Integrative Taxonomy Reveals Hidden Diversity in the Aloina catillum Complex (Pottiaceae, Bryophyta)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species and Material
2.2. DNA Extraction, Amplification, and Sequencing
2.3. Phylogenetic Analysis
2.4. Morphological-Anatomical Analysis
3. Results
3.1. Molecular Analyses
3.2. Morphological Evaluation
4. Discussion
5. Taxonomy
6. Key to the South American Species of Aloina with Differentiated Leaf Marginal Border
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.L.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
- Struck, T.H.; Jeffrey, L.F.; Bendiksby, M.; Birkeland, S.; Cerca, J.; Gusarov, V.I.; Kistenich, S.; Larsson, K.; Hsiang Liow, L.; Nowak, M.D.; et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 2018, 33, 153–163. [Google Scholar] [CrossRef]
- Korshunova, T.; Martynov, A.; Bakken, T.; Picton, B. External diversity is restrained by internal conservatism: New nudibranch mollusc contributes to the cryptic species problem. Zool. Scr. 2017, 46, 683–692. [Google Scholar] [CrossRef]
- Medina, R.; Lara, F.; Goffinet, B.; Garilleti, R.; Mazimpaka, V. Integrative taxonomy successfully resolves the pseudo–cryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae). Taxon 2012, 61, 1180–1198. [Google Scholar] [CrossRef]
- Cano, M.J.; Jiménez, J.F.; Alonso, M.; Jiménez, J.A. Untangling Pseudocrossidium crinitum s.l. (Pottiaceae, Bryophyta) through molecular and morphometric analysis. Nova Hedwig. 2016, 102, 89–106. [Google Scholar] [CrossRef]
- Hedenäs, L. Scandinavian Oncophorus (Bryopsida, Oncophoraceae): Species, cryptic species, and intraspecific variation. Eur. J. Taxon. 2017, 315, 1–34. [Google Scholar] [CrossRef]
- Hedenäs, L. Cryptic and morphologically recognizable species diversity within Scandinavian Plagiopus oederianus (Bryophyta: Bartramiaceae). Lindbergia 2020, 43, 01130. [Google Scholar] [CrossRef]
- Hedenäs, L. Cryptic speciation revealed in Scandinavian Racomitrium lanuginosum (Hedw.) Brid. (Grimmiaceae). J. Bryol. 2020, 42, 117–127. [Google Scholar] [CrossRef]
- Fedosov, V.E.; Shkurko, A.V.; Fedorova, A.V.; Ignatova, E.A.; Solovyeva, E.N.; Brinda, J.C.; Ignatov, M.S.; Kučera, J. Need for split: Integrative taxonomy reveals unnoticed diversity in the subaquatic species of Pseudohygrohypnum (Pylaisiaceae, Bryophyta). PeerJ 2022, 10, e13260. [Google Scholar] [CrossRef] [PubMed]
- Renner, M.A.M. Opportunities and challenges presented by cryptic bryophyte species. Telopea 2020, 23, 41–60. [Google Scholar] [CrossRef]
- Renner, M.A.M.; Devos, N.; Patiño, J.; Brown, E.A.; Orme, A.E.; Elgey, M.; Wilson, T.C.; Gray, L.J.; von Konrat, M. Integrative taxonomy resolves the cryptic and pseudo–cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species. PhytoKeys 2013, 27, 1–113. [Google Scholar] [CrossRef]
- Cano, M.J.; Jiménez, J.A.; Martínez, M.; Gallego, M.T.; Suárez, G.M. Aloina scindulosa M.J.Cano, J.A.Jiménez & M.T.Gallego (Pottiaceae), a new moss species from Argentina. J. Bryol. 2023, 45, 105–112. [Google Scholar] [CrossRef]
- Delgadillo, C. Taxonomic revision of Aloina, Aloinella and Crossidium (Musci). Bryologist 1975, 78, 245–303. [Google Scholar] [CrossRef]
- Delgadillo, C. Aloina. In Flora of North America North of Mexico; Bryophyta, Part 1; Flora of North America Editorial Committee, Ed.; Oxford University Press: New York, NY, USA, 2007; Volume 27, pp. 614–617. [Google Scholar]
- Gallego, M.T.; Cano, M.J.; Ros, R.M.; Guerra, J. The genus Aloina (Pottiaceae, Musci) in the Mediterranean region and neighbouring areas. Nova Hedwig. 1999, 69, 173–194. [Google Scholar] [CrossRef]
- Blockeel, T.L.; Bednarek-Ochyra, H.; Ochyra, R.; Duckett, J.G.; Erzberger, P.; Hedenäs, L.; Hugonnot, V.; Maier, E.; Marková, I.; Matcham, H.W.; et al. New national and regional bryophyte records, 18. J. Bryol. 2008, 30, 161–167. [Google Scholar] [CrossRef]
- Churchill, S.P.; Griffin, D.G., III; Muñoz, J. A checklist of the mosses of the tropical Andean countries. Ruizia 2000, 17, 1–203. [Google Scholar]
- Delgadillo, C.; Schiavone, M.M. Aloina and Aloinella (Bryopsida, Pottiaceae) in northern Argentina. Brittonia 2004, 56, 291–293. [Google Scholar] [CrossRef]
- Cano, M.J.; Gallego, M.T.; Jiménez, J.A.; Guerra, J. Aloina obliquifolia (Pottiaceae, Bryophyta) new to South America, and new reports of Aloina in the Neotropics. Cryptog. Bryol. 2008, 29, 75–81. [Google Scholar]
- Müller, C. Prodromus bryologiae Argentinicae. I. Linnaea 1879, 42, 217–460. [Google Scholar]
- Müller, C. Prodromus bryologiae Argentinicae II, seu musci Lorentziani Argentinici. Linnaea 1882, 43, 341–486. [Google Scholar]
