Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers
Abstract
:1. Introduction
2. Results
2.1. Ethnomedical Study
“Chamomile tea was given to children against crying”.(ERA II 201, 105 (67), written down by Lepp, K., 1938, Saare County, Karja, Leisi municipality).
“If the children scream a lot, chamomile tea is given to the children to drink”.(E57311 (29), written down by Eisen, M. J., year unknown, Rapla County, Vigala).
“Chamomile was collected for tea. A sick person was given chamomile tea for sedation”.(KKI, KS, Jõulmaa, H., 1977, East-Viru County, Iisaku, Uhe).
2.2. Phytochemical Composition of Dry Extracts and Essential Oil
2.3. Optimization of Dry Extract G2’s Preparation
2.4. Pharmacological Study on Analgesic and Soporific Activity
2.4.1. Analgesic Activity
2.4.2. Soporific Activity
3. Discussion
4. Materials and Methods
4.1. Ethnomedical Study
4.2. Plant Material
4.3. Preparation of Extracts
4.4. Phytochemical Analysis
4.4.1. Assay of Main Phytochemicals
4.4.2. Gas Chromatographic Analysis of Essential Oil
4.4.3. Identification of Phenolic Compounds by UPLC-MS/MS
4.5. Pharmacological Study
4.5.1. Analgesic Activity
4.5.2. Soporific Activity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sah, A.; Naseef, P.P.; Kuruniyan, M.S.; Jain, G.K.; Zakir, F.; Aggarwal, G. A Comprehensive Study of Therapeutic Applications of Chamomile. Pharmaceuticals 2022, 15, 1284. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Gupta, V.; Mittal, P.; Khokra, S.L.; Kaushik, D. Pharmacological potential of Matricaria recutita—A review. Int. J. Pharm. Sci. Drug Res. 2010, 2, 12–16. [Google Scholar]
- Chamomile. In Drugs and Lactation Database (LactMed); National Library of Medicine: Bethesda, MD, USA, 2021.
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.; García-Barrantes, P.M.; Rodríguez, G.; Badilla, B. Physicochemical and chromatographic method of characterization of Matricaria recutita tinctures. J. Pharm. Pharmacogn. Res. 2016, 4, 18–24. [Google Scholar]
- Martin, N.; Madrid-López, C.; Villalba-Méndez, G.; Talens-Peiró, L. New Techniques for assessing critical raw material aspects in energy and other technologies. Environment. Sci. Technol. 2022, 56, 17236–17245. [Google Scholar] [CrossRef] [PubMed]
- Koshovyi, O.N.; Vovk, G.V.; Akhmedov, E.Y.; Komissarenko, A.N. The study of the chemical composition and pharmacological activity of Salvia officinalis leaves extracts getting by complex processing. Azerbaijan Pharm. Pharmacother. J. 2015, 15, 30–34. [Google Scholar]
- Shanaida, M.; Hudz, N.; Jasicka-Misiak, I.; Wieczorek, P.P. Polyphenols and pharmacological screening of a Monarda fistulosa L. dry extract based on a hydrodistilled residue by-product. Front Pharmacol. 2021, 12, 563436. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A Review of ethnomedicinal use, phytochemistry and pharmacological uses. Life 2022, 12, 479. [Google Scholar] [CrossRef]
- Orav, A.; Raal, A.; Arak, E. Content and composition of the essential oil of Chamomilla recutita (L.) Rauschert from some European countries. Nat. Prod. Res. 2010, 24, 48–55. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Püssa, T.; Valner, K.; Malmiste, B.; Arak, E. Content of essential oil, terpenoids and polyphenols in commercial chamomile (Chamomilla recutita L. Rauschert) teas from different countries. Food Chem. 2012, 131, 632–638. [Google Scholar] [CrossRef]
- Kafarov, V.V. Methods of Cybernetics in Chemistry and Chemical Technology; Mir Publishers: Moscow, Russia, 1976; 464p. [Google Scholar]
- Marzullo, L.; Ochkur, O.; Renai, L.; Gotti, R.; Koshovyi, O.; Furlanetto, S.; Orlandini, S.; Del Bubba, M. Quality by design in optimizing the extraction of (poly)phenolic compounds from Vaccinium myrtillus berries. J. Chromatograpgy A 2022, 1677, 463329. [Google Scholar] [CrossRef] [PubMed]
