Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions
Abstract
:1. Introduction
2. Results
2.1. Climate Conditions during the Growing Seasons
2.2. Impact of Heat Stress on the BIL Populations
2.3. Relationship among Traits
2.4. Linkage Maps for the BILs
2.5. Identified QTLs in All Environments
2.6. QTLs Associated with Heat Stress Response in Both BILs
3. Discussion
3.1. The High-Resolution Linkage Maps
3.2. QTLs Identified in All Environments
3.2.1. Identification of Stable Major QTLs for Yield- and Heat Stress Tolerance-Related Traits
3.2.2. Common and Specific Regions of Detected QTLs in BIL1 and BIL2
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Sites and Design
4.3. Phenotyping of BIL Populations
4.3.1. Trait Evaluation
4.3.2. Statistical Analysis of Phenotypic Data
4.4. Genotyping of the BILs, Map Construction, and QTL Analysis
4.4.1. DNA Extraction
4.4.2. Maps Construction
4.4.3. QTL Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Ortiz, R.; Sayre, K.D.; Govaerts, B.; Gupta, R.; Subbarao, G.V.; Ban, T.; Hodson, D.; Dixon, J.M.; Iván Ortiz-Monasterio, J.; Reynolds, M. Climate Change: Can Wheat Beat the Heat? Agric. Ecosyst. Environ. 2008, 126, 46–58. [Google Scholar] [CrossRef]
- Pinto, R.S.; Molero, G.; Reynolds, M.P. Identification of Heat Tolerant Wheat Lines Showing Genetic Variation in Leaf Respiration and other Physiological Traits. Euphytica 2017, 213, 76. [Google Scholar] [CrossRef]
- Reynolds, M.; Tattaris, M.; Cossani, C.; Ellis, M.; Yamaguchi-Shinozaki, K.; Saint Pierre, C. Exploring Genetic Resources to Increase Adaptation of Wheat to Climate Change. In Advances in Wheat Genetics: From Genome to Field; Yasunari, O., Shigeo, T., Hirokazu, H., Eds.; Springer: Tokyo, Japan, 2015; pp. 355–368. [Google Scholar]
- Kishii, M. An Update of Recent Use of Aegilops Species in Wheat Breeding. Front. Plant Sci. 2019, 10, 585. [Google Scholar] [CrossRef]
- Ogbonnaya, F.C.; Abdalla, O.; Mujeeb-Kazi, A.; Kazi, A.G.; Xu, S.S.; Gosman, N.; Lagudah, E.S.; Bonnett, D.; Sorrells, M.E.; Tsujimoto, H. Synthetic Hexaploids: Harnessing Species of the Primary Gene Pool for Wheat Improvement. Plant Breed. Rev. 2013, 37, 35–122. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Kianersi, F.; Poczai, P.; Moradkhani, H. Potential of Wild Relatives of Wheat: Ideal Genetic Resources for Future Breeding Programs. Agronomy 2021, 11, 1656. [Google Scholar] [CrossRef]
- Tsujimoto, H.; Sohail, Q.; Matsuoka, Y. Broadening the Genetic Diversity of Common and Durum Wheat for Abiotic Stress Tolerance Breeding. In Advances in Wheat Genetics: From Genome to Field; Ogihara, Y., Takumi, S., Handa, H., Eds.; Springer: Tokyo, Japan, 2015; pp. 233–238. [Google Scholar] [CrossRef]
