A Community-Based Framework Integrates Interspecific Interactions into Forest Genetic Conservation
Abstract
:1. Introduction
2. Limitations of Species-Based Genetic Conservation
3. Community Processes Shaping Species and Genetic Diversity
3.1. Community Processes Acting on Species Diversity
- The stochastic niche or broken stick model [64], where the niche occupation and its size distribution of each species are random and independent of the niche sizes of other species in a community.
- The logarithmic normal distribution [65], where the niche size of a species is random and determined by the joint effects of many factors, and no selective advantage is present among species.
- The niche pre-emption model [66], where the first dominant species occupies the largest niche space, followed by the species that inhabits the second largest niche in the remaining space, to the last species that occupies the minimum niche.
- The neutral community model [31], where the community size is fixed, and other species equally compensate a decrease in one species’ abundance. All individuals in the community have similar birth and death rates.
3.2. Two Levels of Processes Acting on Genetic Diversity in a Forest Community
- Ecological drift simultaneously reduces selection efficacy at intraspecific and interspecific levels. This, on average, reduces the interspecific interactions and effective population sizes of individual species in a forest community. When the ecological drift effects (a small ecological community size J) increase, the role of a tree species in a forest community could change, depending upon the relative abundance of the species. If the population size of a tree species is smaller than the threshold size required for Allee effects to occur [80,81], the species is likely extinct. Suppose the population size is greater than the threshold size of Allee effects under the ecological drift effects. In that case, a smaller species population enhances the fixation probabilities of deleterious alleles, which weakens the adaptation of the species to its local habitats. Genetic diversity is expected to decrease.
- A forest community’s temporal succession could alter the role of individual species [82]. Some tree species would be lost, while others would dominate a forest community. Interspecific interaction directly affects the adaptation of a species and hence changes its genetic diversity. If a species abundance increases and gradually becomes the dominant species in a forest community, selection efficacy increases for adaptive alleles, and the species becomes more adaptive to the habitat. The genetic diversity at neutral loci may also increase in this species. However, if a species is disadvantageous during the forest community succession, the species may eventually be extinct, and so will its genetic diversity. Community assembly could evolve along the succession process, and the lineage phylogenetic relationship within the community also changes [83].
- Biogeographical processes, such as the invasion of alien species or new speciation, can change the status and adaptability of a tree species in a forest community [84]. Classical climate change also shapes forest community structure, and adaptive invasion species create competition with resident species in the recipient community and change species richness and abundance [85,86]. Inbreeding and/or outbreeding depression caused by invasive species could threaten the survival of local population genetic diversity. Maladaptive invasion subsequently changes its genetic diversity [87]. If a highly invasive species interacts with the tree species, this would substantially influence its genetic diversity. Effects of speciation on community structure could be observed when communities are investigated over a range of evolutionary, ecological, and geographic scales [88]. This is analogous to mutations that produce new genes and change the population’s genetic structure [29].
4. Characterizing a Forest Community in Terms of Phylogeny
5. Community-Based Strategy of Genetic Conservation
5.1. Determining the Number of Communities
5.2. Detecting the Molecular Mechanism of Interspecific Interactions
5.3. Integrating Two Levels of Evolutionary Processes into Genetic Conservation
- When the given tree species has different patterns of selection across communities, e.g., a half number of communities with positive selection () and another half with purifying selection (), the effects of interspecific interactions can amplify population genetic differentiation. Population genetic differentiation is more significant than that under neutrality. Selection due to interspecific interactions would increase the genetic differentiation of the species at the population level, which is analogous to the outcome of genetic hitchhiking effects or background selection effects on genetic differentiation at a linked neutral site [126,127,128].
- When the given tree species has the same degree and pattern of interspecific interactions across communities, e.g., all communities with a similar extent of purifying/positive selection, population genetic differentiation may be smaller than that under neutrality.