- Sak, K.; Jürisoo, K.; Raal, A. Estonian folk traditional experiences on natural anticancer remedies: From past to the future. Pharm. Biol. 2014, 52, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Akrama, W.; Ahmedb, S.; Rihanb, M.; Arorac, S.; Khalidd, M.; Ahmade, S.; Ahmadf, F.; Haqueg, S.; Vashishthj, R. An updated comprehensive review of the therapeutic properties of Chamomile (Matricaria chamomilla L.). Int. J. Food Prop. 2024, 27, 133–164. [Google Scholar] [CrossRef]
- Raal, A.; Jaama, M.; Utt, M.; Püssa, T.; Žvikas, V.; Jakštas, V.; Koshovyi, O.; Nguyen, K.V.; Nguyen, T.H. The phytochemical profile and anticancer activity of Anthemis tinctoria and Angelica sylvestris used in Estonian ethnomedicine. Plants 2022, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Singh, S.; Kumar, V.; Kumar, A.; Kumari, A.; Rathore, S.; Kumar, R.; Singh, S. A Comprehensive Review on Biology, Genetic Improvement, Agro and Process Technology of German Chamomile (Matricaria chamomilla L.). Plants 2022, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Marković, M.; Pljevljakušić, D.; Kojičić, K.; Cupara, S. Ethnopharmacological Application of Chamomile (Matricaria chamomilla L.) in the Pirot County of Southeastern Serbia. Arh. Farm. 2020, 70, 238–247. [Google Scholar] [CrossRef]
- Sõukand, Renata ja Kalle, Raivo (koostajad). 2008. HERBA: Historistlik Eesti Rahvameditsiini Botaaniline Andmebaas. Võrguteavik. Tartu: EKM Teaduskirjastus. Available online: https://herba.folklore.ee/ (accessed on 11 November 2023).
- Joumaa, M.M.E.; Borjac, J.M. Matricaria chamomilla: A valuable insight into recent advances in medicinal uses and pharmacological activities. Phytochem. Rev. 2022, 21, 1913–1940. [Google Scholar] [CrossRef]
- Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative analysis of phenolic composition of six commercially available chamomile (Matricaria chamomilla L.) extracts: Potential biological implications. Int. J. Mol. Sci. 2021, 22, 10601. [Google Scholar] [CrossRef]
- Mulinacci, N.; Romani, A.; Pinelli, P.; Vinvieri, F.F.; Prucher, D. Characterisation of M. recutita L. flower extract by HPLCMS and HPLC-DAD analysis. Chromatographia 2000, 51, 301–307. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, Z.; Chang, X.; Xue, H.; Yahefu, W.; Zhang, X. 4-Hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Front. Pharmacol 2018, 9, 653. [Google Scholar] [CrossRef]
- European Pharmacopoeia; Supplement 11.2; Council of Europe: Strasbourg, France, 2023.
- Orav, A.; Sepp, J.; Kailas, T.; Müürisepp, M.; Arak, E.; Raal, A. Composition of essential oil of aerial parts of Chamomilla suaveolens from Estonia. Nat. Prod. Comm. 2010, 5, 133–136. [Google Scholar] [CrossRef]
- Pino, J.A.; Bayat, F.; Marbot, R.; Aguero, J. Essential oil of chamomile Chamomilla recutita (L.) Rausch. From Iran. J. Essent. Oil Res. 2002, 14, 407–408. [Google Scholar] [CrossRef]
- Matos, F.J.A.; Machado, M.I.L.; Alencar, J.W.; Craveiro, A.A. Constituents of brazilian chamomile oil. J. Essent. Oil Res. 2011, 5, 337–339. [Google Scholar] [CrossRef]
- Ramadan, M.; Goeters, S.; Watzer, B.; Krause, E.; Lohmann, K.; Bauer, R.; Hempel, B.; Imming, P. Chamazulene carboxylic acid and matricin: A natural profen and its natural prodrug, identified through similarity to synthetic drug substances. J. Nat. Prod. 2006, 69, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Chaves, P.; Hocayen, P.; Dallazen, J.L.; de Paula Werner, M.F.; Iacomini, M.; Andreatini, R.; Cordeiro, L. Chamomile tea: Source of a glucuronoxylan with antinociceptive, sedative and anxiolytic-like effects. Int. J. Biol. Macromol. 2020, 164, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Heo, Y.; Kim, Y.C. Effect of German chamomile oil application on alleviating atopic dermatitis-like immune alterations in mice. J. Vet. Sci. 2010, 11, 35–41. [Google Scholar] [CrossRef]