- Mehvish, A.; Aziz, A.; Bukhari, B.; Qayyum, H.; Mahmood, Z.; Baber, M.; Sajjad, M.; Pang, X.; Wang, F. Identification of Single-Nucleotide Polymorphisms (SNPs) Associated with Heat Tolerance at the Reproductive Stage in Synthetic Hexaploid Wheats Using GWAS. Plants 2023, 12, 1610. [Google Scholar] [CrossRef]
- Molero, G.; Coombes, B.; Joynson, R.; Pinto, F.; Piñera-Chávez, F.J.; Rivera-Amado, C.; Hall, A.; Reynolds, M.P. Exotic Alleles Contribute to Heat Tolerance in Wheat under Field Conditions. Commun. Biol. 2023, 6, 21. [Google Scholar] [CrossRef]
- Kaur, A.; Chhuneja, P.; Srivastava, P.; Singh, K.; Kaur, S. Evaluation of Triticum durum-Aegilops tauschii Derived Primary Synthetics as Potential Sources of Heat Stress Tolerance for Wheat Improvement. Plant Genet. Resour. Characterisation Util. 2021, 19, 74–89. [Google Scholar] [CrossRef]
- Liu, C.; Sukumaran, S.; Claverie, E.; Sansaloni, C.; Dreisigacker, S.; Reynolds, M. Genetic Dissection of Heat and Drought Stress QTLs in Phenology-Controlled Synthetic-Derived Recombinant Inbred Lines in Spring Wheat. Mol. Breed. 2019, 39, 34. [Google Scholar] [CrossRef]
- Afzal, F.; Li, H.; Gul, A.; Subhani, A.; Ali, A.; Mujeeb-Kazi, A.; Ogbonnaya, F.; Trethowan, R.; Xia, X.; He, Z.; et al. Genome-Wide Analyses Reveal Footprints of Divergent Selection and Drought Adaptive Traits in Synthetic-Derived Wheats. G3 Genes Genomes Genet. 2019, 9, 1957–1973. [Google Scholar] [CrossRef]
- Gorafi, Y.S.A.; Kim, J.S.; Elbashir, A.A.E.; Tsujimoto, H. A Population of Wheat Multiple Synthetic Derivatives: An Effective Platform to Explore, Harness and Utilize Genetic Diversity of Aegilops tauschii for Wheat Improvement. Theor. Appl. Genet. 2018, 131, 1615–1626. [Google Scholar] [CrossRef]
- Itam, M.O.; Mega, R.; Gorafi, Y.S.A.; Yamasaki, Y.; Tahir, I.S.A.; Akashi, K.; Tsujimoto, H. Genomic Analysis for Heat and Combined Heat–Drought Resilience in Bread Wheat under Field Conditions. Theor. Appl. Genet. 2022, 135, 337–350. [Google Scholar] [CrossRef]
- Itam, M.O.; Gorafi, Y.S.A.; Tahir, I.S.A.; Tsujimoto, H. Genetic Variation in Drought Resilience-Related Traits among Wheat Multiple Synthetic Derivative Lines: Insights for Climate Resilience Breeding. Breed. Sci. 2021, 71, 435–443. [Google Scholar] [CrossRef]
- Elhadi, G.M.I.; Kamal, N.M.; Gorafi, Y.S.A.; Yamasaki, Y.; Takata, K.; Tahir, I.S.A.; Itam, M.O.; Tanaka, H.; Tsujimoto, H. Exploitation of Tolerance of Wheat Kernel Weight and Shape-Related Traits from Aegilops tauschii under Heat and Combined Heat-Drought Stresses. Int. J. Mol. Sci. 2021, 22, 1830. [Google Scholar] [CrossRef]
- Elhadi, G.M.I.; Kamal, N.M.; Gorafi, Y.S.A.; Yamasaki, Y.; Ban, Y.; Kato, K.; Tahir, I.S.A.; Ishii, T.; Tanaka, H.; Tsujimoto, H. Novel Loci for Kernel Hardness Appeared as a Response to Heat and Combined Heat-Drought Conditions in Wheat Harboring Aegilops tauschii Diversity. Agronomy 2021, 11, 1061. [Google Scholar] [CrossRef]
