Ecotype-Specific and Correlated Seasonal Responses of Biomass Production, Non-Structural Carbohydrates, and Fatty Acids in Zostera marina
Abstract
:1. Introduction
2. Results
2.1. Environmental Descriptors
2.2. Seasonal and Ecotype-Specific Responses of Shoot Leaf Area, Biomass Production, and Leaf Area Index
2.3. Seasonal and Ecotype-Specific Responses of Biochemical Compounds
2.3.1. Sucrose and Starch Levels
2.3.2. Fatty Acids Content and Composition
2.3.3. PCA and Correlative Responses of Seagrass Traits
3. Discussion
3.1. Seasonal Responses of Seagrass Traits to Environmental Drivers
3.2. Correlative Responses of Seagrass Traits
3.3. Ecotype-Specific Responses of Seagrass Traits
4. Materials and Methods
4.1. Study Area
4.2. Environmental Variables
4.3. Sampling Procedure
4.3.1. Morphometric Descriptors
4.3.2. Productivity Descriptors
4.3.3. Population Descriptors
4.4. Biochemical Analyses
4.4.1. Fatty Acid Analyses
4.4.2. Non-Structural Carbohydrates Analyses
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Sage, R.F. Global Change Biology: A primer. Glob. Chang. Biol. 2020, 261, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and its impact on humanity. Nature 2012, 4867401, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.M.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Arneth, A.; Balvanera, P.; Brauman, K.A.; et al. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 2008; Volume 2, pp. 11–99. [Google Scholar]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 111, 15–19. [Google Scholar] [CrossRef] [PubMed]
- García-Plazaola, J.I.; Fernández-Marín, B.; Duke, S.O.; Hernández, A.; López-Arbeloa, F.; Becerril, J.M. Autofluorescence: Biological functions and technical applications. Plant Sci. 2015, 236, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.P.W.M.; McRoy, P.C. Biomass potential of eelgrass Zostera marina L. Crit. Rev. Plant Sci. 1984, 2, 49–80. [Google Scholar] [CrossRef]
- Green, E.P.; Short, F.T. World Atlas of Seagrasses; University of California Press: Berkeley, CA, USA, 2003. [Google Scholar]
- Adams, S.M. Feeding ecology of eelgrass fish communities. Trans. Am. Fish. Soc. 1976, 1054, 514–519. [Google Scholar] [CrossRef]
- Fonseca, M.S.; Zieman, J.C.; Thayer, G.W.; Fisher, J.S. The role of current velocity in structuring eelgrass Zostera marina L. meadows. Estuar. Coast. Shelf Sci. 1983, 174, 367–380. [Google Scholar] [CrossRef]
- Cullen-Unsworth, L.; Unsworth, R. Seagrass meadows, ecosystem services, and sustainability. Environ. Sci. Policy Sustain. Dev. 2013, 55, 14–28. [Google Scholar] [CrossRef]
- Röhr, M.E.; Holmer, M.; Baum, J.K.; Björk, M.; Boyer, K.; Chin, D.; Chalifour, L.; Cimon, S.; Cusson, M.; Dahl, M.; et al. Blue Carbon Storage capacity of temperate eelgrass Zostera marina meadows. Glob. Biogeochem. Cycles 2018, 3210, 1457–1475. [Google Scholar] [CrossRef]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L., Jr.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 10630, 12377–12381. [Google Scholar] [CrossRef]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. Williams. A global crisis for seagrass ecosystems. BioScience 2006, 56, 987–996. [Google Scholar] [CrossRef]
- Short, F.T.; Duarte, C.M. Methods for the measurement of seagrass growth and production. In Global Seagrass Research Methods; Elsevier: Amsterdam, The Netherlands, 2001; pp. 155–198. [Google Scholar]
