall components, especially
pectin, and recent technologies for detecting the mechanical properties of cell walls. Plant
organ morphogenesis is determined by the extensibility of the cell wall, which is controlled
dynamically by the organization and modification of its components, resulting in changes
in the cell wall’s mechanical properties. Thus, we summarize the widespread application
of AFM in detecting the mechanical properties of plant cell walls and discuss the concepts
regarding the significance of heterogeneity in the mechanical properties of plant cell walls
for plant growth and development.

2. Cell Wall Components and Dynamics

There are three different basic categories of cell walls in vascular plants, namely, the
primary wall, the secondary wall, and the middle lamella (Figure 2). These three types
of walls are different from each other not only in chemical composition but also in their
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respective functions. In growing plant organs, virtually all cells have the middle lamella
and the primary cell wall. The middle lamella is a pectin layer that cements the two
adjoining primary cell walls together (Figure 2) [20–22]. Plant cells go through apparent
phases of development. In these phases, primary cell walls are the major physical and
structural determinants for the rate and direction of cell expansion [23,24]. The primary cell
walls of higher plants include three major types of polysaccharides: cellulose, hemicellulose,
and pectin (Figure 2). These polysaccharides form a dynamic and complex array in the
structure of cell walls [25–27]. A typical wall is made of a crystalline backbone composed
of cellulose microfibrils interconnected by hemicelluloses and embedded in a pectin matrix
together with a number of structural proteins [28,29].

Figure 2. The major cell wall types and the primary cell wall structures. The drawings (left) represent
the junction of three plant cells. pm, plasma membrane; ml, middle lamella; pw, primary cell wall; sw,
secondary cell wall; v, vacuole. The annotation box (right) displays the structures of the primary cell wall.

Cellulose is a linear, unbranched polymer composed of β-1,4-glucose units, which are
linked into a flexible network of other matrix polysaccharides [1,30,31]. In current mod-
els, cellulose presents in the form of crystalline cellulose microfibrils which are the major
load-bearing components of the cell wall. Each neighboring glucose residue rotates 180◦

toward the chain axis to form a set of parallel chains which are subsequently stacked into
crystalline cellulose microfibrils. The degree of polymerization is a parameter of cellulose
defined by the molecular weight and length of the microfibrils. Cellulose is synthesized by
cellulose synthase complexes that are assembled in the Golgi apparatus and then delivered
to the plasma membrane [32–34]. Cellulose synthase complexes define the orientation for
producing the cellulose microfibrils, which travel along cortical microtubule paths [32].
Hemicelluloses are present in all terrestrial plants and these polysaccharide chains consist
of xyloglucans, xylans, mannans, and glucomannans [35]. Xyloglucans are the main group
of hemicelluloses with a branched structure comprising a β-1,4-linked glucan backbone and
side chains including xylose, galactose, and fucose residues [36]. Given the diverse struc-
tures, biochemical properties, and cellular distribution, many enzymes and pathways have
been identified as contributors to the biosynthesis of hemicellulose constituents [37–41].
The function of hemicelluloses is reported to influence the cell wall mechanics by acting as
an adhesive layer among cellulose microfibrils, which contributes to strengthening the cell
wall and controlling the movement of microfibrils during the growth process in response
to external forces [42–46].

Pectin belongs to a unique class of cell wall components that are distinguished from
other matrix polysaccharides by possessing a large number of acidic sugars as galacturonic
acid and a smaller amount of glucuronic acid [47–49]. Pectin biosynthesis also starts at
the Golgi apparatus, which is a multi-compartment organelle and cell wall polysaccharide
synthesis “factory”. Recent advances have revealed some parts of the machinery for pectin
biosynthesis, but plentiful mysteries remain [47,50,51]. As a measure of the complexity
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of pectin biosynthesis, at least 67 different types of enzymatic activities are believed to be
required [52]. It has been reported that there are over 730 genes encoding putative glyco-
syltransferases or glycosyl hydrolases in the Arabidopsis genome [25]. Proteomics analyses
of isolated Golgi apparatus have identified additional putative proteins or enzymes [53].
Because most of these enzymes are likely integral membrane proteins in their active form
and there is a lack of robust in vitro assays to validate their function, it is difficult to isolate
and track a single specific gene involved in pectin synthesis or modification.