- When the given tree species has different extents and types of interspecific interactions in different communities, such as weak positive and purifying selection, population genetic differentiation may be close to that under neutrality. An appropriate number of community-based populations could be suggested for conservation from this array of patterns of the population genetic differentiation of a given species.
6. Conclusions
- The interactions of the given tree species with other species in natural forests, which affect genetic diversity.
- The conservation of potential natural hybrids between a species and its closely related species.
- The conservation of the genetic diversity of varieties or subspecies of some species.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frankel, O.H. Philosophy and strategy of genetic conservation in plants. In Proceedings of the 3rd World Consultation on Forest Tree Breeding, Canberra, Australia, 21–26 March 1977; Volume 1, pp. 1–11. [Google Scholar]
- Zhu, Q.; Liao, B.Y.; Li, P.; Li, J.C.; Deng, X.M.; Hu, X.S.; Chen, X.Y. Phylogeographic pattern suggests a major eastward dispersal in the distribution of Machilus pauhoi in South China. PLoS ONE 2017, 12, e0184456. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, X.X.; Hu, Y.; Wang, X.; Li, P.; He, Z.H.; Lv, Y.W.; Chen, X.Y.; Hu, X.S. Phylogeography of Toona ciliata (Meliaceae) Complex in China inferred from cytonuclear markers. Genes 2022, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, X.X.; Ren, Y.; Li, P.; Chen, X.Y.; Hu, X.S. Mating system and population structure in the natural distribution of Toona ciliata (Meliaceae) in South China. Sci. Rep. 2020, 10, 16998. [Google Scholar] [CrossRef]
- Semerikova, S.A.; Isakov, I.Y.; Semerikov, V.L. Chloroplast DNA variation and phylogeography of pedunculate oak Quercus robur L. in the eastern part of the range. Russ. J. Genet. 2021, 57, 47–60. [Google Scholar] [CrossRef]
- Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1860. [Google Scholar]
- Case, T.J.; Taper, M.L. Interspecific competition, environmental gradients, gene flow, and the coevolution of specie’’ borders. Am. Nat. 2000, 155, 583–605. [Google Scholar] [CrossRef]
- Ye, T.Z.; Yang, R.C.; Yeh, F.C. Population structure of a lodgepole pine (Pinus contorta) and jack pine (P. banksiana) complex as revealed by random amplified polymorphic DNA. Genome 2002, 45, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Tekpinar, A.D.; Aktaş, C.; Kansu, Ç.; Duman, H.; Kaya, Z. Phylogeography and phylogeny of genus Quercus L. (Fagaceae) in Turkey implied by variations of trnT(UGU)-L(UAA)-F (GAA) chloroplast DNA region. Tree Genet. Genomes 2021, 17, 40. [Google Scholar] [CrossRef]
- Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005, 20, 229–237. [Google Scholar] [CrossRef]
- Mallet, J.; Besansky, N.; Hahn, M.W. How reticulated are species? Bioessays 2016, 38, 140–149. [Google Scholar] [CrossRef]
- Sweigart, A.L.; Willis, J.H. Patterns of nucleotide diversity in two species of Mimulus are affected by mating system and asymmrtric introgression. Evolution 2003, 57, 2490–2506. [Google Scholar]
- Freeland, J.R.; Kirk, H.; Petersen, S.D. Molecular Ecology; Wiley-Blackwell, A John Wiley and Sons: Chichester, UK, 2011. [Google Scholar]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Hu, X.S.; Li, B.L. Linking evolutionary quantitative genetics to the conservation of genetic resources in natural forest populations. Silvae Genet. 2002, 51, 177–183. [Google Scholar]