- Mohamed, I.E.S.; Kamal, N.M.; Mustafa, H.M.; Abdalla, M.G.A.; Elhashimi, A.M.A.; Gorafi, Y.S.A.; Tahir, I.S.A.; Tsujimoto, H.; Tanaka, H. Identification of Glu-D1 Alleles and Novel Marker–Trait Associations for Flour Quality and Grain Yield Traits under Heat-Stress Environments in Wheat Lines Derived from Diverse Accessions of Aegilops tauschii. Int. J. Mol. Sci. 2022, 23, 12034. [Google Scholar] [CrossRef]
- Mohamed, I.E.S.; Oe, H.; Kamal, N.M.; Mustafa, H.M.; Gorafi, Y.S.A.; Tahir, I.S.A.; Tsujimoto, H.; Tanaka, H. Enhancing Wheat Flour Quality through Introgression of High-Molecular-Weight Glutenin Subunits from Aegilops tauschii Accessions. Front. Sustain. Food Syst. 2022, 6, 887795. [Google Scholar] [CrossRef]
- Elbashir, A.A.E.; Gorafi, Y.S.A.; Tahir, I.S.A.; Elhashimi, A.M.A.; Abdalla, M.G.A.; Tsujimoto, H. Genetic Variation in Heat Tolerance-Related Traits in a Population of Wheat Multiple Synthetic Derivatives. Breed. Sci. 2017, 67, 483–492. [Google Scholar] [CrossRef]
- Ahmed Idres Yahya, M.; Serag Alnor Gorafi, Y.; Mohamed Kamal, N.; Yousif Balla, M.; Sidahmed Ali Tahir, I.; Zheng, L.; Kawakami, N.; Tsujimoto, H. Mining Aegilops tauschii Genetic Diversity in the Background of Bread Wheat Revealed a Novel QTL for Seed Dormancy. Front. Plant Sci. 2023, 14, 1270925. [Google Scholar] [CrossRef]
- Guan, P.; Lu, L.; Jia, L.; Kabir, M.R.; Zhang, J.; Lan, T.; Zhao, Y.; Xin, M.; Hu, Z.; Yao, Y.; et al. Global QTL Analysis Identifies Genomic Regions on Chromosomes 4A and 4B Harboring Stable Loci for Yield-Related Traits across Different Environments in Wheat (Triticum aestivum L.). Front. Plant Sci. 2018, 9, 529. [Google Scholar] [CrossRef]
- Paliwal, R.; Röder, M.S.; Kumar, U.; Srivastava, J.P.; Joshi, A.K. QTL Mapping of Terminal Heat Tolerance in Hexaploid Wheat (T. aestivum L.). Theor. Appl. Genet. 2012, 125, 561–575. [Google Scholar] [CrossRef]
- El Hassouni, K.; Belkadi, B.; Filali-Maltouf, A.; Tidiane-Sall, A.; Al-Abdallat, A.; Nachit, M.; Bassi, F.M. Loci Controlling Adaptation to Heat Stress Occurring at the Reproductive Stage in Durum Wheat. Agronomy 2019, 9, 414. [Google Scholar] [CrossRef]
- Wang, X.; Guan, P.; Xin, M.; Wang, Y.; Chen, X.; Zhao, A.; Liu, M.; Li, H.; Zhang, M.; Lu, L.; et al. Genome-Wide Association Study Identifies QTL for Thousand Grain Weight in Winter Wheat under Normal- and Late-Sown Stressed Environments. Theor. Appl. Genet. 2021, 134, 143–157. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F. Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes 2021, 12, 783. [Google Scholar] [CrossRef]
- Reynolds, M.; Dreccer, F.; Trethowan, R. Drought-Adaptive Traits Derived from Wheat Wild Relatives and Landraces. J. Exp. Bot. 2007, 58, 177–186. [Google Scholar] [CrossRef]