There are three types of pectin polysaccharides, namely, homogalacturonan (HG),
rhamnogalacturonan I (RG-I), and rhamnogalacturonan II (RG-II). The primary walls in
the Arabidopsis hypocotyl are composed of up to 35% pectin [28]. Of these, HG is the
predominant form and constitutes about two-thirds of all cell wall pectin [54]. The chemical
structure of HG is an unbranched chain of α-1,4-linked D-galacturonic acid subunits,
which can be chemically modified [47–49]. The addition of O-acetyl ester groups on
the C2 and C3 atoms of galacturonic acid subunits is called pectin acetylation. Pectin
methylesterification refers to the addition of methyl carboxyester groups on C6 atoms. As
the second most abundant polymer of pectin, RG-I takes about 20% to 35% of total pectin,
which comprises alternating galacturonic acid and rhamnose residues. In addition, most of
the rhamnose residues are substituted with sugar sidechains such as galactan, arabinan,
and arabinogalactans [16,55]. RG-I is recognized as the most structurally heterogeneous
of the pectic polymers. There is some variation in the composition and prevalence of the
RG-I sidechains between different cell types and species [49]. RG-II is a group of highly
conserved and complex pectic polymers representing only about 10% of total pectin. RG-II
exists in the form of a backbone of HG decorated with various side chains including more
than 20 different glycosyl linkages and 13 diverse sugars [16]. The sidechain compositions
are distinct at different developmental stages or among different species [49].

The accurate arrangement of pectin domains in the cell wall is mostly unclear, but there
is a mix of covalent and non-covalent interactions combining pectin to a crosslinked matrix.
For instance, RG-II dimerizes by forming borate diester bonds between two RG-II molecules.
There is a noncovalent calcium-mediated interaction between demethyl-esterified portions
of HG, known as “egg-box” structures, which play an important role in some biological
processes [56]. Pectin has also been reported to interact with cellulose by galactan or
arabinan side chains of RG-I in vitro [57]. More interestingly, the polysaccharides of
cell walls undergo liquid–liquid phase separation in pollen grains, which broadens the
understanding of the mechanism for cell wall matrix patterning [12].

Pectin is a major determinant of the biophysical properties of the cell wall such as adhe-
sion, cohesion, and extensibility. Recent studies have uncovered previously unappreciated
roles of pectin as a key factor in wall structure, cellular growth, cell-to-cell communication,
and organ morphogenesis [47,58]. Mutations altering the pectin content result in signif-
icant changes in plant development and organ growth, such as gaut8, gaut12, and gatl1
mutants with severe dwarfed growth and sterility [55]. The ablating or overexpressing
of POLYGALACTURONASE INVOLVED IN EXPANSION3 (PGX3) affects the cotyledon
shape and stomata development [56]. Mutations in Arabidopsis RHAMNOSE BIOSYNTHE-
SIS 1 (RHM1), which is required for the synthesis of RG-I, cause significant left-handed
helical growth of the petals and roots [59]. Besides the synthesis and degradation of pectin,
plants regulate their growth through the modification of pectin in changing the degree
of methyl esterification or the acetylation level. For example, the HG methyltransferase
QUASIMODO2 mutation (qua2) reduced cell adhesion in the cotyledon and hypocotyl [60].
Pectin de-methylesterification of longitudinal cell walls is one of the events underlying cell
wall loosening during the elongation of dark-grown hypocotyls [61,62].