- Bourgeois, Y.X.C.; Warren, B. An overview of current population genomics methods for the analysis of whole-genome resequencing data in eukaryotes. Mol. Ecol. 2021, 30, 6036–6071. [Google Scholar] [CrossRef]
- Jones, T.B.; Manseau, M. Genetic networks in ecology: A guide to population, relatedness, and pedigree networks and their applications in conservation biology. Biol. Conserv. 2022, 267, 109466. [Google Scholar] [CrossRef]
- Hu, X.S.; Wu, R.L.; Han, Y.F. An approach to sustainable management of population genetic resources of trees: (I) Relevant theoretical analyses of the information on population genetic variation. For. Res. 2000, 13, 301–307. [Google Scholar]
- Semerikova, S.A.; Podergina, S.M.; Tashev, A.N.; Semerkov, V.L. Phylogeography of oaks in the Crimea reveals pleistocene refugia and migration routes. Russ. J. Ecol. 2023, 54, 197–212. [Google Scholar] [CrossRef]
- Cosimo, S.M.; Papini, A.; Vessella, F.; Bellarosa, R.; Spada, F.; Schirone, B. Multiple genome relationships and a complex biogeographic history in the eastern range of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA variation. Caryologia 2009, 62, 236–252. [Google Scholar] [CrossRef]
- Sousa, F.; Viegas, M.B.; Costa, J.; Marques, I.; Pina-Martins, F.; Simoes, F.; Mato, J.; Glushkova, M.; Miguel, C.; Veloso, M.M.; et al. Haplotype diversity patterns in Quercus suber (Fagaceae) inferred from cpDNA sequence data. Plant. Syst. Evol. 2023, 309, 42. [Google Scholar] [CrossRef]
- Namkoong, G. Introduction to Quantitative Genetics in Forestry; United States Department of Agriculture: Washington, DC, USA, 1979.
- Spitze, K. Population structure in Daphnia btusea: Quantitative genetic and allozymic variation. Genetics 1993, 135, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.S.; Wu, R.L.; Han, Y.F. An approach to sustainable management of population genetic resources of trees: (II) Management analyses of plantation and natural population of some autochthonous tree species in China. For. Res. 2001, 14, 1–7. [Google Scholar]
- Hu, X.S.; Chen, X.Y.; Yeh, F.C. Forest Population Genetics; China Forestry Publishing House: Beijing, China, 2021. [Google Scholar]
- Bessega, C.; Cony, M.; Saidman, B.O.; Aguilo, R.; Villagra, P.; Alvarez, J.A.; Pometti, C.; Vilardi, J.C. Genetic diversity and differentiation among provenances of Prosopis flexuosa DC (Leguminosae) in a progeny trial: Implications for arid land restoration. For. Ecol. Mang. 2019, 443, 59–68. [Google Scholar]
- Kowalczyk, J.; Wojda, T. Result of the 35 years provenance experiment with Scots pine from the IUFRO 1982 series on the trials in Wyszkow and Sekocin. Sylwan 2019, 163, 584–589. [Google Scholar]
- Lv, Y.W.; He, Z.H.; Xiao, Y.; Ouyang, K.X.; Wang, X.; Hu, X.S. Population structure and genetic diversity in the natural distribution of Neolamarckia cadamba in China. Genes 2023, 14, 855. [Google Scholar] [CrossRef]
- Wright, S. The Theory of Gene Frequencies. In Evolution and the Genetics of Populations; The University of Chicago Press: Chicago, IL, USA, 1969; Volume 2. [Google Scholar]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Hu, X.S.; He, F.L.; Hubbell, S.P. Neutral theory in macroecology and population genetics. Oikos 2006, 113, 548–556. [Google Scholar] [CrossRef]
- Overcast, I.; Ruffley, M.; Rosindell, J.; Harmon, L.; Borges, P.A.V.; Emerson, B.C.; Etienne, R.S.; Gillespie, R.; Krehenwinkel, H.; Mahler, D.L.; et al. A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities. Mol. Ecol. Resour. 2021, 21, 2782–2800. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Kozak, K.H.; Fine, P.V.A.; Kembel, S.W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 2009, 12, 693–715. [Google Scholar] [CrossRef]