- Bhaskaran, N.; Shukla, S.; Srivastava, J.K.; Gupta, S. Chamomile: An anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. Int. J. Mol. Med. 2010, 26, 935–940. [Google Scholar]
- Fan, X.; Du, K.; Li, N.; Zheng, Z.; Qin, Y.; Liu, J.; Sun, R.; Su, Y. Evaluation of anti-nociceptive and anti-inflammatory effect of Luteolin in mice. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 351–364. [Google Scholar] [CrossRef]
- Flemming, M.; Kraus, B.; Rascle, A.; Jürgenliemk, G.; Fuchs, S.; Fürst, R.; Heilmann, J. Revisited anti-inflammatory activity of matricine in vitro: Comparison with chamazulene. Fitoterapia 2015, 106, 122–128. [Google Scholar] [CrossRef]
- Maurya, A.K.; Singh, M.; Dubey, V.; Srivastava, S.; Luqman, S.; Bawankule, D.U. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr. Pharm. Biotechnol. 2014, 15, 173–181. [Google Scholar] [CrossRef]
- Tomi´c, M.; Popovi´c, V.; Petrovi´c, S.; Stepanovi´c-Petrovi´c, R.; Micov, A.; Pavlovi´c-Drobac, M.; Couladis, M. Antihyperalgesic and antiedematous activities of bisabolol-oxides-rich matricaria oil in a rat model of inflammation. Phytother. Res. 2014, 28, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Shanaida, M.; Hudz, N.; Korzeniowska, K.; Wieczorek, P. Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species. Internat. J. Green Pharm. 2018, 12, 200–204. [Google Scholar]
- Hossain, M.F.; Talukder, B.; Rana, M.N.; Tasnim, R.; Nipun, T.S.; Uddin, S.M.; Hossen, S.M. In vivo sedative activity of methanolic extract of Stericulia villosa Roxb. leaves. BMC Complement. Alternat. Med. 2016, 16, 398. [Google Scholar] [CrossRef] [PubMed]
- Staufenbiel, S.M.; Penninx, B.W.; Spijker, A.T.; Elzinga, B.M.; van Rossum, E.F. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology 2013, 38, 1220–1235. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, L.L.; Carvalho, J.P.; Tyrka, A.R.; Wier, L.M.; Mello, A.F.; Mello, M.F.; Anderson, G.M.; Wilkinson, C.W.; Price, L.H. Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biol. Psychiatry 2007, 62, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Nakamura, K.; Furukawa, K.; Konishi, Y.; Ogino, T.; Higashiura, K.; Yago, H.; Okamoto, K.; Otsuka, M. A new nonpeptide tachykinin NK1 receptor antagonist isolated from the plants of Compositae. Chem. Pharm. Bull. 2002, 50, 47–52. [Google Scholar] [CrossRef]
- Yamada, K.; Miura, T.; Mimaki, Y.; Sashida, Y. Effect of inhalation of chamomile oil vapour on plasma ACTH level in ovariectomized-rat under restriction stress. Biol. Pharm. Bull. 1996, 19, 1244–1246. [Google Scholar] [CrossRef]
- Amsterdam, J.D.; Li, Q.S.; Xie, S.X.; Mao, J.J. Putative antidepressant effect of chamomile (Matricaria chamomilla L.) oral extract in subjects with comorbid generalized anxiety disorder and depression. J. Altern. Complement. Med. 2020, 26, 813–819. [Google Scholar] [CrossRef]
- Hashemi, P.; FahanikBabaei, J.; Vazifekhah, S.; Nikbakht, F. Evaluation of the neuroprotective, anticonvulsant, and cognitionimprovement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran. J. Basic Med. Sci. 2019, 22, 752–758. [Google Scholar]
- Dobrochaeva, D.N.; Kotov, M.I.; Prokudin, Y.N.; Barbarich, A.I. Key to Higher Plants of Ukraine; Naukova Dumka: Kyiv, Ukraine, 1999. [Google Scholar]
- Huzio, N.; Grytsyk, A.; Raal, A.; Grytsyk, L.; Koshovyi, O. Phytochemical and pharmacological research in Agrimonia eupatoria L. herb extract with anti-Inflammatory and hepatoprotective properties. Plants 2022, 11, 2371. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic fractions from Vaccinium vitis-idaea L. and their antioxidant and anticancer activities assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes 21999A0824(01), dated 1986. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A21999A0824%2801%29 (accessed on 2 December 2005).