- Tahir, I.S.A.; Elbashier, E.M.E.; Mustafa, H.M.; Elhashimi, A.M.A.; Abdalla, M.G.A.; Hassan, M.K.; Saad, A.S.I.; Elbashir, A.A.E.; Elsheikh, O.; Meheesi, S. Durum Wheat Field Performance and Stability in the Irrigated, Dry and Heat-Prone Environments of Sudan. Agronomy 2023, 13, 1598. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Pask, A.J.D.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint, P.C.; Payne, T.; Singh, R.P.; Braun, H.J.; et al. Strategic Crossing of Biomass and Harvest Index—Source and Sink—Achieves Genetic Gains in Wheat. Euphytica 2017, 213, 257. [Google Scholar] [CrossRef]
- Miki, Y.; Yoshida, K.; Enoki, H.; Komura, S.; Suzuki, K.; Inamori, M.; Nishijima, R.; Takumi, S. GRAS-Di System Facilitates High-Density Genetic Map Construction and QTL Identification in Recombinant Inbred Lines of the Wheat Progenitor Aegilops tauschii. Sci. Rep. 2020, 10, 21455. [Google Scholar] [CrossRef]
- Röder, M.S.; Korzun, V.; Wendehake, K.; Plaschke, J.; Tixier, M.-H.; Leroy, P.; Ganal, M.W. A Microsatellite Map of Wheat. Genetics 1998, 149, 2007–2023. [Google Scholar] [CrossRef]
- Cui, F.; Fan, X.; Zhao, C.; Zhang, W.; Chen, M.; Ji, J.; Li, J. A Novel Genetic Map of Wheat: Utility for Mapping QTL for Yield under Different Nitrogen Treatments. BMC Genet. 2014, 15, 57. [Google Scholar] [CrossRef]
- Liton, M.M.U.A.; McCartney, C.A.; Hiebert, C.W.; Kumar, S.; Jordan, M.C.; Ayele, B.T. Identification of Loci for Pre-Harvest Sprouting Resistance in the Highly Dormant Spring Wheat RL4137. Theor. Appl. Genet. 2021, 134, 113–124. [Google Scholar] [CrossRef]
- Abdollahi Sisi, N.; Stein, N.; Himmelbach, A.; Mohammadi, S.A. High-Density Linkage Mapping of Agronomic Trait QTLs in Wheat under Water Deficit Condition Using Genotyping by Sequencing (GBS). Plants 2022, 11, 2533. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of Polyploid Wheat Genomic Diversity Using a High-Density 90 000 Single Nucleotide Polymorphism Array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef]
- Bhusal, N.; Sarial, A.K.; Sharma, P.; Sareen, S. Mapping QTLs for Grain Yield Components in Wheat under Heat Stress. PLoS ONE 2017, 12, 0189594. [Google Scholar] [CrossRef]
- Tadesse, W.; Suleiman, S.; Tahir, I.; Sanchez-Garcia, M.; Jighly, A.; Hagras, A.; Thabet, S.; Baum, M. Heat-Tolerant QTLs Associated with Grain Yield and Its Components in Spring Bread Wheat under Heat-Stressed Environments of Sudan and Egypt. Crop Sci. 2019, 59, 199–211. [Google Scholar] [CrossRef]
- Telfer, P.; Edwards, J.; Norman, A.; Bennett, D.; Smith, A.; Able, J.A.; Kuchel, H. Genetic Analysis of Wheat (Triticum aestivum) Adaptation to Heat Stress. Theor. Appl. Genet. 2021, 134, 1387–1407. [Google Scholar] [CrossRef]
- Mohammadi, V.; Zali, A.A.; Bihamta, M.R. Mapping QTLs for Heat Tolerance in Wheat. J. Agric. Sci. Technol. 2008, 10, 261–267. [Google Scholar]