- Losos, J.B. Phylogenetic perspectives on community ecology. J. Ecol. 1996, 77, 1344–1354. [Google Scholar] [CrossRef]
- Webb, C.O.; Ackerly, D.D.; McPeek, M.A.; Donoghue, M.J. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 2002, 33, 475–505. [Google Scholar] [CrossRef]
- Gerhold, F.; Carlucci, M.B.; Proches, S.; Prinzing, A. The deep past controls the phylogenetic structure of present, local communities. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 477–497. [Google Scholar] [CrossRef]
- Yu, Q.; Rao, X.; Ouyang, S.; Xu, Y.; Hanif, A.; Ni, Z.; Sun, D.; He, D. Changes in taxonomic and phylogenetic dissimilarity among four subtropical forest communities during 30 years of restoration. For. Ecol. Manag. 2019, 432, 983–1001. [Google Scholar] [CrossRef]
- Diniz, E.S.; Gastauer, M.; Thiele, J.; Meira-Neto, J.A.A. Phylogenetic dynamics of tropical Atlantic forests. Evol. Ecol. 2021, 35, 65–81. [Google Scholar] [CrossRef]
- Coyne, J.A.; Orr, H.A. Speciation; Sinauer Associates: Sunderland, MA, USA, 2004. [Google Scholar]
- Mayr, E. Systematics and the Origin of Species; Columbia University Press: New York, NY, USA, 1942. [Google Scholar]
- Cracraft, J. Species concepts and speciation analysis. Curr. Ornithol. 1983, 1, 59–187. [Google Scholar]
- Xiao, Y.; Wang, X.; He, Z.H.; Li, L.L.; Hu, X.S. Advances in speciation theories and their verifications based on the biological species concept. Biodivers. Sci. 2022, 30, 21480. [Google Scholar] [CrossRef]
- Chen, S.K.; Li, H.; Chen, B.Y. Meliaceae. In Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1997. [Google Scholar]
- Xiao, Y.; Wang, X.; He, Z.H.; Lv, Y.W.; Zhang, C.H.; Hu, X.S. Assessing phylogenetic relationships among varieties of Toona ciliata in sympatry with chloroplast genomes. Ecol. Evol. 2023, 13, e10828. [Google Scholar] [CrossRef]
- Coutinho, A.L.; Dillenburg, L.R. Comparison of seedling growth among three co-occurring varieties of Araucaria angustifolia (Bertol.) Kuntze under greenhouse conditions. Acta Bot. Bras. 2010, 24, 567–570. [Google Scholar] [CrossRef]
- Marchioro, C.A.; Santos, K.L.; Siminski, A. Present and future of the critically endangered Araucaria angustifolia due to climate change and habitat loss. Forestry 2020, 93, 401–410. [Google Scholar] [CrossRef]
- Kress, W.J. Plant DNA barcodes: Applications today and in the future. J. Syst. Evol. 2017, 55, 291–307. [Google Scholar] [CrossRef]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lai, R.; et al. DNA barcoding, an effective tool for species identification: A review. Mol. Biol. Rep. 2023, 50, 761–775. [Google Scholar] [CrossRef]
- Hollingsworth, P.M.; Li, D.Z.; van der Bank, M.; Twyford, A.D. Telling plant species apart with DNA: From barcodes to genomes. Phil. Trans. Royal Soc. B-Biol Sci. 2016, 371, 1702. [Google Scholar] [CrossRef]
- Rouhan, G.; Gaudeul, M. Plant taxonomy: A historical perspective, current challenges, and perspectives. Methods Mol. Biol. 2014, 1115, 1–37. [Google Scholar] [PubMed]
- Avise, J.C. Phylogeography. The History and Formation of Species; Harvard University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Liu, J.X.; Shi, M.M.; Zhang, Z.L.; Xie, H.B.; Kong, W.J.; Wang, Q.L.; Zhao, X.L.; Zhao, C.Y.; Lin, Y.L.; Zhang, X.X.; et al. Phylogenomic analyses based on the plastid genome and concatenated nrDNA sequence data reveal cytonuclear discordance in genus Atractylodes (Asteraceae: Carduoideae). Front. Plant Sci. 2022, 13, 1045423. [Google Scholar] [CrossRef]