3. Techniques and Tools for Probing Biophysical and Biochemical Properties of
Cell Walls

During plant development, cells might enlarge extremely compared with their original
sizes [63]. Turgor pressure, also called hydrostatic pressure, is the pressure exerted by the
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osmotic flow of water and provides the force that pushes the plasma membrane against
the cell wall. The expansion of plant cells is primarily determined by the force balance
between the turgor and the tensile resistance of the cell walls. The cell growth process can
cause changes in the physicochemical status inside and outside the cell. This has inspired
biologists to use various ingenious methods to noninvasively measure the mechanical and
chemical properties and dynamics over the last half century [64–68]. Concurrently, multiple
imaging techniques have been developed to illustrate the surface structure and biochemical
properties of the cell wall, which have added straightforward crucial information about
cell wall development and function [69,70]. These imaging methods have two categories,
namely, labeling-based and label-free methods. Labeling-based techniques include histo-
chemical/cytochemical techniques, immunolabeling techniques, and genetically encoded
reporter techniques [71–74]. Cellulose can be detected using some dyes, such as a fluo-
rescent brightener FB28, as shown in the pavement cells of the maize leaf (Figure 1) [75].
Pontamine Fast Scarlet 4B is another widely used fluorescent dye to stain cellulose and is
especially suitable for confocal microscopy [76]. In addition, there is a series of monoclonal
antibodies for the analysis of cell wall carbohydrates, such as LM19 for unesterified HG and
LM20 for high methylester HG. These immunolabeling experiments have been widely used
in different tissues and species including Arabidopsis leaves, guard cells, seed mucilage, rice
pollen cells, and Vaccinium macrocarpon pith cells [77–81]. Overall, fluorescence microscopy
is becoming an essential tool, and these fluorescent molecules with specific binding affinity
to various cell wall polysaccharides are used to visualize and locate cell wall components
in plant development and cell biology [82].

Label-free imaging techniques comprise transitioned tools from ultraviolet microscopy,
scanning electron microscopy (SEM), and transmission electron microscopy to more ad-
vanced techniques such as Fourier transform infrared microspectroscopy, confocal Raman
microspectroscopy, coherent anti-Stokes Raman scattering microscopy (CARS), stimulated
Raman scattering microscopy (SRS), and AFM [69,83–86]. Those technologies can generally
be divided into two categories: one is based on the chemical bond features and the other
is dependent on the physical interactions. Raman scattering microscopy is designed to
collect the structure characterization and the chemical identification of plant cell walls
based on the inelastic scattering phenomenon, which becomes a powerful approach to
capture abundant details with micrometer resolution [87,88]. CARS and SRS have been
developed to improve the sensitivity and accuracy of Raman spectroscopy [89]. Both CARS
and SRS are successfully applied to visualize the major chemicals and structural composi-
tion in Arabidopsis and woody plants [77,89]. Some techniques have also been applied to
investigate the structure and assembly of cell wall components, including the crystallite
shape and size and crystallinity of cellulose, such as X-ray scattering, which reveals the size
and orientation of cellulose microfibrils, sum frequency generation spectroscopy, which
indicates the meso-scale ordering and crystallinity of microfibrils, and nuclear magnetic
resonance, which identifies the structure of individual cell wall polymers [90]. Specifically,
imaging techniques, like SEM, provide information on the superficial changes in the cell
wall textures and structures (Figure 1).

The other tools based on physical interaction detect mechanical properties and surface
morphology simultaneously. Modern methods for probing the mechanical properties of
the cell wall, including elasticity, plasticity, viscoelasticity, and viscosity, generally combine
micro-indentation techniques with force transducers and rheometry [91]. The principle
of micro-indentation is the application of a probe to press the surface of the biological
samples whereby the depth or area of the produced indentation and the initial force are
used to deduce the mechanical properties of the tested samples [92]. Because the cell wall
thickness usually ranges between 0.1 and a few micrometers, it is challenging to use micro-
indentation methods in vivo. Within the last decade, nanoindentation methods, such as
AFM (Figure 3), have been increasingly applied to analyze cell wall biophysics [93–97]. The
principle of AFM is to apply a probe hanging under the cantilever to touch the samples and
then collect force-indentation curves at various cell surface points (Figure 3). The curves
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enable the calculation of the mechanical properties such as the adhesion and elasticity to
re-construct the three-dimensional morphology of samples by analyzing the depth data
as well [84,98]. The application of AFM has enabled researchers to obtain unprecedented
information about the surface architecture, mechanics, and chemical properties of living
plants at single-cell or even subcellular levels (Figure 4) [99,100].

Figure 3. Schematic representation of the AFM. The sample (represented as a young seedling) is
placed underneath a probe hanging in a flexible cantilever at a given force. The actual indentation
depth is detected by the deformation of the cantilever via a laser deflection. Then, the force curves
are captured by the detection unit.