- De los Santos, C.B.; Krause-Jensen, D.; Alcoverro, T.; Marbà, N.; Duarte, C.M.; van Katwijk, M.M.; Pérez, M.; Romero, J.; Sánchez-Lizaso, J.L.; Roca, G.; et al. Recent trend reversal for declining European Seagrass Meadows. Nat. Commun. 2019, 101, 3356. [Google Scholar] [CrossRef]
- Salo, T.; Reusch, T.B.; Boström, C. Genotype-specific responses to light stress in eelgrass Zostera marina, a marine foundation plant. Mar. Ecol. Prog. Ser. 2015, 519, 129–140. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, S.R.; Kim, Y.K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 2007, 3501–3502, 144–175. [Google Scholar] [CrossRef]
- Short, F.; Carruthers, T.; Dennison, W.; Waycott, M. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol. 2007, 3501–3502, 3–20. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, S.H.; Lee, K.S. Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuaries Coasts 2015, 382, 558–568. [Google Scholar] [CrossRef]
- York, P.H.; Gruber, R.K.; Hill, R.; Ralph, P.J.; Booth, D.J.; Macreadie, P.I. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: Investigating the interactive effects of light and temperature. PLoS ONE 2013, 810, e76377. [Google Scholar] [CrossRef]
- Alcoverro, T.; Duarte, C.M.; Romero, J. Annual Growth Dynamics of Posidonia oceanica: Contribution of Large-Scale versus Local Factors to Seasonality. Mar. Ecol. Prog. Ser. 1995, 120, 203–210. Available online: https://www.jstor.org/stable/24851876 (accessed on 9 December 2023).
- Nguyen, H.M.; Ralph, P.J.; Marín-Guirao, L.; Pernice, M.; Procaccini, G. Seagrasses in an era of ocean warming: A Review. Biol. Rev. 2021, 965, 2009–2030. [Google Scholar] [CrossRef]
- Olesen, B.; Enríquez, S.; Duarte, C.M.; Sand-Jensen, K. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Prog. Ser. 2002, 236, 89–97. [Google Scholar] [CrossRef]
- Alcoverro, T.; Zimmerman, R.C.; Kohrs, D.G.; Alberte, R.S. Resource allocation and sucrose mobilization in light-limited eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 1999, 187, 121–131. [Google Scholar] [CrossRef]
- Touchette, B.W.; Burkholder, J.M. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 2000, 250, 169–205. [Google Scholar] [CrossRef] [PubMed]
- Alcoverro, T.; Manzanera, M.; Romero, J. Annual metabolic carbon balance of the seagrass Posidonia oceanica: The importance of carbohydrate reserves. Mar. Ecol. Prog. Ser. 2001, 211, 105–116. [Google Scholar] [CrossRef]
- Brun, F.G.; Hernández, I.; Vergara, J.J.; Pérez-Lloréns, J.L. Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct. Plant Biol. 2003, 305, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.; Griffiths, G.; Vercaemer, B. Seasonal response and recovery of eelgrass Zostera marina to short-term reductions in light availability. Estuaries Coasts 2020, 43, 120–134. [Google Scholar] [CrossRef]
- Gibson, D.; Blomberg, E.J.; Sedinger, J.S. Evaluating vegetation effects on animal demographics: The role of plant phenology and sampling bias. Ecol. Evol. 2016, 611, 3621–3631. [Google Scholar] [CrossRef]
- Gombos, Z.; Wada, H.; Murata, N. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism of chilling tolerance. Proc. Natl. Acad. Sci. USA 1994, 9119, 8787–8791. [Google Scholar] [CrossRef]