- Hassan, F.S.C.; Solouki, M.; Fakheri, B.A.; Nezhad, N.M.; Masoudi, B. Mapping QTLs for Physiological and Biochemical Traits Related to Grain Yield under Control and Terminal Heat Stress Conditions in Bread Wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2018, 24, 1231–1243. [Google Scholar] [CrossRef]
- Li, L.; Mao, X.; Wang, J.; Chang, X.; Reynolds, M.; Jing, R. Genetic Dissection of Drought and Heat-Responsive Agronomic Traits in Wheat. Plant Cell Environ. 2019, 42, 2540–2553. [Google Scholar] [CrossRef]
- Sangwan, S.; Munjal, R.; Ram, K.; Kumar, N. QTL Mapping for Morphological and Physiological Traits in RILs of Spring Wheat Population of WH1021 × WH711. J. Environ. Biol. 2019, 40, 674–682. [Google Scholar] [CrossRef]
- Mahjoob, M.M.M.; Kamal, N.M.; Gorafi, Y.S.A.; Tsujimoto, H. Genome-Wide Association Study Reveals Distinct Genetic Associations Related to Leaf Hair Density in Two Lineages of Wheat-Wild Relative Aegilops tauschii. Sci. Rep. 2022, 12, 17486. [Google Scholar] [CrossRef]
- Farhad, M.; Kumar, U.; Tomar, V.; Bhati, P.K.; Krishnan, J.N.; Kishowar-E-Mustarin; Barek, V.; Brestic, M.; Hossain, A. Heat Stress in Wheat: A Global Challenge to Feed Billions in the Current Era of the Changing Climate. Front. Sustain. Food Syst. 2023, 7, 1203721. [Google Scholar] [CrossRef]
- Balla, M.Y.; Gorafi, Y.S.A.; Kamal, N.M.; Abdalla, M.G.A.; Tahir, I.S.A.; Tsujimoto, H. Exploiting Wild Emmer Wheat Diversity to Improve Wheat A and B Genomes in Breeding for Heat Stress Adaptation. Front. Plant Sci. 2022, 13, 895742. [Google Scholar] [CrossRef]
- Fernandez, G. Effective Selection Criteria for Assessing Plant Stress Tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Taiwan, China, 13–18 August 1992; Kuo, C.G., Ed.; Asian Vegetable Research and Development Center: Taiwan, China, 1992; pp. 257–270. [Google Scholar]
- IRRI. Plant Breeding Tools (PBTools) v. 1.4. 2. Biometrics and Breeding Informatics. 2014. Available online: http://bbi.irri.org (accessed on 25 December 2021).
- IBM Corp. IBM SPSS Statistics for Windows v. 28.0.1.1(15); IBM Corp.: Armonk, NY, USA, 2021; Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-28011 (accessed on 25 December 2021).
- Saghai-Maroof, M.A.; Soliman, K.M.; Jorgensen, R.A.; Allard, R.W. Ribosomal DNA Spacer-Length Polymorphisms in Barley: Mendelian Inheritance, Chromosomal Location, and Population Dynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8014–8018. [Google Scholar] [CrossRef]
- Hosoya, S.; Hirase, S.; Kikuchi, K.; Nanjo, K.; Nakamura, Y.; Kohno, H.; Sano, M. Random PCR-based Genotyping by Sequencing Technology GRAS-Di (Genotyping by Random Amplicon Sequencing, Direct) Reveals Genetic Structure of Mangrove Fishes. Mol. Ecol. Resour. 2019, 19, 1153–1163. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated Software for Genetic Linkage Map Construction and Quantitative Trait Locus Mapping in Biparental Populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Akond, Z.; Alam, M.d.J.; Hasan, M.N.; Uddin, M.d.S.; Alam, M.; Mollah, N.H. A Comparison on Some Interval Mapping Approaches for QTL Detection. Bioinformation 2019, 15, 90–94. [Google Scholar] [CrossRef]