Figure 4. AFM mapping of three-dimensional topography and elastic modulus of epidermal cells
from six plant tissues with peak force tapping mode. The distal region of a growing Nicotiana tabacum
pollen tube, the cross-section of a young poplar stem, the cotyledon of Arabidopsis seedlings, a maize
leaf, Arabidopsis petals, and pollen grains were analyzed. In the upper channel, the colors of the
three-dimensional topography represent the distance from the base, which is the deepest point the
probe reaches. The cell topography overlaid with the elastic modulus is shown in the bottom channel
with the colors indicating elasticity.
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4. Advanced Applications of AFM in Plant Cell Walls

Owing to technical advancements, a great number of delicate studies have been
carried out on multiple species during almost all development stages with the application
of AFM [101]. Plant organs usually initiate from the meristem and, for example, the leaf
primordia commence from the margin of the shoot apical meristem. Qi et al. found that
leaf dorsoventral polarity signaling resulted in mechanical heterogeneity of the cell wall
in tomato and Arabidopsis by imaging the pectin methyl-esterification distribution and
applying AFM to map the wall rigidness [102]. The elastic modulus of the epidermal cell
wall in living tomato leaf primordia ranged from 1 to 10 MPa in different leaf domains. As
the leaves grow and enlarge, the stiffness changes. Zhang et al. recorded an elastic modulus
of about 50 MPa in the epidermal cell wall of mature cotyledons. They illustrated that the
leaves were larger than the wild type in mutants with a low pectin level, which allows a
softer cell wall, and the same phenotypes were observed in the petals with a modulus of
around 200 MPa [77]. The research object of AFM is not limited to dicotyledonous plants
but is also used in monocotyledonous plants, such as rice, maize, and wheat [103,104]. For
instance, Wang et al. measured the mechanical properties of the cell walls from lodicule
cells to reveal a model showing that pectin methylesterification controlled the diurnal
flower-opening times in rice [105]. The surface elastic modulus of the lodicules was around
10 MPa in the control lines while that of the mutants was up to 25 MPa or lower than
10 MPa. With the development of operational methods and a variety of working modes,
the detection range for AFM is no longer limited to the surface structure of plant tissues.
For example, the cellulose microfibrils are not usually exposed on the surface of the cell
wall, while Du et al. used AFM to detect cellulose microfibrils from resuspended cell
wall samples that were ground in liquid nitrogen and rinsed in buffers [60]. It is now
possible to investigate the mechanical properties of internal cells assisted via tissue slicing
using AFM, such as research on maize stover stems, maize roots, and poplar stem cells
(Figure 4) [106–108].

To address the fast-growing changes in certain biological processes, researchers em-
ployed simple tissues, such as onion epidermis and pollen grains, to observe the alterations
of cell walls (Figure 2) [109,110]. They monitored real-time changes in cell-free strips of
onion epidermal walls with different enzyme treatments to assess which polysaccharides
bear the mechanical forces of the cell wall by AFM. Their observations showed that the
removal of cellulose microfibrils in superficial lamellae softened the wall by reducing the
mechanical stiffness but yet did not induce wall loosening. However, HG removal in-
creased the indentation compliance but not the tensile compliance. These findings showed
that the arrays of cellulose-hemicelluloses were embedded in the pectin matrix, which
acted as “glue” to strengthen the cell wall and allowed the plant cell wall to extend [47,96].
The increasingly quantitative information opens the possibility for mathematical model-
ing and computational simulation to recapitulate how cell wall elasticity, plasticity, and
time-dependent extension are related to dynamic cell wall structures [29,111–114].

5. Heterogeneity in Mechanical Properties of Plant Cell Walls

Although plenty of molecular players have been identified and many conceptual and
mathematical models have been proposed, a crystal-clear understanding of how cell wall
remodeling mechanistically dictates specific shape change is still pending [15,115,116]. It
has been generally accepted that turgor pressure generates an isotropic force on the cell wall.
When cells need to achieve directional growth, the chemical components and structure of
load-bearing walls are modified to be mechanically anisotropic [14]. The local stiffness of
the cell wall is likely to be a result of growth regulation in the development process. Here,
we take the hypocotyl elongation and pavement wave pattern as two examples to further
illustrate the heterogeneity of plant cell walls.