- Nakamura, Y.; Li-Beisson, Y. (Eds.) Lipids in Plant and Algae Development; Springer International Publising: Berlin, Germany, 2016; Volume 86. [Google Scholar]
- Harayama, T.; Shimizu, T. Roles of polyunsaturated fatty acids, from mediators to membranes. J. Lipid Res. 2020, 618, 1150–1160. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 306, 967–977. [Google Scholar] [CrossRef]
- Kumari, P.; Bijo, A.J.; Mantri, V.A.; Reddy, C.R.K.; Jha, B. Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 2013, 86, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Beca-Carretero, P.; Guihéneuf, F.; Winters, G.; Stengel, D.B. Depth induced adjustment of fatty acid and pigment composition suggests high biochemical plasticity in the tropical seagrass Halophila stipulacea. Mar. Ecol. Prog. Ser. 2019, 608, 105–117. [Google Scholar] [CrossRef]
- Khotimchenko, S.V.; Vaskovsky, V.E.; Titlyanova, T.V. Fatty acids of marine algae from the Pacific coast of North California. Bot. Mar. 2002, 451, 17–22. [Google Scholar] [CrossRef]
- Kostetsky, E.Y.; Goncharova, S.N.; Sanina, N.M.; Shnyrov, V.L. Season influence on lipid composition of marine macrophytes. Bot. Mar. 2004, 472, 134–139. [Google Scholar] [CrossRef]
- Franzitta, M.; Repolho, T.; Paula, J.R.; Cacador, I.; Matos, A.R.; Rosa, R.; Duarte, B. Dwarf eelgrass Zostera noltii fatty acid remodelling induced by climate change. Estuar. Coast. Shelf Sci. 2021, 261, 107546. [Google Scholar] [CrossRef]
- Beca-Carretero, P.; Azcárate-García, T.; Teichberg, M.; Patra, P.; Feroze, F.; González, M.J.; Medina, I.; Winters, G. Predicted warming intensifies the negative effects of nutrient increase on tropical seagrass: A physiological and fatty acid approach. Ecol. Indic. 2022, 142, 109184. [Google Scholar] [CrossRef]
- Stipcich, P.; Pansini, A.; Beca-Carretero, P.; Stengel, D.B.; Ceccherelli, G. Field thermo acclimation increases the resilience of Posidonia oceanica seedlings to marine heat waves. Mar. Pollut. Bull. 2022, 184, 114230. [Google Scholar] [CrossRef]
- Valentine, R.C.; Valentine, D.L. Omega-3 fatty acids in cellular membranes: A unified concept. Prog. Lipid Res. 2004, 435, 383–402. [Google Scholar] [CrossRef]
- Surette, M.E. The science behind dietary omega-3 fatty acids. Can. Med. Assoc. J. 2008, 1782, 177–180. [Google Scholar] [CrossRef]
- Willis, L.M.; Shukitt-Hale, B.; Joseph, J.A. Modulation of cognition and behavior in aged animals: Role for antioxidant-and essential fatty acid-rich plant foods. Am. J. Clin. Nutr. 2009, 895, 1602S–1606S. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, R.; Bennion, M.; McQuaid, N.; Beer, C.; McCullough-Annett, G.; Colhoun, K.; Inger, R.; Morrison, L. Intertidal seagrass in Ireland: Pressures, WFD status and an assessment of trace element contamination in intertidal habitats using Zostera noltei. Ecol. Indic. 2017, 82, 117–130. [Google Scholar] [CrossRef]
- Beca-Carretero, P.; Varela, S.; Stengel, D.B. A novel method combining species distribution models, remote sensing, and field surveys for detecting and mapping subtidal seagrass meadows. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 306, 1098–1110. [Google Scholar] [CrossRef]
- Madden, B.; Jennings, E.; Jeffrey, D.W. Distribution and ecology of Zostera in Co. Dublin. Ir. Nat. J. 1993, 248, 303–310. [Google Scholar]