- Ennos, R.A.; French, G.C.; Hollingsworth, P.M. Conserving taxonomic complexity. Trends Ecol. Evol. 2005, 20, 164–168. [Google Scholar] [CrossRef]
- Tsumura, Y. Genetic guidelines for tree species and perspectives on the conservation and sustainable use of forests. J. For. Res. 2022, 27, 83–95. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Physical Biology; Williams and Wilkins: Baltimore, MD, USA, 1925. [Google Scholar]
- Volterra, V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Della R. Accad. Naz. Dei Lincei 1926, 2, 31–113. [Google Scholar]
- Proulx, S.R.; Leduc, A.; Thiffault, N.; Ameztegui, A. Tree size drives growth interactions in mixed mature stands of black spruce (Picea mariana) and tamarack (Larix laricina). For. Ecol. Manag. 2023, 543, 121150. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, W.P.; Yang, K.; Ye, C.; Wu, W.T.; Wang, C.Y.; Mao, G.M.; Huang, H.C.; Mei, X.Y.; Yang, M.; et al. Adult-plant resistance of Panax notoginseng to nematodes and interspecific facilitation with pine trees. J. Pest Sci. 2023, 96, 1272–1286. [Google Scholar] [CrossRef]
- Deng, X.X.; Liao, Y.L.; Wong, D.M.; Yu, H. The genetic structuring in pollinating wasps of Ficus hispida in continental Asia. Ecol. Evol. 2023, 13, e10518. [Google Scholar] [CrossRef] [PubMed]
- Marcilio-Silva, V.; Pillar, V.D.; Marques, M.C.M. Functional turnover and community assemblage during tropical forest succession. Community Ecol. 2016, 17, 88–97. [Google Scholar] [CrossRef]
- Schlager, U.E.; Grimm, V.; Blaum, N.; Colangeli, P.; Dammhahn, M.; Eccard, J.A.; Hausmann, S.L.; Herde, A.; Hofer, H.; Joshi, J.; et al. Movement-mediated community assembly and coexistence. Biol. Rev. 2020, 95, 1073–1096. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, X.; Hu, Y.; Zhou, W.; Chen, X.Y.; Hu, X.S. Advances in the study of population genetic diversity at plant species’ margins. J. Plant Ecol. 2019, 43, 383–395. [Google Scholar] [CrossRef]
- MacArthur, R.H. On the relative abundance of bird species. Proc. Natl. Acad. Sci. USA 1957, 43, 283–295. [Google Scholar] [CrossRef]
- Preston, F.W. The commonness, and rarity of species. Ecology 1948, 29, 254–283. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–351. [Google Scholar] [CrossRef]
- Post, D.M.; Palkovacs, E.P. Eco-evolutionary feedbacks in community and ecosystem ecology: Interactions between the ecological theatre and the evolutionary play. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 1364, 1629–1640. [Google Scholar] [CrossRef]
- Andrade-Domínguez, A.; Salazar, E.; Vargas-Lagunas, M.C.; Kolter, R.; Encarnación, S. Eco-evolutionary feedbacks drive species interactions. ISME J. 2014, 8, 1041–1054. [Google Scholar] [CrossRef] [PubMed]
- Schluter, D.; Pennell, M.W. Speciation gradients and the distribution of biodiversity. Nature 2017, 546, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Mazon, M.M.; Tello, J.S.; Macia, M.J.; Myers, J.A.; Jorgensen, P.M.; Cala, V.; Fuentes, A.F.; Torrez, V.; Arellano, G. Mechanisms of community assembly explaining beta-diversity patterns across biogeographic regions. J. Veg. Sci. 2021, 32, e1303. [Google Scholar]
- Hu, X.S.; He, F.L.; Hubbell, S.P. Community differentiation on landscapes: Drift, migration and speciation. Oikos 2009, 118, 1515–1523. [Google Scholar] [CrossRef]
- Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackso, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S. Genetic diversity and species diversity of stream fishes covary across a land-use gradient. Oecologia 2012, 168, 83–95. [Google Scholar] [CrossRef]
- Vellend, M.; Lajoie, G.; Burret, A.; Murria, C.; Kembel, S.W.; Garant, D. Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol. Ecol. 2014, 23, 2890–2901. [Google Scholar] [CrossRef]
- Lamy, T.; Laroche, F.; David, P.; Massol, F.; Jarne, P. The contribution of species-genetic diversity correlations to the understanding of community assembly rules. Oikos 2017, 126, 759–771. [Google Scholar] [CrossRef]
- Xie, L.; Yang, Y.; Li, Y.; Chen, S.; Feng, Y.; Wang, N.; Lv, T.; Ding, H.; Wang, H.; Fang, Y. A meta-analysis indicates positive correlation between genetic diversity and species diversity. Biology 2021, 10, 1089. [Google Scholar] [CrossRef]
- Puscas, M.; Taberlet, P.; Choler, P. No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Diver. Distrib. 2008, 14, 852–861. [Google Scholar] [CrossRef]
- Taberlet, P.; Zimmermann, N.E.; Englisch, T.; Tribsch, A.; Holderegger, R.; Alvarez, N.; Niklfeld, H.; Coldea, G.; Mirek, Z.; Moilanen, A.; et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 2012, 15, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Avolio, M.L.; Smith, M.D. Correlations between genetic and species diversity: Effects of resource quantity and heterogeneity. J. Veg. Sci. 2013, 24, 1185–1194. [Google Scholar] [CrossRef]
- Schielzeth, H.; Wolf, J.B.W. Community genomics: A community-wide perspective on within-species genetic diversity. Am. J. Bot. 2021, 108, 2108–2111. [Google Scholar] [CrossRef] [PubMed]
- Allee, W.C. Animal Aggregations. In A Study in General Sociology; University of Chicago Press: Chicago, IL, USA, 1931. [Google Scholar]
- Drake, J.M.; Lodge, D.M. Allee effects, propagule pressure and the probability of establishment: Risk analysis for biological invasions. Biol. Invasions 2006, 8, 365–375. [Google Scholar] [CrossRef]
- Wehenkel, C.; Corral-Rivas, J.J.; Hernandez-Diaz, J.C. Genetic diversity in relation to secondary succession of forest tree communities. Pol. J. Ecol. 2011, 59, 45–54. [Google Scholar]
- Hahn, C.Z.; Michalski, S.G.; Fischer, M.; Durka, W. Genetic diversity and differentiation follow secondary succession in a multi-species study on woody plants from subtropical China. J. Plant Ecol. 2017, 10, 213–221. [Google Scholar] [CrossRef]
- Gallien, L.; Carboni, M. The community ecology of invasive species: Where are we and what’s next? Ecography 2017, 40, 335–352. [Google Scholar] [CrossRef]
- Yang, H.; Wu, M.; Liu, W.; Zhang, Z.; Zhang, N.; Wan, S. Community structure and composition in response to climate change in a temperate steppe. Glob. Chang. Biol. 2011, 17, 452–465. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Tong, X.; Dong, L.; Zheng, Y.; Zhang, J.; Miao, B.; Wang, L.; Zhao, L.; Wen, L.; et al. Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian plateau. Biogeosciences 2023, 20, 2869–2882. [Google Scholar] [CrossRef]
- Lorenz, J.; Heinrich, R.; Schneider, A.; Schwager, M.; Herklotz, V.; Wesche, K.; Ritz, C.M. Invasive populations of Spiraea tomentosa (Rosaceae) are genetically diverse but decline during succession in forest habitats. Plant Biol. 2021, 23, 749–759. [Google Scholar] [CrossRef]
- Emerson, B.; Gillespie, R. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 2008, 23, 619–630. [Google Scholar] [CrossRef]
- Kingman, J.F.C. On the genealogy of large populations. J. Appl. Probab. 1982, 19, 27–43. [Google Scholar] [CrossRef]