- Ochyra, R.; Lewis Smith, R.I.; Bednarek-Ochyra, H. The Illustrated Moss Flora of Antarctica; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Müller, C. Bryologia provinciae Schen-si Sinensis ex collectione Giraldiana III. Nuovo Giorn. Bot. Ital. 1898, 5, 158–209. [Google Scholar]
- Kiguchi, H.; Iwatsuki, Z.; Tateishi, Y. The genus Aloina in Japan. Bryol. Res. 1998, 7, 146–151. [Google Scholar]
- Wang, X.-R.; Huang, S.-L.; Li, M.; Zhao, J.-C. A preliminary study of Aloina and Pterygoneurum in Hebei Province. Acta Bot. Boreal.–Occid. Sin. 2014, 2014, 404–410. [Google Scholar]
- Cano, M.J.; Jiménez, J.A.; Gallego, M.T.; Jiménez, J.F. Guerramontesia microdonta (Pottiaceae, Bryophyta) a new monotypic genus from South America. Syst. Bot. 2010, 35, 453–460. [Google Scholar] [CrossRef]
- Cano, M.J.; Jiménez, J.A.; Gallego, M.T.; Guerra, J. A molecular approach to the phylogeny of the moss genus Pseudocrossidium (Pottiaceae, Bryopsida) and its taxonomic implications. J. Syst. Evol. 2022, 60, 914–931. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Cano, M.J.; Guerra, J. A multilocus phylogeny of the moss genus Didymodon and allied genera (Pottiaceae): Generic delimitations and their implications for systematics. J. Syst. Evol. 2022, 60, 281–304. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Suzuki, T.; Inoue, Y.; Tsuba, H.; Iwatsuki, Z. Notes on Aptychella (Sematophyllaceae, Bryopsida): Yakushimabryum longissimum, syn. nov. Hattoria 2013, 4, 107–118. [Google Scholar]
- Alonso, M.; Jiménez, J.A.; Nylinder, S.; Hedenäs, L.; Cano, M.J. Disentangling generic limits in Chionoloma, Oxystegus, Pachyneuropsis and Pseudosymblepharis (Bryophyta: Pottiaceae): An inquiry into their phylogenetic relationships. Taxon 2016, 65, 3–18. [Google Scholar] [CrossRef]
- Košnar, J.; Herbstová, M.; Kolář, F.; Koutecký, P.; Kučera, J. A case study of intragenomic ITS variation in bryophytes: Assessment of gene flow and role of polyploidy in the origin of European taxa of the Tortula muralis (Musci: Pottiaceae) complex. Taxon 2012, 61, 709–720. [Google Scholar] [CrossRef]
- Hedenäs, L.; Heinrichs, J.; Gallego, M.T. The Scandinavian Syntrichia ruralis complex (Musci, Pottiaceae): A chaos of diversification. Plant Syst. Evol. 2019, 305, 639–661. [Google Scholar] [CrossRef]
- Chiang, T.Y.; Schaal, B.A.; Peng, C.I. Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot. Bull. Acad. Sin. 1998, 39, 245–250. [Google Scholar]
- Pacak, A.; Szweykowska–Kulińska, Z. Molecular data concerning the allopolyploid character and the origin of chloroplast and mithochondrial genomes in the liverwort species Pellia borealis. J. Pl. Biotechnol. 2000, 2, 101–108. [Google Scholar] [CrossRef]
- Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Mol. Biol. 1991, 17, 1105–1109. [Google Scholar] [CrossRef]
- Stech, M.; Frahm, J.P. The status of Platyhypnidium mutatum Ochyra & Vanderpoorten and the systematic value of Donrichardsiaceae based on molecular data. J. Bryol. 1999, 21, 191–195. [Google Scholar] [CrossRef]
- Sawicki, J.; Szczecińska, M. A comparison of PCR-based markers for molecular identification of Sphagnum species of the section Acutifolia. Acta Soc. Bot. Pol. 2011, 80, 185–192. [Google Scholar] [CrossRef]
- Olsson, S.; Buchbender, V.; Enroth, J.; Hedenäs, L.; Huttunen, S.; Quandt, D. Phylogenetic analyses reveal high levels of polyphyly among pleurocarpous lineages as well as novel clades. Bryologist 2009, 112, 447–466. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data (version 9.1.8). Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA data sets. Appl. Bioinform. 2005, 4, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Simmons, M.P.; Ochoterena, H. Gaps as characters in sequence based phylogenetic analyses. Syst. Biol. 2000, 49, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Kimura, M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 1981, 78, 454–458. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kishino, H.; Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Posada, D. Using Modeltest and PAUP* to select a model of nucleotide substitution. In Current Protocols in Bioinformatics; Baxevanis, A.D., Davison, D.B., Page, R.D.M., Petsko, G.A., Stein, L.D., Stormo, G.D., Eds.; John Wiley: New York, NY, USA, 2003; pp. 6.5.1–6.5.14. [Google Scholar]
- Stamatakis, A. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Edler, D.; Klein, J.; Antonelli, A.; Silvestro, D. raxmlGUI 2.0 beta: A graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv 2020, 12, 373–377. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, version 1.4.4. 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 13 June 2023).