- Olsen, J.L.; Coyer, J.A.; Stam, W.T.; Moy, F.E.; Christie, H.; Jørgensen, N.M. Eelgrass Zostera marina populations in northern Norwegian fjords are genetically isolated and diverse. Mar. Ecol. Prog. Ser. 2013, 486, 121–132. [Google Scholar] [CrossRef]
- Talbot, S.L.; Sage, G.K.; Rearick, J.R.; Fowler, M.C.; Muñiz-Salazar, R.; Baibak, B.; Wyllie-Echeverria, S.; Cabello-Pasini, A.; Ward, D.H. The structure of genetic diversity in eelgrass Zostera marina L. along the north Pacific and Bering Sea coasts of Alaska. PLoS ONE 2016, 114, e0152701. [Google Scholar] [CrossRef]
- Gregor, J.W. The ecotype. Biol. Rev. 1944, 191, 20–30. [Google Scholar] [CrossRef]
- Turrill, W.B. The Ecotype Concept. A consideration with Appreciation and Criticism, Especially of Recent Trends. New Phytol. 1946, 451, 34–43. Available online: https://www.jstor.org/stable/2428935 (accessed on 9 December 2023). [CrossRef]
- Liancourt, P.; Spence, L.A.; Song, D.S.; Lkhagva, A.; Sharkhuu, A.; Boldgiv, B.; Helliker, B.R.; Petraitis, P.S.; Casper, B.B. Plant response to climate change varies with topography, interactions with neighbors, and Ecotype. Ecology 2013, 942, 444–453. [Google Scholar] [CrossRef]
- Gu, R.; Song, X.; Zhou, Y.; Xu, S.; Xu, S.; Yue, S.; Zhang, Y.; Zhang, X. Relationships between annual and perennial seagrass Ruppia sinensis populations and their sediment geochemical characteristics in the Yellow River Delta. Front. Plant Sci. 2021, 12, 634199. [Google Scholar] [CrossRef]
- Azcárate-García, T.; Beca-Carretero, P.; Cara, C.L.; Villamayor, B.; Cosnett, E.; Bermejo, R.; Hernández, I.; Brun, F.G.; Stengel, D.B. Seasonal plant development and meadow structure of Irish and southern Spanish seagrass populations. Aquat. Bot. 2022, 183, 103569. [Google Scholar] [CrossRef]
- Lee, K.S.; Dunton, K.H. Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi Bay, Texas, USA. Mar. Ecol. Prog. Ser. 1996, 143, 201–210. [Google Scholar] [CrossRef]
- Kikuchi, K.; Kawasaki, Y.; Sato, S. Effect of seasonal changes on the carbohydrate levels of eelgrass Zostera marina at Odawa Bay. Fish. Sci. 2001, 674, 755–757. [Google Scholar] [CrossRef]
- Lee, K.S.; Dunton, K.H. Effect of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum banks ex König. J. Exp. Mar. Biol. Ecol. 1997, 210, 53–73. [Google Scholar] [CrossRef]
- Jueterbock, A.; Duarte, B.; Coyer, J.; Olsen, J.L.; Kopp, M.E.; Smolina, I.; Arnaud-Haond, S.; Hu, Z.-M.; Hoarau, G. Adaptation of temperate seagrass to Arctic light relies on seasonal acclimatization of carbon capture and metabolism. Front. Plant Sci. 2021, 12, 745855. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C.J.; Lawrence, J.M. Seasonal changes in the proximate constituents of the seagrasses Thalassia testudinum, Halodule wrightii and Syringodium filiforme. Aquat. Bot. 1980, 8, 371–380. [Google Scholar] [CrossRef]
- Vichkovitten, T.; Holmer, M.; Frederiksen, M.S. Spatial and temporal changes in non-structural carbohydrate reserves in eelgrass Zostera marina L. in Danish coastal waters. Bot. Mar. 2007, 50, 75–87. [Google Scholar] [CrossRef]
- Murata, N.; Sato, N.; Takahashi, N.; Hamazaki, Y. Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol. 1982, 23, 1071–1107. [Google Scholar] [CrossRef]
- Bravo, L.A.; Ulloa, N.; Zuñiga, G.E.; Casanova, A.; Corcuera, L.J.; Alberdi, M. Cold resistance in Antarctic angiosperms. Physiol. Plant. 2001, 1111, 55–65. [Google Scholar] [CrossRef]