- Council Directive 2010/63/EU on the Protection of Animals Used for Scientific Purposes. Dated 22.09.2010. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC098296/ (accessed on 1 January 2022).
- The Law of Ukraine “On the Protection of Animals from Cruel Treatment” dated 12/15/2009. Available online: https://zakon.rada.gov.ua/laws/show/3447-15#Text (accessed on 8 September 2021).
- The Order of the Ministry of Health of Ukraine No. 944 dated 14 December 2009 “On approval of the Procedure for Preclinical Study of Medicinal Products and Examination of Materials of Preclinical Study of Medicinal Products”. Available online: https://zakon.rada.gov.ua/laws/show/z0972-01#Text (accessed on 1 February 2010).
- Council Directive of 18 December 1986 on the Lows, Regulating the Application of Principles of Good Laboratory Practice and the Verification of Their Applications for Tests on Chemical Substances (87/18/EEC)/The Rules Governing Medicinal Products in the European Community; Commission of the European Communities: Brussels, Belgium, 1991; Volume 1, pp. 145–146.
- Ihnatova, T.; Kaplaushenko, A.; Frolova, Y.; Pryhlo, E. Synthesis and antioxidant properties of some new 5-phenethyl-3-thio-1,2,4-triazoles. Pharmacia 2021, 68, 129–133. [Google Scholar] [CrossRef]
- State Pharmacopoeia of Ukraine, 2nd ed.; Ukrainian Scientific Pharmacopoeial Center of Drugs Quality: Kharkiv, Ukraine, 2015.
Category | Number of Records | Percentage of Total (%) |
---|---|---|
Unspecified | 45 | 30.0 |
Respiratory tract diseases | 45 | 30.0 |
Ocular diseases | 23 | 15.3 |
Inflammation | 9 | 6.0 |
Trauma | 8 | 5.3 |
Pain | 5 | 3.3 |
Infectious diseases | 5 | 3.3 |
Other | 5 | 3.3 |
Sedative | 3 | 2.0 |
Spasms | 2 | 1.3 |
Substance | Content in the Extract (X ± Δx, n = 3) | ||
---|---|---|---|
G1 | G2 | G3 | |
UPLC-MS/MS, µg/g of dry extract | |||
Neochlorogenic acid | 1672.30 ± 85.39 | 444.94 ± 20.16 | 441.14 ± 13.32 |
Luteolin | 83.99 ± 12.65 | 310.93 ± 22.73 | 74.87 ± 3.871 |
Isoquercitrin | 477.46 ± 68.82 | 921.16 ± 85.20 | 42.15 ± 14.12 |
Cryptochlorogenic acid | 16.51 ± 2.42 | 80.74 ± 13.48 | 0 |
Luteolin-4-O-glucoside | 16.98 ± 2.86 | 45.11 ± 3.67 | 0 |
Chlorogenic acid | 3930.89 ± 224.37 | 11,742.31 ± 376.34 | 1280.86 ± 98.96 |
Quercetin | 18.87 ± 1.20 | 172.15 ± 12.01 | 9.37 ± 1.03 |
Isorhamnetin-3-O-rutinoside | 9.34 ± 0.56 | 15.40 ± 1.60 | 0 |
Isorhamnetin-3-glucoside | 257.7 ± 27.04 | 410.75 ± 52.07 | 46.43 ± 4.38 |
Luteolin-3,7-diglucoside | 18.11 ± 4.59 | 20.72 ± 1.88 | 0 |
Vanillic acid | 175.96 ± 13.28 | 86.58 ± 5.54 | 71.59 ± 7.22 |
Caffeic acid | 42.98 ± 3.82 | 43.04 ± 3.22 | 33.46 ± 2.95 |
3,4-Dihydroxyphenylacetic acid | 376.15 ± 27.47 | 184.05 ± 13.38 | 159.71 ± 12.16 |