- Kingman, J.F.C. The coalescent. Stoch. Process. Appl. 1982, 13, 235–248. [Google Scholar] [CrossRef]
- Bustamante, C.D. Population genetics of molecular evolution. In Statistical Methods in Molecular Evolution; Nielsen, R., Ed.; Springer: New York, NY, USA, 2005; pp. 75–77. [Google Scholar]
- Wright, S. Experimental Results and Evolutionary Deductions. In Evolution and the Genetics of Populations; The University of Chicago Press: Chicago, IL, USA, 1977; Volume 3. [Google Scholar]
- Barton, N.H.; Briggs, D.E.G.; Eisen, J.A.; Goldstein, D.B.; Patel, N.H. Evolution; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2007. [Google Scholar]
- Kimura, M. Diffusion model of intergroup selection, with special reference to evolution of an altruistic character. Proc. Natl. Acad. Sci. USA 1983, 80, 6317–6321. [Google Scholar] [CrossRef]
- Leigh, J.E.G. The group selection controversy. J. Evol. Biol. 2010, 23, 6–19. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Mailund, T.; Munch, K.; Schierup, M.H. Lineage sorting in apes. Annu. Rev. Genet. 2014, 48, 519–535. [Google Scholar] [CrossRef]
- Cheng, X.; Li, L.L.; Xiao, Y.; Chen, X.Y.; Hu, X.S. Advances in the methods of detecting interspecific gene introgression and their applications. Sci. Sin. Vitae. 2020, 50, 1388–1404. [Google Scholar]
- Johnson, M.T.J.; Stinchcombe, J.R. An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol. 2007, 22, 250–257. [Google Scholar] [CrossRef]
- Chaudhary, A.; Burivalova, Z.; Koh, L.; Hellweg, S. Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Sci. Rep. 2016, 6, 23954. [Google Scholar] [CrossRef]
- Dieler, J.; Uhl, E.; Biber, P.; Muller, J.; Rotzer, T.; Pretzsch, H. Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. Eur. J. For. Res. 2017, 136, 739–766. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- MacArthur, R.H. Patterns of species diversity. Biol. Rev. 1965, 40, 510–533. [Google Scholar] [CrossRef]
- Wilson, M.V.; Shmida, A. Measuring beta diversity with presence-absence data. J. Ecol. 1984, 72, 1055–1064. [Google Scholar] [CrossRef]
- Koleff, P.; Gaston, K.J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 2003, 72, 367–382. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Socolar, J.B.; Gilroy, J.J.; Kunin, W.E.; Edwards, D.P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef]
- Mori, A.S.; Isbell, F.; Seidl, R. Beta-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 2018, 33, 549–564. [Google Scholar] [CrossRef]
- He, J.K.; Lin, S.L.; Kong, F.M.; Yu, J.H.; Zhu, H.; Jiang, H.S. Determinants of the beta diversity of tree species in tropical forests: Implications for biodiversity conservation. Sci. Total Environ. 2020, 704, 135301. [Google Scholar] [CrossRef]
- Myers, J.A.; LaManna, J.A. The promise and pitfalls of beta-diversity in ecology and conservation. J. Veg. Sci. 2017, 27, 1081–1083. [Google Scholar] [CrossRef]
- Graham, C.H.; Fine, P.V.A. Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecol. Lett. 2008, 11, 1265–1277. [Google Scholar] [CrossRef]
- Yang, Z.H. Computational Molecular Evolution; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Duarte, L.D.; Bergamin, R.S.; Marcilio-Silva, V.; Seger, G.D.D.; Marques, M.C.M. Phylobetadiversity among forest types in the Brazilian Atlantic forest complex. PLoS ONE 2014, 9, e105043. [Google Scholar] [CrossRef] [PubMed]
- Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots; Springer: Berlin, Germany, 1998. [Google Scholar]