- Alberdi, M.; Bravo, L.A.; Gutiérrez, A.; Gidekel, M.; Corcuera, L.J. Ecophysiology of antarctic vascular plants. Physiol. Plant. 2002, 1154, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Teoh, M.-L.; Chu, W.-L.; Marchant, H.; Phang, S.-M. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 2004, 166, 421–430. [Google Scholar] [CrossRef]
- Richardson, K.; Lavin-Peregrina, M.F.; Mitchelson, E.G.; Simpson, J.H. Seasonal distribution of chlorophyll a in relation to physical structure in the western Irish sea. Oceanol. Acta 1985, 8, 77–86. [Google Scholar]
- Pérez, M.; Romero, J. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquat. Bot. 1992, 431, 51–62. [Google Scholar] [CrossRef]
- Olesen, B.; Sand-Jensen, K.A.J. Demography of shallow eelgrass Zostera marina populations—Shoot dynamics and biomass development. J. Ecol. 1994, 82, 379–390. [Google Scholar] [CrossRef]
- Raine, R.; McMahon, T. Physical Dynamics on the continental shelf off southwestern Ireland and their influence on coastal phytoplankton blooms. Cont. Shelf Res. 1998, 188, 883–914. [Google Scholar] [CrossRef]
- Ruocco, M.; Ambrosino, L.; Jahnke, M.; Chiusano, M.; Barrote, I.; Procaccini, G.; Silva, J.; Dattolo, E. M6A RNA methylation in marine plants: First insights and relevance for biological rhythms. Int. J. Mol. Sci. 2020, 2120, 7508. [Google Scholar] [CrossRef] [PubMed]
- Beca-Carretero, P.; Guihéneuf, F.; Krause-Jensen, D.; Stengel, D.B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Environ. Res. 2020, 161, 105075. [Google Scholar] [CrossRef] [PubMed]
- Pirc, H. Seasonal changes in soluble carbohydrates, starch, and energy content in Mediterranean seagrasses. Mar. Ecol. 1989, 102, 97–105. [Google Scholar] [CrossRef]
- Soissons, L.M.; Haanstra, E.P.; van Katwijk, M.M.; Asmus, R.; Auby, I.; Barillé, L.; Brun, F.G.; Cardoso, P.G.; Desroy, N.; Fournier, J.; et al. Latitudinal patterns in European seagrass carbon reserves: Influence of seasonal fluctuations versus short-term stress and disturbance events. Front. Plant Sci. 2018, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Ding, N.Z. Plant unsaturated fatty acids: Multiple roles in stress response. Front. Plant Sci. 2020, 11, 562785. [Google Scholar] [CrossRef]
- Campbell, J.E.; Yarbro, L.A.; Fourqurean, J.W. Negative relationships between the nutrient and carbohydrate content of the seagrass Thalassia testudinum. Aquat. Bot. 2012, 99, 56–60. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Anishchenko, O.V.; Makhutova, O.N.; Kolmakov, V.I.; Kalachova, G.S.; Kolmakova, A.A.; Dubovskaya, O.P. Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir. Oecologia 2011, 1652, 521–531. [Google Scholar] [CrossRef]
- Nalley, J.O.; O’Donnell, D.R.; Litchman, E. Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal Res. 2018, 35, 500–507. [Google Scholar] [CrossRef]
- Beca-Carretero, P.; Azcárate-García, T.; Julia-Miralles, M.; Stanschewski, C.S.; Guihéneuf, F.; Stengel, D.B. Seasonal acclimation modulates the impacts of simulated warming and light reduction on temperate seagrass productivity and biochemical composition. Front. Mar. Sci. 2021, 8, 731152. [Google Scholar] [CrossRef]
- Pansini, A.; Beca-Carretero, P.; Berlino, M.; Sarà, G.; Stengel, D.B.; Stipcich, P.; Ceccherelli, G. Field development of Posidonia oceanica seedlings changes under predicted acidification conditions. Mar. Environ. Res. 2023, 186, 105946. [Google Scholar] [CrossRef]