- Kosambi, D.D. The Estimation of Map Distances from Recombination Values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Arends, D.; Prins, P.; Jansen, R.C.; Broman, K.W. R/QTL: High-Throughput Multiple QTL Mapping. Bioinformatics 2010, 26, 2990–2992. [Google Scholar] [CrossRef]
Chr 1 | Trait | Pop 2 | Pos 3 (cM) | Left Marker | Right Marker | LOD 4 | PVE (%) 5 | Add 6 | Co-Localized with |
---|---|---|---|---|---|---|---|---|---|
1A | STI1-GY | BIL2(BLUP) | 144 | AMP0028912 | AMP0002760 | 3.35 | 8.98 | −0.29 | |
1A | STI1-TKW | BIL1 | 119 | AMP0036610 | AMP0034796 | 4.37 | 14.37 | 0.12 | Guan et al. [23] |
1A | STI1-TKW | BIL1 | 173 | AMP0035547 | AMP0004300 | 2.98 | 9.89 | −0.10 | Guan et al. [23] |
1A | STI1-TKW | BIL1 | 118 | AMP0036610 | AMP0034796 | 3.74 | 11.37 | 0.11 | Guan et al. [23] |
1A | STI1-TKW | BIL1 | 173 | AMP0035547 | AMP0004300 | 4.27 | 14.02 | −0.11 | Guan et al. [23] |
1A | STI2-TKW | BIL1 | 173 | AMP0035547 | AMP0004300 | 4.82 | 14.54 | −0.10 | Guan et al. [23] |
1A | STI1-BIO | BIL1 | 148 | AMP0034796 | AMP0020845 | 2.64 | 5.14 | −0.12 | |
1B | STI1-GY | BIL1 | 144 | AMP0017578 | AMP0023142 | 2.60 | 7.49 | 0.07 | |
1D | STI1-GY | BIL1 | 117 | AMP0027815 | AMP0029085 | 5.23 | 15.44 | −0.10 | |
1D | STI2-TKW | BIL1 | 236 | AMP0005955 | AMP0027742 | 3.52 | 10.14 | −0.09 | |
2B | STI1-TKW | BIL1 | 63 | AMP0009891 | AMP0006464 | 3.21 | 10.41 | 0.10 | |
2B | STI1-TKW | BIL1 | 62 | AMP0009891 | AMP0006464 | 2.95 | 8.66 | 0.08 | Paliwal et al. [24] |
2B | STI1-BIO | BIL2 | 150 | AMP0012513 | AMP0026808 | 2.80 | 3.46 | −0.17 | |
2D | STI1-TKW | BIL2 | 21 | AMP0020907 | AMP0024533 | 4.11 | 3.15 | 0.19 | Guan et al. [23] |
2D | STI1-GY | BIL2 (BLUP) | 152 | AMP0017649 | AMP0022052 | 2.51 | 6.72 | −0.07 | |
3A | STI1-GY | BIL2 | 49 | AMP0010424 | AMP0003988 | 5.33 | 14.20 | 0.10 | |
3A | STI1-TKW | BIL2 | 129 | AMP0014988 | AMP0016989 | 18.63 | 15.53 | −0.19 | |
3A | STI1-TKW | BIL2 | 137 | AMP0029972 | AMP0030211 | 10.85 | 8.05 | 0.14 | |
3A | STI1-TKW | BIL2 | 178 | AMP0007900 | AMP0004728 | 4.15 | 2.82 | −0.07 | |
3A | STI2-TKW | BIL2 | 39 | AMP0030786 | AMP0010424 | 2.83 | 6.29 | 0.33 | |
3A | STI1-BIO | BIL2 | 49 | AMP0010424 | AMP0003988 | 3.03 | 0.57 | 0.07 | |
3D | STI2-BIO | BIL2 | 300 | AMP0001446 | AMP0012860 | 4.58 | 2.97 | −0.31 | |
4B | STI2-GY | BIL2 | 140 | AMP0018665 | AMP0020290 | 3.27 | 8.54 | 0.07 | |
4B | STI1-BIO | BIL2 | 176 | AMP0025189 | AMP0026555 | 3.92 | 1.12 | −0.28 | |
4B | STI2-BIO | BIL2 | 178 | AMP0026555 | AMP0003848 | 5.10 | 2.89 | −0.36 | |
4D | STI1-TKW | BIL2 | 93 | AMP0031292 | AMP0028457 | 2.56 | 1.70 | −0.08 | |