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Cano, M.J.; Jiménez, J.F. Taxonomy and phylogeny of Andina (Pottiaceae, Bryophyta): A new moss genus from the tropical Andes. Syst. Bot. 2012, 37, 293–306. [Google Scholar] [CrossRef]
- Gallego, M.T.; Cano, M.J. Aloina Kindb. In Flora Briofítica Ibérica; Guerra, J., Cano, M.J., Ros, R.M., Eds.; Sociedad Española de Briología, Universidad de Murcia: Murcia, Spain, 2006; Volume III, pp. 83–89. [Google Scholar]
- Mitten, W. Musci Austro-Americani. Enumeratio muscorum omnium Austro-Americanorum auctori hucusque cognitorum. J. Linn. Soc. Bot. 1869, 12, 1–659. [Google Scholar] [CrossRef]
- Jaeger, A. Adumbratio flore muscorum totius orbis terrarum. Part 3. Ber. Thätigk. St. Gallischen Naturwiss. Ges. 1873, 1871–1872, 309–490. [Google Scholar]
- Brotherus, V.F. Bryales. In Die Natürlichen Pflanzenfamilien; Engler, H.G.A., Prantl, K.A.E., Eds.; Verlag vonWilhelm Engelmann: Leipzig, Germany, 1902; Volume 1, pp. 385–432. [Google Scholar]
- Hedenäs, L. Incipient speciation in Scandinavian Distichium capillaceum (Distichiaceae, Bryophyta). Lindbergia 2021, 42, 01144. [Google Scholar] [CrossRef]
- Natcheva, R.; Cronberg, N. What do we know about hybridization among bryophytes in nature? Canad. J. Bot. 2004, 82, 1687–1704. [Google Scholar] [CrossRef]
- Hedenäs, L. Tortella rigens (Bryophyta, Pottiaceae): Relationships, regional variation, and conservation aspects. Pl. Syst. Evol. 2015, 301, 1361–1375. [Google Scholar] [CrossRef]
- Turland, N.J.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Kusber, W.H.; Li, D.Z.; Marhold, K.; et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017, Regnum Veg; Koeltz Botanical Books: Glashütten, Germany, 2018; Volume 159. [Google Scholar] [CrossRef]
Locus | Number of Specimens | Newly Generated Sequences | Sequence Length | Parsimony Informative Characters |
---|---|---|---|---|
ITS | 70 | 65 | 1012 | 204 (20%) |
atpB-rbcL | 52 | 48 | 530 | 37 (7%) |
trnG | 55 | 50 | 34 | 34 (5.4%) |
trnL-F | 54 | 49 | 435 | 29 (6.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano, M.J.; Jiménez, J.A.; Martínez, M.; Hedenäs, L.; Gallego, M.T.; Rodríguez, O.; Guerra, J. Integrative Taxonomy Reveals Hidden Diversity in the Aloina catillum Complex (Pottiaceae, Bryophyta). Plants 2024, 13, 445. https://doi.org/10.3390/plants13030445
Cano MJ, Jiménez JA, Martínez M, Hedenäs L, Gallego MT, Rodríguez O, Guerra J. Integrative Taxonomy Reveals Hidden Diversity in the Aloina catillum Complex (Pottiaceae, Bryophyta). Plants. 2024; 13(3):445. https://doi.org/10.3390/plants13030445
Chicago/Turabian StyleCano, María J., Juan A. Jiménez, Mónica Martínez, Lars Hedenäs, M. Teresa Gallego, Omar Rodríguez, and Juan Guerra. 2024. "Integrative Taxonomy Reveals Hidden Diversity in the Aloina catillum Complex (Pottiaceae, Bryophyta)" Plants 13, no. 3: 445. https://doi.org/10.3390/plants13030445
APA StyleCano, M. J., Jiménez, J. A., Martínez, M., Hedenäs, L., Gallego, M. T., Rodríguez, O., & Guerra, J. (2024). Integrative Taxonomy Reveals Hidden Diversity in the Aloina catillum Complex (Pottiaceae, Bryophyta). Plants, 13(3), 445. https://doi.org/10.3390/plants13030445