- Ye, W.H.; Cao, H.L.; Huang, Z.L.; Lian, J.Y.; Wang, Z.G.; Li, L.; Wei, S.G.; Wang, Z.M. Community structure of 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China. Chin. J. Plant Ecol. 2008, 32, 274–286. [Google Scholar]
- Fang, J.; Shen, Z.; Tang, Z.; Wang, X.; Wang, Z.; Fenf, J.; Liu, Y.; Qiao, X.; Wu, X.; Zheng, C. Forest community survey and the structural characteristics of forests in China. Ecography 2012, 35, 1059–1071. [Google Scholar] [CrossRef]
- Tilman, D.; Pacala, S. The Maintenance of Species Richness in Plant Communities. In Species Diversity in Ecological Communities: Historical and Geographical Perspectives; Ricklefs, R.E., Schluter, D., Eds.; University of Chicago Press: Chicago, IL, USA, 1993; pp. 13–25. [Google Scholar]
- Pielou, E.C. Ecological Diversity; John Wiley and Sons Inc.: New York, NY, USA, 1975. [Google Scholar]
- Jaccard, P. Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Bull. Soc. Vaudoise Sci. Nat. 1901, 37, 547–597. [Google Scholar]
- Fisher, R.A. Statistical Methods for Research Workers, 13th ed.; Hafner: New York, NY, USA, 1925. [Google Scholar]
- Yang, Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 1962, 47, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.; Yang, Z. Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol. Biol. Evol. 2003, 20, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Kryazhimskiy, S.; Plotkin, J.B. The population genetics of dN/dS. PLoS Genet. 2008, 4, e1000304. [Google Scholar] [CrossRef]
- Kapralov, M.V.; Votintseva, A.A.; Filatov, D.A. Molecular adaptation during a rapid adaptive radiation. Mol. Biol. Evol. 2013, 30, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Haigh, J. The hitch-hiking effect of a favorable gene. Genet. Res. 1974, 23, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B.; Morgan, M.T.; Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 1993, 134, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.S.; He, F.L. Background selection and population differentiation. J. Theor. Biol. 2005, 235, 207–219. [Google Scholar] [CrossRef]
- Yang, R.C.; Yeh, F.C. Genetic consequences of in situ and ex situ conservation of forest trees. For. Chron. 1992, 68, 720–729. [Google Scholar] [CrossRef]
- Ennos, R.A.; Whitlock, R.; Fay, M.F.; Jones, B.; Neaves, L.E.; Payne, R.; Taylor, I.; De-Vere, N.; Hollingsworth, P.M. Process-based species action plans: An approach to conserve contemporary evolutionary processes that sustain diversity in taxonomically complex groups. Bot. J. Linn. Soc. 2012, 168, 194–203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xiao, Y.; Lv, Y.-W.; He, Z.-H.; Yeh, F.C.; Hu, X.-S. A Community-Based Framework Integrates Interspecific Interactions into Forest Genetic Conservation. Plants 2024, 13, 435. https://doi.org/10.3390/plants13030435
Wang X, Xiao Y, Lv Y-W, He Z-H, Yeh FC, Hu X-S. A Community-Based Framework Integrates Interspecific Interactions into Forest Genetic Conservation. Plants. 2024; 13(3):435. https://doi.org/10.3390/plants13030435
Chicago/Turabian StyleWang, Xi, Yu Xiao, Yan-Wen Lv, Zi-Han He, Francis C. Yeh, and Xin-Sheng Hu. 2024. "A Community-Based Framework Integrates Interspecific Interactions into Forest Genetic Conservation" Plants 13, no. 3: 435. https://doi.org/10.3390/plants13030435
APA StyleWang, X., Xiao, Y., Lv, Y. -W., He, Z. -H., Yeh, F. C., & Hu, X. -S. (2024). A Community-Based Framework Integrates Interspecific Interactions into Forest Genetic Conservation. Plants, 13(3), 435. https://doi.org/10.3390/plants13030435