- Pansini, A.; Beca-Carretero, P.; González, M.J.; La Manna, G.; Medina, I.; Ceccherelli, G. Sources of variability in seagrass fatty acid profiles and the need of identifying reliable warming descriptors. Sci. Rep. 2023, 131, 10000. [Google Scholar] [CrossRef]
- Winters, G.; Conte, C.; Beca-Carretero, P.; Nguyen, H.M.; Migliore, L.; Mulas, M.; Rilov, G.; Guy-Haim, T.; González, M.J.; Medina, I.; et al. Superior growth traits of invaded Caribbean versus native Red sea populations of the seagrass Halophila stipulacea. Biol. Invasions 2023, 257, 2325–2342. [Google Scholar] [CrossRef]
- Stipcich, P.; Beca-Carretero, P.; Álvarez-Salgado, X.A.; Apostolaki, E.T.; Chartosia, N.; Efthymiadis, P.T.; Jimenez, C.E.; La Manna, G.; Pansini, A.; Principato, E.; et al. Effects of high temperature and marine heat waves on seagrasses: Is warming affecting the nutritional value of Posidonia oceanica? Mar. Environ. Res. 2023, 184, 105854. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, J.; Lu, X.; Su, C.; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, J.; Ittekkot, V.; et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for Sustainability. Environ. Pollut. 2018, 239, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Silliman, B.R. A facilitation cascade enhances local biodiversity in seagrass beds. Diversity 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 44, 103–107. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nakaoka, M. Emergence stress and morphological constraints affect the species distribution and growth of subtropical intertidal seagrasses. Mar. Ecol. Prog. Ser. 2004, 284, 117–131. [Google Scholar] [CrossRef]
- Roca, G.; Alcoverro, T.; Krause-Jensen, D.; Balsby, T.J.; Van Katwijk, M.M.; Marbà, N.; Santos, R.; Arthur, R.; Mascaró, O.; Fernández-Torquemada, Y.; et al. Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecol. Indic. 2016, 63, 310–323. [Google Scholar] [CrossRef]
- Britton, D.; Schmid, M.; Noisette, F.; Havenhand, J.N.; Paine, E.R.; McGraw, C.M.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Mundy, C.N.; et al. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C. Agardh. Glob. Chang. Biol. 2020, 26, 3512–3524. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Kraft, L.G.; van der Loos, L.M.; Kraft, G.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L. Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chem. 2018, 265, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Beca-Carretero, P.; Guiheneuf, F.; Marín-Guirao, L.; Bernardeau-Esteller, J.; Garcia-Munoz, R.; Stengel, D.B.; Ruiz, J.M. Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. Mar. Pollut. Bull. 2018, 134, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Hubber, S.C.; Israel, D.W. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean Glycine max Merr. leaves. Plant Physiol. 1982, 69, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 573, 508. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Anderson, T. (Ed.) The Theory and Practice of Online Learning; Athabasca University Press: Washington, DC, USA, 2008. [Google Scholar]
Total Leaf Area (cm2 shoot−1) | Leaf Production (g DW d−1 shoot−1) | Leaf Area Index (m2 m−2) | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatment | df | MS | Pseudo-F | df | MS | Pseudo-F | df | MS | Pseudo-F |