In darkness, rapid hypocotyl elongation depends on the ability of cells to shift from
isotropic to anisotropic growth. This growth symmetry breaking reflects changes in the
extensibility of the cell walls. The classical view of the direction of turgor-driven cell
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expansion is that the cortical microtubule mediates the orientation of cellulose microfibrils.
Anisotropic elongation of the hypocotyl is thus canonically attributed to cell wall anisotropy
produced by the oriented cellulose fibers. In dark-grown hypocotyl cells, microtubule ar-
rays were indeed observed to be transverse to the longitudinal axis of the cell [117]. After
exposure to light, the hypocotyl cells ceased axial extension and the microtubules were
rapidly rearranged to be parallel to the growing axis. Using AFM to track the changes in cell
wall mechanics in the hypocotyl epidermis, Peaucelle et al. found that an asymmetric loos-
ening of longitudinal anticlinal walls took place without cortical microtubule reorientation
prior to growth symmetry breaking [62]. The quantification results showed that the moduli
of the transverse walls were 0.2 MPa and those of the longitudinal walls were less than
0.1 MPa in the wild type. However, the moduli of the transverse and longitudinal walls
both increased to 0.3 MPa or above in the PMEI3 overexpression lines and the increments
of the longitudinal walls were larger than those of the transverse walls. On the contrary,
the moduli of the transverse and longitudinal walls simultaneously fell below 0.1 MPa in
the PME5 overexpression lines. Hence, they interpreted that wall loosening to be triggered
by the selective de-methylesterification of pectin in the longitudinal walls where pectin
methylesterase activity showed a bipolar distribution. Moreover, they revealed that the
subsequent orientation of the microtubule was not required for growth symmetry breaking
but contributed to consolidating the growth axis [62]. By carefully monitoring the periodic
diurnal variation in hypocotyl growth, Ivakov et al. confirmed that light conditions indeed
caused heterogeneity in the cell walls [118]. They further illustrated that cellulose syn-
thesis and cell expansion could be uncoupled and, therefore, were regulated by different
mechanisms [118]. Bou Daher et al. quantitatively showed that pectin chemistry and wall
elasticity were asymmetric in the etiolated hypocotyl epidermis starting at germination [61].
They concluded that the differential cell wall stiffness, which resulted from the different
pectin chemical modifications, triggered growth symmetry breaking followed by cortical
microtubule reorientation.

Similarly, localized changes to the cell wall polymers led to heterogeneous biomechan-
ical forces, which were found in the epidermal pavement cells of leaves. The interdigitated
jigsaw puzzle shape of pavement cells has been observed in many species, such as in the
cotyledon and the true leaves in Arabidopsis as well as maize (Figure 1). A widely accepted
model for the internal mechanism of pavement cell shape and undulation formation was
represented by the co-interactions of the ROP signaling and phytohormone signaling path-
ways [9]. However, the precise function of cell wall components has been a hot topic of
debate for a long time. Advances in biophysical measurements and quantitative imaging
technologies have resulted in some theories to explain the cell wall biology impact on
pavement cells to develop undulating perimeters [119]. Majda et al. used computational
modeling to show that the pavement cell shapes within an epidermis must be related to
the mechanical heterogeneities across and along the anticlinal cell walls between adjacent
cells under tension [95]. They scanned 16 mutants deficient in cell wall components to
measure the cell geometry and demonstrated that wavy cell contours relied on the cell wall
composition. Moreover, they detected the polar distribution of pectin and heterogeneity in
the mechanical properties along cell walls by performing immunocytochemistry via TEM
and AFM. In addition, Altartouri et al. used the anisotropy1 mutant (any1), which main-
tained the overall cellulose content but reduced the cellulose crystallinity, to demonstrate
that the initiation of undulations is related to the local enrichment in demethylated pectin,
and, subsequently, the deposition of cellulose microfibrils promoted the lobe development
in pavement cells [120]. Altogether, in the epidermal pavement cells of leaves, the local
mechanical heterogeneity in the cell walls contributed to the morphogenesis of wavy cell
shapes [121].

