Recently, replacing chemical fertilizers with straw returning and new fertilizers has received considerable attention in the agricultural sector, as it is believed to increase rice yield and improve soil properties. However, less is known about rice growth and soil properties in paddy fields with the addition of different fertilizers. Thus, in this paper, we investigated the effects of different fertilizer treatments, including no fertilization (CK), optimized fertilization based on the medium yield recommended fertilizer amount (OF), 4.50 Mg ha
−1 straw returning with chemical fertilizers (SF), 0.59 Mg ha
−1 slow-release fertilizer with chemical fertilizers (SRF), and 0.60 Mg ha
−1 water-soluble fertilizer with chemical fertilizers (WSF), on rice growth, yield, and soil properties through a field experiment. The results show that compared with the OF treatment, the new SF, SRF, and WSF treatments increased plant height, main root length, tiller number, leaf area index, chlorophyll content, and aboveground dry weight. The SF, SRF, and WSF treatments improved rice grain yield by 30.65–32.51% and 0.24–1.66% compared to the CK and OF treatments, respectively. The SRF treatment increased nitrogen (N) and phosphorus (P) uptake by 18.78% and 28.68%, the harvest indexes of N and P by 1.75% and 0.59%, and the partial productivity of N and P by 2.64% and 2.63%, respectively, compared with the OF treatment. However, fertilization did not significantly affect the average yield, harvest indexes of N and P, and partial productivity of N and P. The contents of TN, AN, SOM, TP, AP, and AK across all the treatments decreased significantly with increasing soil depth, while soil pH increased with soil depth. The SF treatment could more effectively increase soil pH and NH
4+-N content compared to the SRF and WSF treatments, while the SRF treatment could greatly enhance other soil nutrients and enzyme activities compared to the SF and WSF treatments. A correlation analysis showed that rice yield was significantly positively associated with tiller number, leaf area index, chlorophyll, soil NO
3−-N, NH
4+-N, SOM, TP, AK, and soil enzyme activity. The experimental results indicate that SRF was the best fertilization method to improve rice growth and yield and enhance soil properties, followed by the SF, WSF, and OF treatments. Hence, the results provide useful information for better fertilization management in the Chaohu Lake region of China.
Full article