Isorhamnetin | 17.99 ± 1.89 | 125,32 ± 12.71 | 15.51 ± 2.27 |
Apigenin | 84.93 ± 4.88 | 578.65 ± 63.91 | 12.98 ± 2 |
Kaempherol-3-O-glucoside | 34.79 ± 1.46 | 50.76 ± 2.10 | 0 |
Rutin | 45.34 ± 5.55 | 126.49 ± 5.73 | 0 |
Hyperoside | 224.42 ± 21.56 | 366.82 ± 21.21 | 65.15 ± 2.36 |
Luteolin-7-O-glucoside | 616.65 ± 63.46 | 1061.82 ± 83.68 | 123.64 ± 31.82 |
4,5-Dicaffeoylquinic acid | 3565.27 ± 266.90 | 4912.17 ± 416.85 | 541.70 ± 26.44 |
3,5-Dicaffeoylquinic acid | 1823.72 ± 136.53 | 2512.69 ± 213.23 | 277.09 ± 13.52 |
3,4-Dicaffeoylquinic acid | 3739.46 ± 279.94 | 5152.17 ± 437.22 | 568.17 ± 27.73 |
Spectrophotometry, % | |||
Phenolic compounds | 6.19 ± 0.29 | 9.70 ± 0.52 | 2.27 ± 0.11 |
Hydrocinnamic acids | 1.57 ± 0.09 | 3.47 ± 0.15 | 0.21 ± 0.01 |
Flavonoids | 3.63 ± 0.11 | 9.92 ± 0.32 | 0.45 ± 0.01 |
RI (DB-5) | Compound | Content in the Oil (%) | References [10,11] |
---|---|---|---|
1455 | (E)-ß-Farnesene | 24.72 | 1450–1456 |
1471 | Germacrene D | 1.01 | 1470–1478 |
1570 | Spathulenol | 2.39 | 1568–1570 |
1649 | α-Bisabolol oxide B | 22.27 | 1646–1649 |
1674 | α-Bisabolone oxide A | 10.40 | 1670–1675 |
1715 | Chamazulene | 7.89 | 1711–1715 |
1743 | α-Bisabolol oxide A | 21.78 | 1734–1748 |
1874 | cis-Enyne-bicycloether | 8.26 | 1867–1876 |
In total | 98.72 |
Extraction Stage | Dry Residue (%) | Content (%) in the Dry Residue | ||
---|---|---|---|---|
Phenolic Compounds | Hydrocinnamic Acids | Flavonoids | ||
1 | 5.00 ± 0.28 | 9.13 ± 0.34 | 2.46 ± 0.12 | 6.12 ± 0.19 |
2 | 2.57 ± 0.13 | 7.80 ± 0.10 | 3.24 ± 0.17 | 7.89 ± 0.04 |
3 | 1.4 ± 0.06 | 8.29 ± 0.27 | 3.79 ± 0.23 | 6.89 ± 0.26 |
4 | 1.1 ± 0.08 | 4.39 ± 0.24 | 1.91 ± 0.11 | 2.53 ± 0.04 |
5 | 0.8 | 2.85 ± 0.13 | 0.72 ± 0.04 | 0.58 ± 0.03 |
6 | 0.2 | 1.35 ± 0.05 | 0.99 ± 0.03 | 0.28 ± 0.01 |
Agent | Group | Dose (mg/kg) | The Time of Discomfort Occurrence (Seconds)/Analgesic Activity (%) in Relation to [Control] and (Reference Drug) after Administration in | ||||
---|---|---|---|---|---|---|---|
30 min | 60 min | 120 min | 180 min | 240 min | |||
Intact animals | 1 | 7.20 ± 0.29 | 7.10 ± 0.61 | 7.08 ± 0.27 | 7.15 ± 0.65 | 6.73 ± 0.94 | |
Extract G1 | 2 | 25 | 7.85 ± 0.39/ [9%] (−25%) * | 8.48 ± 0.39/ [19%] (−18%) * | 8.60 ± 0.34/ [21%] # (−18%) * | 7.97 ± 0.21/ [11%] (−16%) | 7.67 ± 0.34/ [14%] (−8%) |
3 | 50 | 9.65 ± 0.45/ [34%] # (−8%) | 9.83 ± 0.53/ [38%] # (−5%) | 9.63 ± 0.50/ [36%] # (−9%) | 8.77 ± 0.27/ [23%] (−7%) | 8.23 ± 0.28/ [22%] (−1%) | |
4 | 100 | 9.80 ± 0.59/ [36%] # (−6%) | 10.13 ± 0.61/ [43%] # (−2%) | 9.97 ± 0.59/ [41%] # (−5%) | 9.32 ± 0.57/ [30%] # (−1%) | 8.28 ± 0.37/ [23%] (−1%) | |
Extract G2 | 5 | 25 | 9.63 ± 0.54/ [34%] # (−8%) | 9.97 ± 0.60/ [40%] # (−4%) | 8.65 ± 0.48/ [22%] # (−18%) | 7.98 ± 0.12/ [12%] (−16%) | 8.43 ± 0.21/ [25%] (1%) |