Month (M) | 11 | 4.7 | 22.6 *** | 10 | 6.1 | 16.4 *** | 11 | 4.9 | 40.6 *** |
Ecotype (E) | 1 | 40.4 | 194.8 *** | 1 | 19.9 | 53.2 *** | 1 | 4.3 | 35.3 *** |
MxE | 10 | 1.5 | 7.3 *** | 10 | 1.1 | 3.0 *** | 10 | 0.3 | 2.7 *** |
Residual | 117 | 0.2 | 114 | 0.4 | 46 | 0.1 | |||
Total | 139 | 135 | 68 |
Sucrose (mg g−1 DW) | Starch (mg g−1 DW) | ||||
---|---|---|---|---|---|
Treatment | df | MS | Pseudo-F | MS | Pseudo-F |
Month (M) | 11 | 5.5 | 64.2 *** | 1.6 | 6.5 *** |
Ecotype (E) | 1 | 2.4 | 28.7 *** | 35.4 | 140.9 *** |
MxE | 11 | 0.4 | 4.7 *** | 0.5 | 2.0 * |
Residual | 48 | 8.5 × 10−2 | 0.2 | ||
Total | 71 |
TFA | PUFA | MUFA | SFA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | df | MS | Pseudo-F | MS | Pseudo-F | MS | Pseudo-F | MS | Pseudo-F | ||
Month (M) | 11 | 6.2 | 37.9 *** | 5.3 | 36.6 *** | 2.4 | 14.5 *** | 6.5 | 55.8 *** | ||
Ecotype (E) | 1 | 0.1 | 0.9 | 13.0 | 90.4 *** | 24.4 | 149.1 *** | 0.6 | 5.3 ** | ||
MxE | 11 | 0.8 | 4.8 *** | 0.9 | 6.1 *** | 2.7 | 16.6 *** | 0.9 | 8.0 *** | ||
Residual | 69 | 0.2 | 0.2 | 0.1 | |||||||
Total | 92 | ||||||||||
PUFA/SFA | Omega-3 | Omega-6 | Omega3/6 | 18:3 n-3/16:0 | |||||||
Treatment | df | MS | Pseudo-F | MS | Pseudo-F | MS | Pseudo-F | MS | Pseudo-F | MS | Pseudo-F |
Month (M) | 11 | 6.7 | 68.5 *** | 6.5 | 65.9 *** | 7.3 | 100.4 *** | 7.3 | 110.2 *** | 6.8 | 74.2 *** |
Ecotype (E) | 1 | 1.9 | 19.1 *** | 2.3 | 23.2 *** | 0.3 | 3.7 | 0.2 | 2.8 | 0.8 | 8.9 *** |
MxE | 11 | 0.8 | 7.8 *** | 0.9 | 9.2 *** | 0.5 | 7.4 *** | 0.5 | 7.8 *** | 0.8 | 9.0 *** |
Residual | 69 | 9.8 × 10−2 | 9.9 × 10−2 | 7.3 × 10−2 | 6.6 × 10−2 | 9.2 × 10−2 | |||||
Total | 92 |
Country | Location | Sampling | Coordinates | Area | SST | Irradiance | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Period | (m2) | (°C) | (Wh m−2) | ||||||||
ZM1 | ZM2 | Min. | Max. | Min. | Max. | ||||||
Ireland | Kilkieran | Nov | Oct | 53°19′35″ N | 9°36′58″ W | 2900 | 1700 | 6.8 ± 0.4 | 16.8 ± 0.4 | 473.6 ± 173.1 | 5823.9 ± 1920.1 |
Bay (Galway) | 2017 | 2018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beca-Carretero, P.; Marín, C.; Azcárate-García, T.; Cara, C.L.; Brun, F.; Stengel, D.B. Ecotype-Specific and Correlated Seasonal Responses of Biomass Production, Non-Structural Carbohydrates, and Fatty Acids in Zostera marina. Plants 2024, 13, 396. https://doi.org/10.3390/plants13030396
Beca-Carretero P, Marín C, Azcárate-García T, Cara CL, Brun F, Stengel DB. Ecotype-Specific and Correlated Seasonal Responses of Biomass Production, Non-Structural Carbohydrates, and Fatty Acids in Zostera marina. Plants. 2024; 13(3):396. https://doi.org/10.3390/plants13030396
Chicago/Turabian StyleBeca-Carretero, Pedro, Clara Marín, Tomás Azcárate-García, Claudia L. Cara, Fernando Brun, and Dagmar B. Stengel. 2024. "Ecotype-Specific and Correlated Seasonal Responses of Biomass Production, Non-Structural Carbohydrates, and Fatty Acids in Zostera marina" Plants 13, no. 3: 396. https://doi.org/10.3390/plants13030396
APA StyleBeca-Carretero, P., Marín, C., Azcárate-García, T., Cara, C. L., Brun, F., & Stengel, D. B. (2024). Ecotype-Specific and Correlated Seasonal Responses of Biomass Production, Non-Structural Carbohydrates, and Fatty Acids in Zostera marina. Plants, 13(3), 396. https://doi.org/10.3390/plants13030396