Heterogeneity exists not only in leaves and hypocotyls but also in various cell types
of plants. Here, we displayed Young’s modulus (i.e., a measure of the elasticity) from six
different plant organs by applying AFM (Figure 4). Under our experimental conditions, the
modulus of the growing pollen tube in Nicotiana tabacum was the smallest at around 5 Mpa,
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followed by the xylem tissue from the young poplar stem and the cotyledon of Arabidopsis
with moduli of about 10 and 20 Mpa, respectively. However, in the mature tissues, the
stiffness of the cell walls was higher. The maximum moduli on the pavement cells of the
maize leaf can reach 50 MPa, while those on the epidermal cells of the Arabidopsis petals
are ten times higher, up to 500 MPa. The outer shell of the pollen grain, namely the exine,
is recognized as one of the most rigid substances in nature [122]. The moduli of the exine
were up to 3 GPa, which is over 600 times higher than that of the pollen tubes (Figure 4).
These results are consistent with previous reports [77,107,123,124]. Overall, every cell type
exhibits heterogeneity in the cell wall mechanics, and the modulus is different even in
the same area of the walls (Figure 4). Thus, mechanical heterogeneity plays a vital role in
shaping cell growth and formatting organ development patterns [125].

The underlying molecular mechanism of the mechanical heterogeneities of cell walls
still remains unknown. First, it is elusive to determine the essence and chemical modifica-
tion status of the polymers generating mechanical heterogeneity. Increasing evidence points
to heterogeneity in the polysaccharide constituents since the earliest analyses of isolated
wall components by chemists [126,127]. In addition, for a long time, chemical isolation has
been one of the most common ways of investigating cell wall polysaccharides [127,128].
Although differences in the average wall composition are observed using chemical isolation
methods, a good deal of heterogeneity from different cell types or the chemical status could
be disguised [129]. Fortunately, a series of advanced in situ methods have been applied
to partially make up for this deficiency, such as specific monoclonal antibodies, Raman
spectroscopy, AFM (Figures 3 and 4), and so on [130–132]. In addition, there is feedback
regulation of mechanical heterogeneity in morphogenesis. The dynamic cell wall network
produces such local stiffness, which leads to further changes in the cell status, combining
the growth signals inside and outside the cells simultaneously. Hamant and his colleague
summarized that many development processes rely on the indirect perception of mechani-
cal forces by mechanotransduction pathways [133,134]. For instance, calcium, binding with
the demethylesterified pectin of cell walls, could be released and cause conformational
changes in downstream factors (like FERONIA) to regulate morphogenesis. In this case, the
cell wall components acted as signals to convert the mechanical properties into biochemical
cues [17,135]. Therefore, the mechanical properties and the cell wall network are two sets
of dynamic, heterogenous, and coordinated regulatory mechanisms in plant development.

6. Conclusions and Perspective

Plant cell walls are heterogeneous and dynamic structures because their composition
and modification status vary according to development stages and environments. Reflect-
ing this complex nature, about 10% of plant genes are involved in the biosynthesis and
regulation of cell walls [46]. Here, we have reviewed methodological and experimental
research in recent years that sheds new light on the mechanical heterogeneity of plant cell
walls. In particular, with quantitative analysis and noninvasive in vivo imaging, the pivotal
importance of pectin in wall mechanics is rapidly emerging. On the one hand, a more pre-
dominant role for the pectin network in enabling wall–turgor pressure dynamics is taking
shape [136]. On the other hand, pectin is now appreciated as an important determinant for
establishing the anisotropic growth patterns of elongating cells [61,62]. As the scientific
community continuously makes discoveries, new exciting questions will arise, and old
ones will be revisited regarding the relationship between the cell wall and developmental
patterning in plants. Given the complexity of cell wall polysaccharides, it is crucial to use
multiple experimental and computational techniques for isolating target proteins, devel-
oping enzymatic assays, and constructing predictive models. We believe technological
development together with the implementation of interdisciplinary approaches will inspire
and advance our future understanding in this field.
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