6 | 50 | 11.43 ± 0.85/ [59%] # (9%) | 11.83 ± 0.77/ [67%] # (14%) | 11.72 ± 0.73/ [65%] # (11%) | 11.13 ± 0.73/ [56%] # (18%) | 8.67 ± 0.31/ [29%] (4%) | |
7 | 100 | 12.50 ± 0.36/ [74%] # (20%) * | 12.52 ± 0.31/ [76%] # (21%) * | 12.47 ± 0.30/ [76%] # (18%) * | 9.63 ± 0.50/ [35%] # (2%) | 9.02 ± 0.39/ [34%] (8%) | |
Extract G3 | 8 | 25 | 8.32 ± 0.39/ [16%] # (−20%) * | 8.88 ± 0.31/ [25%] (−14%) | 8.30 ± 0.17/ [17%] # (−21%) * | 8.13 ± 0.30/ [14%] (−14%) | 7.72 ± 0.35/ [15%] (−8%) |
9 | 50 | 7.80 ± 0.48/ [8%] (−25%) * | 8.33 ± 0.45/ [17%] (−20%) | 8.33 ± 0.37/ [18%] (−21%) | 7.95 ± 0.34/ [11%] (−16%) | 7.70 ± 0.24/ [14%] (−8%) | |
10 | 100 | 8.80 ± 0.64/ [22%] (−16%) | 8.88 ± 0.65/ [25%] (−14%) | 8.67 ± 0.55/ [22%] (−18%) | 8.38 ± 0.54/ [17%] (−11%) | 8.28 ± 0.51/ [23%] (−1%) | |
Acetaminophen | 11 | 50 | 10.54 ± 0.73 | 10.38 ± 0.62 | 10.53 ± 0.74 | 9.45 ± 0.60 | 8.35 ± 0.36 |
Agent | Group | Dose (mg/kg) | Average Duration of Sleep (Min) | Soporific Effect (%) |
---|---|---|---|---|
Control group | 1 | 40 | 104.83 ± 8.76 | 100% |
Extract G1 | 2 | 25 | 140.33 ± 6.52 *# | 133.9% |
3 | 50 | 201.83 ± 4.69 * | 192.5% | |
4 | 100 | 148.83 ± 3.88 *# | 142.0% | |
Extract G2 | 5 | 25 | 186.33 ± 6.12 * | 177.7% |
6 | 50 | 227.83 ± 7.59 * | 217.3% | |
7 | 100 | 190.00 ± 6.97 * | 181.2% | |
Extract G3 | 8 | 25 | 177.83 ± 4.00 *# | 169.6% |
9 | 50 | 136.83 ± 4.74 *# | 130.5% | |
10 | 100 | 166.33 ± 9.93 *# | 158.7% | |
Valerian extract | 11 | 2.15 | 204.17 ± 8.39 | 194.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepp, J.; Koshovyi, O.; Jakstas, V.; Žvikas, V.; Botsula, I.; Kireyev, I.; Tsemenko, K.; Kukhtenko, O.; Kogermann, K.; Heinämäki, J.; et al. Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers. Plants 2024, 13, 350. https://doi.org/10.3390/plants13030350
Sepp J, Koshovyi O, Jakstas V, Žvikas V, Botsula I, Kireyev I, Tsemenko K, Kukhtenko O, Kogermann K, Heinämäki J, et al. Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers. Plants. 2024; 13(3):350. https://doi.org/10.3390/plants13030350
Chicago/Turabian StyleSepp, Janne, Oleh Koshovyi, Valdas Jakstas, Vaidotas Žvikas, Iryna Botsula, Igor Kireyev, Karina Tsemenko, Oleksandr Kukhtenko, Karin Kogermann, Jyrki Heinämäki, and et al. 2024. "Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers" Plants 13, no. 3: 350. https://doi.org/10.3390/plants13030350
APA StyleSepp, J., Koshovyi, O., Jakstas, V., Žvikas, V., Botsula, I., Kireyev, I., Tsemenko, K., Kukhtenko, O., Kogermann, K., Heinämäki, J., & Raal, A. (2024). Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers. Plants, 13(3), 350. https://doi.org/10.3390/plants13030350