4D | STI2-BIO | BIL2 | 105 | AMP0009857 | AMP0007548 | 4.21 | 2.01 | −0.41 | |
5A | STI1-GY | BIL2 | 88 | AMP0011577 | AMP0030240 | 3.81 | 10.50 | 0.08 | Hassouni et al. [25] |
5A | STI1-BIO | BIL2 | 3 | AMP0003832 | AMP0029058 | 2.75 | 6.20 | 0.20 | |
5A | STI2-GY | BIL2 | 88 | AMP0011577 | AMP0030240 | 7.84 | 13.70 | 0.09 | Hassouni et al. [25] |
5A | STI2-GY | BIL2 | 168 | AMP0008559 | AMP0030185 | 3.26 | 5.65 | 0.06 | Hassouni et al. [25] |
5A | STI1-BIO | BIL2 | 3 | AMP0003832 | AMP0029058 | 2.94 | 3.09 | 0.19 | |
5A | STI2-BIO | BIL2 | 87 | AMP0025208 | AMP0011577 | 4.14 | 1.12 | 0.08 | |
5A | STI2-BIO | BIL2 | 227 | AMP0001406 | AMP0015434 | 5.74 | 2.43 | −0.39 | |
5D | STI1-TKW | BIL1 | 7 | AMP0022256 | AMP0000398 | 4.39 | 14.08 | −0.12 | Wang et al. [26] |
5D | STI2-BIO | BIL2 | 204 | AMP0010296 | AMP0028613 | 2.95 | 3.10 | −0.29 | |
6D | STI1-GY | BIL1 | 53 | AMP0036794 | AMP0032738 | 3.03 | 8.67 | 0.07 | |
6D | STI2-GY | BIL2 | 92 | AMP0016445 | AMP0014713 | 3.90 | 6.84 | 0.07 | |
6D | STI2-TKW | BIL2 | 305 | AMP0003394 | AMP0027092 | 2.76 | 5.28 | −0.10 | Guan et al. [23] |
7D | STI2-TKW | BIL1 | 89 | AMP0019618 | AMP0017004 | 2.96 | 8.30 | −0.08 | Paliwal et al. [24] |
7D | STI2-BIO | BIL2 | 343 | AMP0018976 | AMP0002072 | 2.50 | 2.56 | −0.36 | |
7D | STI1-GY | BIL2 (BLUP) | 100 | AMP0021405 | AMP0025764 | 2.51 | 5.85 | 0.05 |
Environment | |||||||||
---|---|---|---|---|---|---|---|---|---|
Population | QTL | Chr 1 | PVE% 2 | Pos 3 | DN 4 | WA 5 | WM1 6 | WM2 7 | BIL1/BIL2 |
BIL1 | STI-TKW | 1A | 11.4–14.4 | 173 | √ | √ | |||
STI-TKW | 2B | 5.0–10.4 | 62–63 | √ | √ | ||||
BIL2 | TKW | 3A | 5.9–11.1 | 40–41 | √ | √ | √ | ||
STI-GY | 5A | 10.4–17.2 | 87–88 | √ | √ | ||||
Both BILs | STI-GY | 6D | 6.8–8.7 | 53–92 | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.I.Y.; Kamal, N.M.; Gorafi, Y.S.A.; Abdalla, M.G.A.; Tahir, I.S.A.; Tsujimoto, H. Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions. Plants 2024, 13, 347. https://doi.org/10.3390/plants13030347
Ahmed MIY, Kamal NM, Gorafi YSA, Abdalla MGA, Tahir ISA, Tsujimoto H. Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions. Plants. 2024; 13(3):347. https://doi.org/10.3390/plants13030347
Chicago/Turabian StyleAhmed, Monir Idres Yahya, Nasrein Mohamed Kamal, Yasir Serag Alnor Gorafi, Modather Galal Abdeldaim Abdalla, Izzat Sidahmed Ali Tahir, and Hisashi Tsujimoto. 2024. "Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions" Plants 13, no. 3: 347. https://doi.org/10.3390/plants13030347
APA StyleAhmed, M. I. Y., Kamal, N. M., Gorafi, Y. S. A., Abdalla, M. G. A., Tahir, I. S. A., & Tsujimoto, H. (2024). Heat Stress-Tolerant Quantitative Trait Loci Identified Using Backcrossed Recombinant Inbred Lines Derived from Intra-Specifically Diverse Aegilops tauschii Accessions. Plants, 13(3), 347. https://doi.org/10.3390/plants13030347